
Improving the Compiler/Software DSM Interface:

Preliminary Results

Pete Keleher Chau-Wen Tseng

keleher@cs.umd.edu tseng@cs.umd.edu

Dept. of Computer Science
University of Maryland
College Park, MD 20742

Abstract

Current parallelizing compilers for message-passing machines only support a limited class of
data-parallel applications. One method for eliminating this restriction is to combine powerful
shared-memory parallelizing compilers with software distributed-shared-memory (DSM) systems.
Preliminary results show simply combining the parallelizer and software DSM yields very poor
performance. The compiler/software DSM interface can be improved based on relatively little
compiler input by: 1) combining synchronization and parallelism information communication on
parallel task invocation, 2) employing customized routines for evaluating reduction operations,
and 3) selecting a hybrid update protocol to presend data by
ushing updates at barriers. These
optimizations yield decent speedups for program kernels, but are not su�cient for entire programs.
Based on our experimental results, we point out areas where additional compiler analysis and
software DSM improvements are necessary to achieve good performance.

1 Introduction

Though microprocessor speeds are continuing to increase, most observers agree that parallel computing rep-

resents the only plausible way to signi�cantly increase the computational power available. Parallel machines

range from multiprocessor workstations (e.g., SGI PowerChallenge, DEC Sable) to scalable message-passing

distributed-memory systems (e.g., IBM SP-2, Intel Paragon). Despite their promise, however, parallel com-

puters are not likely to be widely successful until they are easy to use. A key problem in parallel computing

is to provide a portable and easy method for programming multiprocessors, particularly large message-

passing machines. There have been many approaches for overcoming this important obstacle, but they have

limitations in either usability or performance.

One approach is to write explicitly parallel programs, using parallel dialects of Fortran or C which provide

doall and parallel do annotations that users can easily add to indicate parallelism. However, perfor-

mance can be poor unless users extensively rewrite programs to avoid problems such as poor spatial locality

and false sharing [32]. For distributed-memory machines, users can write message-passing programs that use

a standard message-passing library such as PVM, P4, PARMACS, or MPI. Users can achieve high perfor-

mance because they have total control over interprocessor communication and data layout. Message-passing

programs, however, must deal with separate address spaces, index translation, and explicit interprocessor

communication. Writing e�cient parallel programs thus require too much e�ort for most scientists and

engineers.

Another solution is to use data-parallel languages such as High Performance Fortran (HPF) [22]. HPF

is an enhanced Fortran 90 extended with annotations that specify how data should be partitioned across

processors. Compilers have been developed (e.g., Fortran D [19], Paradigm [33]) that can translate HPF

programs into message-passing programs for distributed-memorymachines. Extensive compiler and run-time

support (e.g., Chaos [10]) have also been developed to handle programs with complicated reference patterns,

such as those found in adaptive sparse applications.

Though HPF is a good solution for data-parallel applications, there are still a number of disadvantages

to using HPF. First, users are forced to rewrite their application using the data-parallel constructs found

in Fortran 90. Though the process is not as di�cult as writing message-passing code, it may still be

laborious for large legacy codes. Some compilers for distributed-memory machines can avoid this problem

by automatically detecting data-parallelism in sequential programs (e.g., Fortran D [19]). More problematic

is the fact that some applications may contain irregular data access patterns or parallelism not expressible

in the data-parallel constructs found in HPF, such as trees and linked lists found in C. Current data-parallel

languages and compilers for distributed-memory machines are thus limited in their applicability, since precise

information is needed.

1.1 Shared-memory Compilers and Software DSMs

Instead of relying on explicitly parallel programs (high e�ort) or data-parallel compilers (limited appli-

cability), we suggest another approach for programming message-passing machines based on combining

shared-memory compilers and software DSMs. Evidence indicates parallelizing compilers for shared-memory

machines are beginning to mature. Several research prototypes have been developed with powerful symbolic

and interprocedural analyses that can automatically exploit parallelism in many numeric programs (e.g.,

SUIF [16, 36], Polaris [6]). These compilers generate shared-memory programs with parallel constructs such

as doall loops and reduction routines.

To exploit shared-memory compilers for message-passing machines, we rely on software distributed-

shared-memory (DSM) systems (e.g., Ivy [25], Treadmarks [11]) which support a shared address space using

operating systems support. The latest generation of software DSMs (e.g, Munin [4], Blizzard/Tempest [13],

CVM [20]) also support multiple coherence protocols and explicit messages on top of existing message-passing

machines and networks of workstations.

By combining shared-memory compilers and software DSMs, we create a programming environment that

is easy to use, since scientists are no longer required to write their entire programs in data-parallel languages

such as HPF. Instead, they can write mostly sequential programs, rewriting a few computation-intensive

procedures and adding parallelism directives where necessary. These compilers also have the advantage

that they produce programs that can run on the large-scale parallel machines as well as the low-end, but

more pervasive workstations. This portability is important for scientists and engineers who want to develop

applications that run well on their multiprocessor workstations, but who desire the ability to scale their

applications up for larger parallel machines as needed. The combination of ease of use and scalability of

software is a key appeal of shared-memory compilers.

A recent development that improves the desirability of compiling for software DSMs is the development

of Flexible-Shared-Memory (FSM) machines (e.g, Alewife [1], Flash [18, 23], Typhoon [30, 31]). These ar-

chitectures maintain a coherent shared address space on top of physically distributed memories, just like

traditional shared-memory machines. In addition, FSM machines also support extensible memory coherence

protocols and explicit messages where needed to achieve better performance. Because modern software DSMs

also support the same features (in software), experience compiling for software DSMs may prove valuable

in developing and evaluating new coherence protocols that may be used on new Flexible-Shared-Memory

machines. Software DSMs thus can serve as testbeds for future FSM machines.

1.2 Contributions

Shared-memory parallelizing compilers are easy to use,
exible, and can accept a wide range of applica-

tions. The important question is whether shared-memory compilers targeting software DSMs can approach

the performance of current message-passing compilers or explicitly-parallel message-passing programs on

distributed-memory machines. This paper provides some preliminary results that attempt to answer this

question. We make the following original contributions:

� Demonstrate in a working prototype how the programming model of shared-memory compilers can be

combined with the memory system of software DSMs

� Point out the problems with a simple approach to combining shared-memory compilers and software

DSMs

� Describe three enhancements to the compiler/software DSM interface: 1) improving parallel task

invocation, 2) customized reduction support, and 3) compiler-directed hybrid update protocols

� Experimentally evaluate the performance impact of our enhancements

� Suggest a number of additional improvements based on compiler analysis and software DSM customiza-

tion.

We begin by considering the parallelization and run-time model of the compiler, the coherence and com-

munication model of the software DSM, and their interactions. We describe three techniques for improving

the compiler/software DSM interface. We present our prototype system and some preliminary results, then

suggest additional improvements. Following a discussion of related work, we conclude.

2 Background

2.1 Shared-Memory Compiler Model

The goal of parallelizing compilers is to identify parallel loops or tasks in sequential programs, using data-
ow

and data dependence analysis combined with program transformations. Computations that occurs frequently

in numerical programs are reductions, commutative operations (e.g., sum, max) that can be reordered to

enable parallelism. Once a parallel portion of the program is identi�ed, it is typically made into the body of

a procedure which can be invoked by all the processors in parallel.

Shared-memory parallelizing compilers typically employ a fork-join programming model, where a single

master thread executes the sequential portions of the program, assigning (forking) computation to additional

worker threads when a parallel loop or task is encountered. After completing its portion of the parallel

loop, the master waits for all workers to complete (join) before continuing execution. During the parallel

computation, the master thread participates by performing a share of the computation just like a worker.

After each parallel computation worker threads spin or go to sleep, waiting for additional work from the

master thread.

The fork-join model is
exible and can easily handle sequential portions of the computation; however, it

imposes two synchronization events per parallel loop. First, a broadcast barrier is inserted before the loop

body to wake up available worker threads and provide workers with the address of the computation to be

performed and parameters if needed. A barrier is then inserted after the loop body to ensure all worker

threads have completed before the master can continue. Between the broadcast and the barrier threads

execute computation in parallel.

Shared-memory parallelizing compilers usually rely on a small run-time system to manage parallelism

operations. Typical functions supported in the run-time system include routines for: 1) thread creation

at the beginning of the program, 2) assigning parallel computation to workers, 3) performing barrier and

lock operations, 4) accumulating the results of global reductions. The run-time system may also support a

variety of scheduling policies (e.g., block, round-robin, dynamic) for scheduling iterations of parallel loops

to processors.

2.2 Software DSM

Software distributed-shared-memory (DSM) systems provide a shared address space on top of physically

distributed memory using software support [29]. E�cient implementations have been developed that run

on commonly available Unix systems making them widely portable, even to standard UNIX workstations

connected via ethernet or ATM networks. Software DSMs rely on (user-level) memory management tech-

niques provided by the operating system to detect accesses and updates to shared data at the granularity of

pages. The software DSM system then applys a memory coherence protocol to provide the illusion of shared

memory. Simply imitating the coherence protocol used by hardware shared-memory multiprocessors is inef-

�cient due to the high communication overhead and large page-sized coherence units. Techniques developed

to improve performance of software DSMs are lazy release consistency and multiple-writer protocols.

Release consistency. In the conventional sequentially consistent (SC) memory [24] model implemented by

most snoopy-cache, bus-based multiprocessors, modi�cations to shared memorymust become visible to other

processors immediately [24]. This model is ine�cient because it implies communication on each write to a

shared data item for which other cached copies exist. In comparison, a release consistency (RC) [14] memory

consistency model permits a processor to delay making its changes to shared data visible to other processors

until special acquire or release synchronization accesses occur. The propagation of the modi�cations can

thus be postponed until the next synchronization operation takes e�ect. Programs produce the same results

for the two memory models provided that (i) all synchronization operations use system-supplied primitives,

and (ii) there is a release-acquire pair between con
icting ordinary accesses to the same memory location

on di�erent processors [14]. In practice, most shared-memory programs require little or no modi�cations to

meet these requirements.

Lazy release consistency. In lazy release consistency (LRC) [21], the propagation of modi�cations is

postponed until the time of the acquire. At this time, the acquiring processor determines which modi�ca-

tions it needs to see according to the de�nition of release consistency. To do so, the execution of each process

is divided into intervals, each denoted by an interval index. Every time a process executes a release or an

acquire, a new interval begins and the interval index is incremented. Intervals of di�erent processes are par-

tially ordered by assigning a vector timestamp to intervals for each processor. With lazy release consistency,

at an acquire, processor p sends its current vector timestamp to the previous releaser, q. Processor q then

piggybacks on the release-acquire message to p write notices for all intervals named in q's current vector

timestampbut not in the vector timestamp it received from p. Experiments show alternative implementations

of release consistency generally cause more communication than lazy release consistency [11].

Invalid, update, and hybrid protocols. Write notices indicate that a page has been modi�ed in a

particular interval, but do not contain the actual modi�cations. The timing of the actual data movement

depends on whether an invalidate, an update, or a hybrid protocol is used [11]. Most DSM systems use

an invalidate protocol: the arrival of a write notice for a page causes the processor to invalidate its copy

of that page. A subsequent access to that page causes an access miss, at which time the modi�cations are

propagated to the local copy. To keep track of pages, the software DSM keeps a copyset for each page listing

the processors that have a copy of that page. This set is used to decide which processors need to be informed

when the page is modi�ed.

In an update coherence protocol, the processor sends a new copy of the data to all the processors in the

copyset. This approach is preferable if the processors in the copyset all use the page before new writes, since

it eliminates misses. The invalidate protocol is preferable if the processors in the copyset do not use the

page, since it avoids unnecessary communication. Experiments show that update protocols generally cause

too much wasted communication, since the copyset of a page gradually accumulates processors which no

longer need that page. This e�ect can be countered using a variant of the update protocol called the hybrid

protocol, which only sends updates for some pages, allowing other pages to be invalidated [11].

Multiple-writer protocols. False sharing occurs when two or more processors access di�erent variables

within a page, with at least one of the accesses being a write. False sharing is problematic for software

DSMs because of the large page-size coherence units. Multiple-writer coherence protocols [9] avoid false

sharing by allowing two or more processors to simultaneously modify their local copy of a shared page.

Their modi�cations are merged at the next synchronization operation. In order to capture the modi�cations

to a shared page, it is initially write-protected. At the �rst write, a protection violation occurs. The DSM

software makes a copy of the page (a twin), and removes the write protection so that further writes to the

page can occur without any DSM intervention. The twin and the current copy can later be compared to

create a di�, a runlength encoded record of the modi�cations to the page. If a new copy of the page is later

requested, the processor can send a di� for the page and allow di�s from the multiple writers to be merged

by the receiving processor.

Lazy release consistency allows di� creation to be postponed until the modi�cations are requested, de-

creasing in the number of di�s created and improving performance. However, garbage collection is necessary

to reclaim the space used by write notice records, interval records, and di�s. During garbage collection, each

processor validates its copy of every page that it has modi�ed. All other pages, all interval records, all write

notice records and all di�s are discarded. In addition, each processor updates the copyset for every page.

Access misses. To implement consistency, software DSMs usually use the UNIX mprotect system call

to control access to shared pages. Any attempt to perform a restricted access on a shared page generates

a SIGSEGV signal. The SIGSEGV signal handler examines local information determine the page's state. If

the local copy is read-only, the handler allocates a page from the pool of free pages and performs a bcopy

to create a twin. Finally, the handler upgrades the access rights to the original page and returns. If the

local page is invalid, the handler requests a copy from a member of the page's approximate copyset. If write

notices are present for the page, the faulting processor obtains the list of missing di�s maintained by the

system and sends out requests in parallel to all the processors that may have modi�ed the page. When all

necessary di�s have been received, they are applied to the page in increasing timestamp order.

3 Compiler/Software DSM Interface

From our description of shared-memory compilers and software DSM systems, it should be clear that the

two complement each other well. We illustrate the issues involved in the compiler/software DSM interface by

listing the steps needed to retarget the Stanford SUIF parallelizing compiler [36] to the CVM software DSM

system [20]. We then point out areas where the interface may be improved with relatively little additional

compiler analysis.

3.1 Simple Interface

A simple way to interface the SUIF compiler and CVM is to port the SUIF run-time system by using

routines from CVM for thread startup, locks, and barriers. Some miscellaneous functions for determining

logical processor IDs, the total number of threads, and global time also need to be replaced with CVM

routines. Since all remaining operations are based on shared memory accesses, they are naturally supported

by CVM with no additional e�ort.

One di�culty that arises is that the SUIF shared-memory compiler assumes a light-weight thread model,

where the entire address space is shared by default. Even data allocated on a stack must be made potentially

sharable if its address is passed to other processors. In comparison, the CVM software DSM expects a heavy-

weight thread model where only memory speci�cally allocated or marked as shared can be shared between

processors. The software DSM cannot simply mark all data in the program as shared, since some data must

remain private to each processor.

Compiler transformations. To solve this mismatch, the SUIF compiler performs two transformations.

First, it promotes all local variables that may be visible to other processors into the global scope. This

process includes stack variables whose addresses are passed as parameters to other functions, since they may

be used in a parallel region. Actual parameters to functions do cannot and do not need to be promoted to

the global scope, since they represent variables declared elsewhere.

The second compiler transformation is to take all global shared variables and make them contiguous

in memory by converting them into �elds of suifmem, a large structured variable (or common block in

Fortran). This transformation results in a single global variable containing all of the statically allocated

shared memory in the program, as shown in the example below. suifmem is padded at both ends to ensure

shared and private variables are on separate pages. Space is reserved in suifmem for shared data needed by

the compiler run-time system, and the compiler generates a variable containing the size of the global variable.

During program startup, the run-time system passes the address and size of suifmem to the software DSM

system, which then marks that region of memory as shared.

int A[100]; struct _globmem {

foo() { ...

int B[100]; int A[100];

forall (i) int B[100];

A[i] = B[i]; ...

} } _suifmem;

foo() {

forall (i)

suifmem.A[i] = suifmem.B[i];

}

Note that statically allocated shared memory is important. Because suifmem is a statically allocated

variable, its address is determined at link time; references to shared data thus take place directly with

a compile-time o�set. The impact on performance should thus be minor. If shared memory has to be

dynamically allocated (e.g., with shmem alloc()), then all accesses to shared memory occur indirectly through

a pointer, potentially requiring two memory accesses per shared reference. Multiple source �les can be allowed

if interprocedural compilation is supported, but in general separate compilation is not possible unless multiple

global nonoverlapping global variables are allowed.

3.2 Optimizations

The simple interface presented for SUIF and CVM produces a working system, but contains many ine�cien-

cies, some of which may be eliminated with minimal compiler analysis. One of the properties of software

DSMs that can lead to poor performance is the use of an invalidation protocol for maintaining coherence. In-

validation protocols are preferred because they reduce excessive communication. However, they are ine�cient

for producer-consumer communication patterns, particularly if there are multiple consumers.

To see why this problem exists, consider what happens when processor p produces data X consumed

by processor q. By de�ning X, p invalidates the copy of X held by q. Using release consistency, the

invalidation message is piggybacked on the barrier synchronization message, so there is little overhead for

the invalidation. However, when q attempts to consume X, it has to take a page fault and wait for the fault

handler to initiate a round-trip communication to p to fetch the page containing X. If multiple processors

need to consume X, the producer p is deluged with with a number of requests, adding a serial bottleneck.

For certain interconnection networks there may even be contention, reducing performance further.

3.2.1 Parallelism Startup

To eliminate these e�ects, we considered places where producer-consumer relationships occur in compiler-

parallelized programs. We consider three opportunities for customizing the software DSM to improve perfor-

mance. The �rst is in the parallelism startup code, the portion of the compiler run-time system responsible

for awakening worker threads and assigning them work. This operation is a prime example of a producer-

consumer relationship, since the master thread produces data (the location of parallel computation to be

performed and parameters for the computation) which is consumed by multiple worker threads.

To improve performance for parallelism startup, we enhanced the software DSM to automatically pig-

gyback certain marked locations along with barrier messages. Since the master processor also owns the

broadcast barrier preceding each parallel loop, it can combine the broadcast message to the workers ac-

knowledging barrier completion with the information needed for parallelism startup. All that is required is

to insert code in the compiler run-time system to mark the section of the global suifmem variable reserved

for the compiler run-time system. Those variables are then automatically updated with new values with the

synchronization messages for the barrier.

3.2.2 Customized Reductions

Another opportunity for improving the compiler/software DSM interface is in customized support for re-

ductions. Recall that reductions are commutative actions (e.g., sum, max) identi�ed by the compiler that

can be performed on local data and then accumulated into global locations using routines from the compiler

run-time library. In the simple system these accumulations are performed as operations on shared memory

locations, with lock variables used to guarantee mutual exclusion. In addition to the usual ine�ciencies

with produce-consumer communication under an invalidation protocol, the need for mutual exclusion in

reductions impose a serial bottleneck as well as synchronization tra�c for lock acquires and releases.

Fortunately, customized support for reductions can be easily added to a software DSM. The compiler

has already identi�ed the operation as a reduction to the run-time system, and the software DSM can take

advantage of this information by eliminating lock operations, instead combining the results directly based

on each processor's contribution to the accumulated result. The process is simpli�ed because the current

SUIF compiler only performs reductions at the end of a parallel region.

CVM's reduction support is implemented by copying the reduction operator and local reduction data

into a reduction record. All reduction records are then piggybacked (appended) to the next barrier arrival

message to the master thread indicating the worker has completed its portion of the computation. The

master thread then performs all the reductions from the last barrier interval, updating the value of the

global shared data. The advantage of centralizing the reduction process at the master thread is two-fold.

First, synchronization to ensure mutual exclusion is eliminated because the master performs all reductions.

Second, since reductions are performed on shared memory, the page containing the reduction data must be

valid locally, and a di� describing the reduction is created later. Centralizing the process at the barrier

master therefore saves on di� creations, remote misses, and total messages.

3.2.3 Hybrid protocol

Finally, we consider the application data communicated between threads during parallel program execution.

Good parallelizing compilers such as SUIF typically choose computation partition and loop scheduling policies

that promote co-location of data and computation. In loop-intensive numeric codes, the assignment of

computation to threads is thus usually fairly stable, yielding consistent sharing patterns for many iterations.

By relying on a consistent computation partition, we may be able to obtain a good estimate of communication

without doing compile-time analysis by using the copyset information collected by the underlying software

DSM system.

Recall that the software DSM keeps track of processors owning a copy of a page in the copyset for

that page. This information can be used to improve performance by selectively employing a hybrid inval-

idate/update coherence protocol. Coherence for pages which are consistently communicated between the

same set of processors can be updated rather than invalidated after writes, eliminating access misses. Coher-

ence for the remaining pages is maintained using an invalidate protocol to avoid excessive communication.

On the �rst iteration of the time step loop, the copysets of each page are empty and access misses occur. By

the second iteration, however, copyset information indicates the processors that need each page, accurately

re
ecting stable sharing patterns. Access misses can be then be eliminated by updating processors on the

copyset for each page, sending the data before it is accessed.

To evaluate the e�ectiveness of using a hybrid coherence protocol, we modi�ed the compiler to auto-

matically insert calls to DSM routines that mark pages to be
ushed at barriers. For a given page, locally

modi�cations are
ushed to all other processors in the page's local copyset at each barrier. A processor p is

inserted into processor q's copyset for a page if p requests a di� for the page, or if q sees a write notice for

the page that was created by q.

As previously discussed, barrier
ushes of updates (essentially a restricted update model) have both

advantages and disadvantages. On the plus side,
ushes ideally move data before it is needed, allowing

computation and communication to be wholly overlapped. The results can be fewer page invalidations page

faults. A second advantage is that lost
ush messages do not a�ect correctness, only performance. Flush

messages do not have to reliable, and therefore do not need to be acknowledged. A \
ush" therefore consists

of only a single message, whereas a miss to shared data incurs at least one request and response message

pair.

All consistency information in lazy-release-consistency systems is piggybacked on synchronization mes-

sages (barrier messages in the case of compiler-parallelized applications). By contrast, di� requests are

inherently two-way, and so cost two messages. On the minus size, if sharing patterns are not stable, out-of-

date copysets will cause data to be sent to processors that do not need it. Correctness is not a�ected, but

the unneeded
ushes cause unnecessary overhead.

To improve the e�ectiveness of the hybrid protocol, we enhanced it in two ways for CVM. First, we

ush updates for data at barrier synchronization points to enable data to be piggybacked on synchronization

messages (where possible) and multiple updates to be aggregated in a single message. Second, we provide a

exible user-level (i.e., non-kernel) interface for specifying the coherence for a page or range of pages. This

exibility is important because applications typically have phase shifts when data access patterns change.

CVM allows 1) dynamically changing the coherence type of a page to either invalidate or update, 2) clearing

the copyset of a page, 3) adding or removing processors from the copyset of a page.

4 Experimental Results

This sections presents our experimental results. We discuss our experimental environment, present our

overall results, discuss the e�ect of two compiler-directed optimizations, and then summarize our results.

4.1 Experimental Environment

Our experimental environment consists of a 16-node IBM SP2, although all performance numbers re
ect

eight-processor executions. The SP-2 has a high-performance Omega switch in which each bi-directional

link is capable of a sustained bandwidth of approximately forty megabytes per second. Each processor is a

66MHz RS/6000 Power2 processor.

Our system is based on unreliable UDP sockets, communicating over the switch. Simple RPCs take 160

�sec, and eight-processor barriers take a minimum of 669 �secs. Misses on shared data take a minimum of

939 �secs, including both system time and the cost of retrieving a 4096-byte page across the switch. Misses

are detected by changing page protections and specifying handlers to be called on an inappropriate access.

The operating system overhead of such a handler call is 128 �secs. Operating system overhead for calling

handlers for incoming messages is similar.

4.2 Applications

We evaluated the performance of our prototype compiler/software DSM interface with eight kernels and pro-

gram shown in Table 1. Except for mult, applications are composed of stencil computations and reductions

common in dense-matrix scienti�c codes. dot, erle, jacobi, and swm contain reductions. erle and swm are

small programs containing hundreds of lines. The remaining applications are kernels, several taken from the

Livermore Loops.

Name Description Problem Size

adi ADI Fragment (Livermore 8) 32K
dot Dot Product (Livermore 3) 512K
erle Erlebacher (3D Tridiagonal Solver) 963

expl Explicit Hydrodynamics (Livermore 18) 5122

jacobi Jacobi Iteration w/Convergence Test 5122

mult Matrix Multiply 3002

rb Red-Black Successive-Over-Relaxation 1K2

swm Shallow Water Model 5122

Table 1 Applications

These applications are written in Fortran and typically contain an initialization section followed by tens

or hundreds of iterations of a time step loop. They were automatically parallelized by the Stanford SUIF

parallelizing compiler, with close to 100% of the computation in parallel regions. A simple block scheduling

policy assigns contiguous iterations of equal or near-equal size to each processor, resulting in a consistent

computation partition that encourages good locality. The resulting C output code was compiled by g++

version 2.6.3 with the -O2
ag, then linked with the SUIF run-time system and the CVM libraries to

produce executable code on the IBM SP-2.

4.3 Speedup and Execution Time Breakdown

Figure 1 shows speedup for our eight applications. Our speedup graph presents the speedup of the best com-

bination of the two optimizations. The performance of our applications covers a broad range. Unsurprisingly

because of its high computation-to-communication ratio, mult gets a speedup of over seven. Dot, jacobi,

and expl get speedups of around six, while Adi and rb achieve medium speedups. The two programs, swm

and erle, exhibit very little speedup at all.

The causes of the poor performance in some applications can be seen in Figure 2. This chart breaks down

execution time into six categories: application processing time, time spent in communication routines, miss

handling time, time spent \
ushing" data in our update protocol, garbage collection time, and time spent

waiting at barriers. This latter time is almost entirely load imbalance. While the compiler-generated code is

perfectly balanced, time spent handling faults, di� requests, and
ush messages delays processors unequally

between barriers.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Procs

S
p

ee
d

u
p

mult

dot

jacobi

expl

adi

rb

swm

erle

Figure 1 8-Proc Speedup

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

adi dot erle expl jacobi mult rb swm

app

comm

miss

flush

gc

wait

Figure 2 Breakdown of Execution Time

\Miss" time includes system time spent calling the fault handler and changing page protections, as well

as all remote requests needed in order to validate the page. This category is deceptively small, since variation

in miss handling time among processors appears to be the primary cause of load imbalance. Hence, any

reduction of miss handling time is likely to reduce barrier wait time as well. Garbage collection time is

minimal for all applications except adi, and is only large for adi only because the breakdown re
ects an

execution that uses hybrid updates, which increase the number of di� creations by a factor of eight. Garbage

collection does not occur at all for adi when hybrid updates are turned o�.

4.4 Evaluating Hybrid Update Protocol

Recall that when enabled, our compiler automatically insert calls to DSM routines that mark address ranges

to be kept coherent using a hybrid update protocol; updates are
ushed at barriers. For a given page, locally

modi�cations are
ushed to processors named by a page's local copyset prior to each barrier. For applications

with non-adaptive reference patterns, such as those in our test suite, copyset information accurately re
ects

stable sharing patterns by the second iteration. The current algorithm used to select data is fairly imprecise,

and marks all arrays accessed in parallel as data requiring updates.

Table 2 contains statistics on di�s, page invalidations, remote misses, and messages both with and without

compiler-generated barrier
ushes. Because of the interference with lazy di�ng, described below, barrier

ushes uniformly create more di�s. However, the di�erence is minor in �ve of the programs, indicating they

have stable one-to-one sharing patterns. In all cases, barrier
ushes reduce the number of page invalidations

and remote misses.

If sharing patterns are not stable, out-of-date copysets will cause data to be sent to processors that do

not need it. Correctness is not a�ected, but the unneeded
ushes cause unnecessary overhead. The \Percent

Used" column shows that such is the case for erle and adi, the two applications for which barrier
ushes

are not helpful. The problem seems to be the compiler neglected to clear the copysets of shared variables

after the initialization phase, causing extra updates in the actual time step loop.

The adi application also su�ers from a less obvious disadvantage of barrier
ushes that occurs when data

is consumed less frequently than it is modi�ed. For example, consider a three-barrier application executing

on processors p and q. Processor p modi�es page i during each of the �rst two barrier epochs, and q reads

page i in the third. Multi-writer DSMs such as CVM typically use a lazy di�ng di�ng scheme, which means

that they delay actually creating a di� until it is requested. In the above case, without barrier
ushes, the

lazy scheme would not create a di� until q requests the modi�ed data from p in the third epoch. Hence,

only one di� for page i is created during each iteration. With barrier
ushing enabled, di�s are created and

ushed in each of the �rst two epochs, resulting in twice as many di�s being created overall.

4.5 Evaluating Customized Reductions

Table 3 contains statistics describing executions with and without customized reduction support for the four

applications that use reductions. Without customized reductions, accumulations occur through mutually

exclusive updates to shared memory. With customized reduction support, reduction records created and

piggybacked on barrier synchronization messages. The results show customizing reductions is quite e�ective

for reducing access misses for the reduction. The e�ect on performance is dependent on the frequency

reductions are executed. For dot and jacobi customized reductions are important since reductions are

frequent, while for erle and swm the e�ect is less (though still noticeable) because reductions are rare.

4.6 Communication Requirements

Table 4 lists message and bandwidth totals for the applications with both optimizations turned on. \Page"

requests are only sent on the initial access to a page, or the �rst access to a page after a garbage collection.

\Di�" requests are used thereafter to bring a page up to date. The message total re
ects the fact that

Invals Misses Di�s Msgs Percent Speedup
w/o w/ w/o w/ w/o w/ w/o w/ Useful With

adi 12424 4122 13285 5032 11628 95590 35260 102709 70 -58%
dot 1808 1794 1815 1801 3 3 31712 31698 100 +0%
erle 7810 5010 7547 6027 4306 4417 21650 19187 83 -14%
expl 12628 4150 12697 4279 7558 8127 30644 17598 96 +8%
jacobi 9890 3616 9897 3651 4502 4530 28328 20023 100 +7%
mult 1670 1318 5101 4764 861 872 16922 16605 100 +1%
rb 13015 1836 13036 1871 6430 12030 48602 37507 100 +10%
swm 71267 4307 71436 4595 50505 53026 300906 74250 100 +41%

Table 2 Hybrid Protocol

Invals Misses Di�s Msgs Speedup
w/o w/ w/o w/ w/o w/ w/o w/ With

dot 8463 1794 8477 1801 9004 3 134515 31698 +56%
erle 6061 5010 6856 6027 4553 4417 22463 19187 +8%
jacobi 5716 3616 3977 3651 5220 4530 30489 20023 +30%
swm 4310 4307 4600 4595 53034 53026 74353 74250 +1%

Table 3 Reduction Support

all messages except barrier
ushes require a response. The data shows a large amount of data is being

communicated, perhaps more than expected.

4.7 Page Alignment and Multiple Writers

The numbers in this paper re
ect a multi-writer protocol. CVM also supports several other protocols,

including a single-writer protocol [8]. Multiple-writer protocols have several advantages. They alleviate the

\ping-pong" e�ect when applications exhibit substantial write sharing (whether it be true sharing or false

sharing). They allow processors to make a local decision to modify a page, i.e. no network communication

is needed in order to modify a page that is already valid, but in a read-only state. Multiple writer protocols

are also generally more stable in the face of di�erent synchronization and sharing patterns.

Table 5 shows di�s created, misses and speedup for the eight applications. In all cases, barrier
ushes

have been turned o� for the multi-writer protocol because they have not been implemented in the single-

writer protocol. As table 5 shows, most of the programs in this study are regular and have coarse-grained

sharing. The two protocols therefore perform similarly. Two exceptions, adi and swm, perform signi�cantly

worse under a single-writer protcol than under multiple-writer protocols, primarily because of �ne-grained,

dynamic sharing.

4.8 Discussion

Our experimental results demonstrate that compiler-generated code can perform well on DSM systems,

provided that they have su�cient granularity of parallelism and are able to provide hints to DSM system as

to how data is being used. Even with our optimized compiler/software DSM interface, performance is poorer

than expected for programs such as erle and swm that do not have su�ciently coarse-grain parallelism. We

Programs
Messages Bandwidth

Barrier Page Flush Di� Total (kbytes)

adi 2889 3377 78567 5805 102709 2890
dot 14035 1800 14 7 31698 9285
erle 585 4665 1845 3421 19187 36420
expl 2555 4166 3790 183 17598 1163
jacobi 4235 3615 4187 68 20023 33183
mult 315 4299 357 3510 16605 32775
rb 11263 1824 11179 77 37507 44459
swm 12719 3409 38310 1842 74250 112456

Table 4 Communication Requirements

Misses Msgs Speedup
Single Mult Single Mult Single Mult

adi 22073 13271 78990 35247 2.48 3.67
dot 1815 1815 31714 31712 6.65 6.65
erle 9396 6027 24035 21650 0.94 0.95
expl 14590 12697 40812 30658 5.23 5.10
jacobi 9903 9897 28350 28328 5.65 5.11
mult 5246 5101 11812 16922 3.94 3.82
rb 13050 13036 48602 48602 3.10 3.18
swm 94001 71436 288458 74250 0.64 1.11

Table 5 Single vs. Multiple Concurrent Writers

need to make the interface more e�cient so that we can achieve speedups with smaller granularities of

parallelism. Signi�cant improvements are obviously needed before software DSMs provide a su�ciently

e�cient platform for parallelizing compilers. Based on our experiences, we point out some likely avenues for

explorations in the next section.

5 Additional Improvements

We believe additional improvements are needed in both the compiler and software DSM to make the com-

bination e�cient. We begin by discussing improvements to the compiler. Note: for the �nal version of the

paper we expect to have several of these enhancements implemented and experimentally evaluated.

5.1 Better Update Classi�cation

First, we anticipate doing a much better job on providing annotations for variables to guide
ushing updates

at barriers. Currently, our compiler analysis is imprecise and does little better than mark entire shared

regions as \update", and the compiler currently does not mark phase changes in the programs. We plan

to extend the compiler so it can di�erentiate between data that is accessed with stable sharing patterns,

and data that whose sharing pattern changes dynamically. The �rst category is appropriate for \update"

annotations; the second is not.

Many applications go through di�erent stages, where sharing patterns are stable within stages but change

between them. For example, the erle application has two di�erent phases. Since our compiler does not yet

detect phase changes, copysets become poor predictors of future accesses in the second phase. Hence the

low \Percent Useful" number in Table 2. Merely detecting such changes and directing the DSM to clear

copysets would eliminate most problems associated with phase changes. Creating new sharing annotations

to add processors to copysets at this point would eliminated almost all of the rest. We expect this type of

support to be even more essential for larger and more complex applications.

5.2 Improving Memory Layout

Message-passing programs have good spatial locality, since data assigned to each processor is placed in con-

tiguous memory locations. The same may not be true for shared-memory programs, since the data assigned

to each program may be scattered through the address space depending on how it has been partitioned.

Poor spatial locality for data can cause false sharing in single-writer protocols and increase di� creation in

multi-writer protocols. To improve spatial locality of local data, the compiler may decide to reindex array

references to make local sections of each array contiguous. However, scalar optimizations are required to

clean up modulo and division operations inserted into array subscripts [3]. Since the compiler is already

building a structure for all shared variables, it should also attempt to page align shared data to improve

spatial locality at the page level.

5.3 Packing Nonlocal Data

Software DSM systems may waste signi�cant communication bandwidth for nonlocal data accesses with

poor spatial locality. Extra swapping of pages to disk may occur if the number of pages exceed available

memory. Message-passing programs avoid these problems by combining nonlocal accesses in a single message

to reduce communication costs. Shared-memory compilers can obtain also bene�t by copying nonlocal data

with poor spatial locality into contiguous bu�ers. The compiler must �rst apply communication analysis to

detect nonlocal accesses. If the nonlocal data is not contiguous, then the compiler must insert code to copy

the data to contiguous bu�ers (one for each processor). The placement copy code can be determined by

data dependences using message vectorization [2, 19]. The compiler must also modify the code so data so

nonlocal accesses are made to the bu�ers.

5.4 Message Library Support

Figure 2 shows that a large amount of time is spent performing system-related chores, even in these relatively

simple applications. Part of the problem is the underlying communication mechanism. The numbers in this

paper re
ect using UDP sockets as a communication substrate. Sockets are very ine�cient; round-trip

latency is usually thousands of cycles, even on a system with a fast network, such as the SP-2. CVM also

runs on top of IBM's implementation of MPI, which has much lower latencies and supports large message

sizes. Even with the basic performance advantages, however, MPI-based DSM usually performs less well

than UDP-based DSM. The reason is that MPI (as well as the current draft of MPI2) provides no support for

asynchronous invocation of handlers upon message receipt. These handlers are necessary for timely handling

of di�, lock, and page requests. The currently use the standard solution, i.e. relying on polling whenever

messages are sent. By using the compiler to automatically insert probes into application code, we should be

able to obtain consistent performance from MPI.

5.5 Retargeting DSM Support

Synchronization usage of automatically-parallelized scienti�c codes often clashes with the synchronization

model assumed by DSMs. Many DSMs support a broader range of synchronization models than needed

for most automatically parallelized scienti�c code. Synchronization in scienti�c codes consists primarily of

barriers and reductions, i.e. global operations. DSMs usually target end users directly, so they support

many di�erent synchronization types, including local synchronization such as locks and condition variables.

Such support has a price, much of the consistency-related machinery in systems such as CVM is dead weight

when running scienti�c codes. We are working on a pared-down version of CVM that is speci�cally tailored

to support barriers, reductions, and limited producer-consumer interaction.

5.6 Reduction Support

We currently support reductions by centralizing all reduction operations at the master processor, which can

cause a bottleneck for applications with large amounts of reductions. Reductions in such systems can be

distributed on a per-page, or per-reduction variable basis. For example, we could require all reductions to

be performed at the processor that owns the page that contains the reduction variable. A disadvantage of

the distributed approach is that it requires additional messages. In the centralized approach, all reduction

tra�c is piggybacked on existing barrier messages. More experiments will be needed.

6 Related Work

While there has been a large amount of research on software DSMs [9, 11, 29], we are aware of only a few

projects combining compilers and software DSMs. Bershad et al. [5] maintain coherence by using a compiler

to update a software dirty bit on shared-memory accesses. CVM, like most software DSMs, relies on the

virtual memory system to detect shared memory updates. Results show that the software communication

overhead usually dominates the memory management overhead.

Mukherjee et al. compared the performance of explicit message-passing programs with shared-memory

programs [28] on Typhoon, a Flexible-Shared-Memory machine implemented on top of a CM-5 [30, 31].

Results show that with suitable extensions to the coherence protocol, the shared-memory program was able

to match the performance of the optimized message-passing program utilizing Chaos [10]. The authors

point out that a compiler like SUIF can take advantage of the extensible coherence protocol to improve

performance.

The SUIF compiler draws on a large body of work on techniques for identifying parallelism [6, 17, 35].

Previous researchers have examined shared-memory compilation issues such as improving locality [26] and

reducing false sharing [7, 12, 34], but their techniques were mostly needed for single-writer hardware coher-

ence protocols. Granston and Wisho� suggest a number of compiler optimizations for software DSMs [15].

These include tiling loop iterations so computation is on partitioned matching page boundaries, aligning

arrays to pages, and inserting hints to use weak coherence. No implementation or experiments are pro-

vided. CVM uses a multi-writer release consistency protocol, so these optimizations are not as vital as for

a sequentially-consistent single-writer protocol.

Mirchandaney et al. described the design of a compiler for Treadmarks, a software DSM [27]. They

propose section locks and broadcast barriers to guide eager updates of data, integrating send, recv and

broadcast operations with the software DSM, and reductions based on multiple-writer protocols. Their

proposal is similar to portions of our SUIF/CVM interface, but we have improved upon their approach

based on experiences with an existing shared-memory compiler implementation.

7 Conclusions

Current parallelizing compilers for message-passing machines only support a limited class of data-parallel

applications. In this paper we investigate whether we can eliminating this restriction by combining a powerful

shared-memory parallelizing compiler with an advanced software DSM system. Preliminary results show

simply combining the parallelizer and software DSM yields very poor performance. The compiler/software

DSM interface can be improved based on relatively little compiler input by: 1) combining synchronization

and parallelism information communication on parallel task invocation, 2) employing customized routines

for evaluating reduction operations, and 3) selecting a hybrid protocol to presend data by
ushing updates at

barriers. Though these optimizations yield decent speedups for program kernels with coarse-grain parallelism,

performance for programs with smaller granularity of parallelism is still poor. Communication overheads

in software DSMs are quite high, leaving little room for sloppy compilation. Based on our experiences, we

believe additional compiler analysis and optimization and further software DSM improvements are necessary

to achieve good performance for entire applications.

References

[1] A. Agarwal, R. Bianchini, D. Chiaken, K. Johnson, D. Kratz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and
D. Yeung. The MIT Alewife machine: Architecture and performance. In Proceedings of the 22th International

Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 1995.

[2] S. Amarasinghe and M. Lam. Communication optimization and code generation for distributed memory ma-

chines. In Proceedings of the SIGPLAN '93 Conference on Programming Language Design and Implementation,

Albuquerque, NM, June 1993.

[3] J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transformation for multiprocessors. In
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Santa

Barbara, CA, July 1995.

[4] J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based on type-speci�c memory

coherence. In Proceedings of the Second ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, Seattle, WA, March 1990.

[5] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway distributed shared memory system. In Proceed-

ings of the '93 CompCon Conference, pages 528{537, February 1993.

[6] W. Blume et al. Polaris: The next generation in parallelizing compilers,. In Proceedings of the Seventh Workshop

on Languages and Compilers for Parallel Computing, Ithaca, NY, August 1994.

[7] W. Bolosky and M. Scott. False sharing and its e�ect on shared memory performance. In Proceedings of the
USENIX Symposium on Experiences with Distributed and Multiprocessor Systems (SEDMS IV), San Diego, CA,

September 1993.

[8] R. Bryant, P. Carini, H.-Y. Chang, and B. Rosenburg. Supporting structured shared virtual memory under

Mach. In Proceedings of the 2nd Mach Usenix Symposium, November 1991.

[9] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and performance of Munin. In Proceedings of

the 13th ACM Symposium on Operating Systems Principles, pages 152{164, October 1991.

[10] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communication optimizations for irregular scienti�c computations

on distributed memory architectures. Journal of Parallel and Distributed Computing, 22(3):462{479, September

1994.

[11] S. Dwarkadas, P. Keleher, A.L. Cox, and W. Zwaenepoel. Evaluation of release consistent software distributed

shared memory on emerging network technology. In Proceedings of the 20th Annual International Symposium

on Computer Architecture, pages 244{255, May 1993.

[12] S. J. Eggers and T. E. Jeremiassen. Eliminating false sharing. In Proceedings of the 1991 International Conference

on Parallel Processing, St. Charles, IL, August 1991.

[13] B. Falsa�, A. Lebeck, S. Reinhardt, I. Schoinas, M. Hill, J. Larus, A. Rogers, and D. Wood. Application-speci�c

protocols for user-level shared memory. In Proceedings of Supercomputing '94, Washington, DC, November 1994.

[14] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency and event

ordering in scalable shared-memory multiprocessors. In Proceedings of the 17th Annual International Symposium

on Computer Architecture, pages 15{26, May 1990.

[15] E. Granston and H. Wisho�. Managing pages in shared virtual memory systems: Getting the compiler into the

game. In Proceedings of the 1993 ACM International Conference on Supercomputing, Tokyo, Japan, July 1993.

[16] M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam. Detecting coarse-grain parallelism using an inter-
procedural parallelizing compiler. In Proceedings of Supercomputing '95, San Diego, CA, December 1995.

[17] M. W. Hall, S. Amarasinghe, and B. Murphy. Interprocedural analysis for parallelization: Design and experience.
In Proceedings of the Seventh SIAM Conference on Parallel Processing for Scienti�c Computing, San Francisco,

CA, February 1995.

[18] M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J.-P. Singh, R. Simoni, K. Gharachorloo, J. Baxter, D. Nakahira,

M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The performance impact of
exibility in the Stan-

ford FLASH multiprocessor. In Proceedings of the Sixth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-VI), San Jose, CA, October 1994.

[19] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for MIMD distributed-memory machines.

Communications of the ACM, 35(8):66{80, August 1992.

[20] P. Keleher. Multiple writers considered harmful. Technical Report CS-TR-3543, Dept. of Computer Science,

University of Maryland at College Park, October 1995.

[21] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software distributed shared memory. In
Proceedings of the 19th Annual International Symposium on Computer Architecture, pages 13{21, May 1992.

[22] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance Fortran Handbook.
The MIT Press, Cambridge, MA, 1994.

[23] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simon, K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The Stanford FLASH multiprocessor. In Proceedings

of the 21th International Symposium on Computer Architecture, April 1994.

[24] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE

Transactions on Computers, C-28(9):690{691, September 1979.

[25] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. IEEE Transactions on Computer

Systems, 7(4):321{359, November 1989.

[26] E. Markatos and T. LeBlanc. Using processor a�nity in loop scheduling on shared-memory multiprocessors.

IEEE Transactions on Parallel and Distributed Systems, 5(4):379{400, April 1994.

[27] R. Mirchandaney, S. Hiranandani, and A. Sethi. Improving the performance of DSM systems via compiler

involvement. In Proceedings of Supercomputing '94, Washington, DC, November 1994.

[28] S. Mukherjee, S. Sharma, M. Hill, J. Larus, A. Rogers, and J. Saltz. E�cient support for irregular applications

on distributed-memory machines. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Santa Barbara, CA, July 1995.

[29] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and algorithms. IEEE Computer,
24(8):52{60, August 1991.

[30] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and Typhoon: User-level shared memory. In Proceedings

of the 21th International Symposium on Computer Architecture, April 1994.

[31] I. Schoinas, B. Falsa�, A. Lebeck, S. Reinhardt, J. Larus, and D. Wood. Fine-grain access control for distributed

shared memory. In Proceedings of the Sixth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-VI), San Jose, CA, October 1994.

[32] J.P. Singh, T. Joe, A. Gupta, and J. Hennessy. An empirical comparison of the Kendall Square Research KSR-1

and Stanford DASH multiprocessors. In Proceedings of Supercomputing '93, Portland, OR, November 1993.

[33] E. Su, A. Lain, S. Ramaswamy, D. J. Palermo, E. W. Hodges IV, and P. Banerjee. Advanced compilation

techniques in the PARADIGM compiler for distributed-memory multicomputers. In Proceedings of the 1995
ACM International Conference on Supercomputing, Barcelona, Spain, July 1995.

[34] J. Torrellas, M. Lam, and J. Hennessy. False sharing and spatial locality in multiprocessor caches. IEEE

Transactions on Computers, 43(6):651{663, June 1994.

[35] P. Tu and D. Padua. Automatic array privatization. In Proceedings of the Sixth Workshop on Languages and

Compilers for Parallel Computing, Portland, OR, August 1993.

[36] R. Wilson et al. SUIF: An infrastructure for research on parallelizing and optimizing compilers. ACM SIGPLAN

Notices, 29(12):31{37, December 1994.

