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Abstract
Networks of workstations are characterized by dynamic resource
capacities. Such environments can only be efficiently exploited by
applications that are dynamically re-configurable. This paper
explores mechanisms and policies that enable online reconfigu-
ration of shared-memory applications through thread migration.

We describe the design and preliminary performance of a DSM
system that performs online re-mappings of threads to nodes
based on sharing behavior. Our system obtains complete sharing
information through a novel correlation-tracking phase that
avoids the thread thrashing that characterizes previous ap-
proaches. This information is used to evaluate the communica-
tion required by a given thread mapping, and to predict the re-
sulting performance.

1. Introduction
Meta-computer environments can be characterized by distribu-
tion, heterogeneity, and changing resource capacities. Meta-
computers consist of networks of machines, some of which might
be shared memory multiprocessors. Distributed and parallel ap-
plications can be run in such environments, but usually not as
effectively as on shared memory multiprocessors. Part of the rea-
son is that meta-computers are often non-dedicated, forcing the
individual threads of a parallel application to compete with other
jobs for resources. Another part of the problem is the individual
machines often have different capabilities. Finally, such environ-
ments are highly dynamic.

Parallel applications must be dynamically reconfigurable in
order to run efficiently in such environments. Reconfigurability
can be explicit in the application’s structure. However, this ap-
proach is unlikely to be portable, and puts a large burden on ap-
plication developers. A more general approach is for the runtime
system to implement reconfiguration transparently to the applica-
tion. This paper describes such a reconfiguration mechanism in
the D-CVM (Dynamic Coherent Virtual Machine) [1] distributed
shared memory (DSM) system.

D-CVM implements reconfiguration through thread migra-
tion. Thread and process migration has long been used as a load-
balancing mechanism [2, 3] in parallel and distributed systems.
However, DSMs usually have much higher communication re-
quirements than message-passing systems, implying that good
thread migration policies in this domain must also account for
communication behavior.

Consider a page-based software DSM. If threads on distinct
nodes of a system share data on a specific page x, sharing traffic
can only be eliminated by co-locating both threads on the same
node. Rather than just moving pages to threads that request them
via network faults, thread migration allows the computation to be
moved to the data instead.

Creating a good mapping of threads to nodes requires several
distinct steps. First, we must be able to evaluate the load distri-
bution of a given mapping. This generally requires a way of esti-
mating threads’ computational needs and nodes’ computational
capacities. This distribution must take into account both paral-
lelism, or how many nodes we are exploiting, and the balance, or
how uniformly the load is distributed across those nodes. Second,
we must be able to evaluate a mapping’s communication cost.
This problem reduces to identifying the sharing between threads
that are located on distinct nodes. Finally, there must be a way to
combine these metrics into a single algorithm.

In general, neither parallelism maximization nor communi-
cation minimization can proceed in isolation. Assume that work is
distributed equally across four threads, p1 and p3 on one node and
p2 and p4 on another. This distribution is clearly “balanced” in the
sense that each node has the same amount of work. However, the
communication is just as clearly not optimal if each thread com-
municates with the neighbors implied by the thread ids (i.e. p2

communicates with p1 and p3). A better mapping of threads to
nodes would be p1 and p2 on the first node, and p3 and p4 on the
second. By re-mapping threads to nodes we reduce communica-
tion by a factor of three without affecting the load balance.

We illustrate these issues by describing D-CVM’s thread-
mapping mechanism. D-CVM applications consist of a single
process and one or more user-level threads on each node of the
system. Each thread has a stack and other D-CVM context. All
threads share global data uniformly.

We do not require threads to have uniform amounts of work.
We also do not assume a dedicated environment. In fact, we ex-
pect reconfigurable systems like D-CVM to be most useful in the
meta-computer environments discussed above. While our ap-
proach aggressively exploits the underlying DSM’s mechanisms
in order to track threads’ sharing behavior, our techniques are not
specific to D-CVM’s consistency protocols. Moreover, the heu-
ristics that we use to map threads to nodes are relevant to the
load-balancing of message-passing applications as well.

Much of this paper describes the specific mechanisms used
in D-CVM, but the ultimate goal is to explore the design space of
thread migration policies. To this end, we discuss alternatives and
tradeoffs at each relevant portion of the paper. The application
domain assumed in this paper is that of highly iterative scientific
code running on top of software DSMs.

Section 2 describes the hardware and software environment
used in our experiments. Section 3 describes the D-CVM mecha-
nisms used to migrate threads across machine boundaries. Section
4 describes D-CVM’s approach to maximizing parallelism and
minimizing load imbalance. Section 5 describes D-CVM’s use of
active correlation-tracking to obtain sharing information, and the
design and preliminary performance of several different thread-



mapping heuristics. Finally, Section 6 describes related work and
Section 7 concludes.

2. Experimental Environment
The DSM target used in this work is a version of D-CVM [4],
modified to handle migratory threads. D-CVM is a page-based,
user-level DSM that implements multiple-writer lazy release
consistency (LRC) [5], which is a derivation of release consis-
tency [6]. In release consistency, a processor delays making modi-
fications to shared data visible to other processors until special
acquire or release synchronization accesses occur. The propaga-
tion of modifications can thus be postponed until the next syn-
chronization operation takes effect. LRC allows the propagation
of modifications to be further postponed until the time of the next
acquire. Programs produce the same results with these memory
models as with more conventional memory models, provided that
all synchronization operations use system-supplied primitives,
and that all conflicting shared accesses are ordered by synchroni-
zation or program order. In practice, most shared-memory pro-
grams require little or no modifications to meet these require-
ments. From the perspective of the mechanisms discussed in the
rest of this paper, the most important attribute of D-CVM is that
its protocols tolerate false sharing [7] well.

The majority of our experiments were run on an eight-
processor SP-2. Each node is a 66.7 MHz POWER2 processor
with 64K first-level caches and 128 MBytes of memory per node.
The processors are connected by a 40 MByte/sec switch. The
operating system is AIX 4.1.4. D-CVM runs on UDP/IP over the
switch. Lock acquires are implemented by sending a request mes-
sage to the lock manager, which then forwards the request on to
the last requester of the same lock. This may take only two mes-
sages if the manager is also the last owner of the lock. Simple 2-
hop lock acquires take 779 µsecs, while 3-hop lock acquires take
1185 µsecs. Simple page faults across the network require 1576
µsecs. Page fault times are highly dependent on the cost of
mprotect calls, 15 µsecs, and the cost of handling segmentation
violation (segv) signals at the user level, 120 µsecs. Minimal 8-
processor barriers cost a minimum of 1176 µsecs.

The applications used in our study are SOR, a simple near-
est-neighbor stencil with a 1024x1024 point grid, FFT, an im-
plementation of a 3-D Fast Fourier Transform solver with
64x64x64 points, and barnes, ocean, and Water-Nsquared  (wa-
ter) from the SPLASH–2 benchmark suite. Barnes was modified
by Rajamony [8] to decrease synchronization granularity and
solves equations for 16k bodies. Ocean was run with 256x256
molecules and water with 512. In all cases, our system consists of
32 threads distributed across eight nodes. Since our environment
is homogenous and all threads perform equal amounts of work,
we place four threads on each node.

2.1 Thread Representation
D-CVM’s thread mechanism is based on the NewThreads [9]
user-level thread library. One of the primary distinctions among
thread packages is whether they support kernels- or user-level
threads [10]. Kernel-level threads are scheduled and otherwise
managed by the kernel directly. One advantage of this arrange-
ment is that the kernel can switch to other threads when the ac-
tive thread makes a blocking system call. The kernel can also

integrate the scheduling of threads into the overall scheduling of
processes on the machine. Each kernel-level thread can poten-
tially compete with threads of other processes, while all user-
level threads of a single process must compete for resources as a
single unit.

The disadvantages of kernel-level threads include poorer
performance and a lack of flexibility. User-level threads are usu-
ally faster because thread operations do not require kernel calls.
They are more flexible because the only limitations are usually
those imposed by the hardware. D-CVM is ideally suited for user-
level threads because it does not use blocking I/O calls.

3. Thread migration mechanisms
This section discusses D-CVM’s thread migration mechanism,
together with the implications of alternative design choices.
Transparent migration of threads across node boundaries requires
that the destination environment be “equivalent” in some sense to
the source environment. This equivalence has two parts: the node
environment, and the data view.

3.1 Node Environment
A thread’s node environment includes all aspects of the applica-
tion’s runtime environment that are related to the particular node
on which the thread is running. These aspects include environ-
mental variables, and resources allocated or read from the oper-
ating system. These problems have been studied at length else-
where [3, 11]. Moreover, these problems are not specific to thread
migration systems, but apply to any distributed environment,
including PVM, MPI, and any DSM. To the authors’ knowledge,
no DSM system explicitly addresses this issue in any general
way. We therefore follow the standard practice of requiring all
system calls to occur during the initialization phase. Since migra-
tion is disabled during initialization, all system calls occur before
any threads are re-located. None of our applications needed to be
modified in order to obey this restriction.

3.2 Data View
Data seen by a thread includes values in registers, the stack, non-
shared global data, and the shared data segment(s). Registers are
easily copied from one machine to another. We do not have to
worry about volatile variables or compiler optimizations since
migration only occurs when threads voluntarily yield the proces-
sor through a procedure call [12].

Non-shared global data
Non-shared global data refers to heap data and to statically allo-
cated data. D-CVM only ensures consistency of data explicitly
allocated through D-CVM calls. Hence, heap and statically allo-
cated data is not consistent across nodes. The result is that
threads on a single node see the same copies of non-shared data,
whereas threads on different nodes see distinct versions. There
are two general approaches to this problem. The first is to ensure
consistency of this data by explicitly handing it off to the DSM
system. The second is to disallow any non-shared data that is
processor-dependent. We chose the second approach because the
first requires extensive (and non-portable) link-time manipulation
in order to segregate the application’s global data from the library
and DSM data.



Stacks
Stacks can easily be copied from one machine to another. The
major complication is dealing with pointer values located in the
stack. Self-referential pointers become inconsistent if thread mi-
gration causes a stack’s address to change. There are essentially
three approaches to dealing with this problem. First, compiler or
language support could maintain enough type information for
pointers to be reliably identified. Such an approach is inherently
specific to a single language or runtime system.

Second, systems using the “scan” approach attempt to dy-
namically identify pointers in the stack by scanning the stack for
possible pointer values [13]. The probability that any data value
is misidentified as a pointer is low, but non-zero. Any such mis-
identifications could contaminate ongoing computations without
obvious symptoms, causing erroneous results to be accepted as
correct.

Finally, the “reserve” approach requires systems to reserve
unique virtual addresses for the stack of each thread in the sys-
tem. With a unique stack address, a thread can migrate to any
node without needing to change the stack’s address. This causes
consumption of the address space to scale with the number of
threads in the entire system. With 32k stacks, 128 threads/node,
and a 16-node system, this approach uses only 64 megabytes of
the address space. While large, this is certainly usable on current
systems. The advent of 64-bit addresses makes possible a prob-
abilistic approach that consists of allocating the stack at a random
64-bit address. With good random number generators, the possi-
bility of two threads being allocated to the same address is ex-
ceedingly remote. Any collisions that do occur can easily be de-
tected and dealt with by prohibiting that particular configuration.

Table 1 shows the cost of a single thread migration on D-
CVM for the “scan” and “reserve” (labeled ‘s’ and ‘r’, respec-
tively) migration mechanisms. We present results for three differ-
ent architectures: the 66.7 MHz Power2 processors over the SP-
2’s 40-MByte switch, 275-MHz 21164 Alpha processors over a
155 Mbit ATM, and UltraSparcs over a 10MBit Ethernet. UDP
was used in all cases. The table gives the size of the migrated
thread’s stack, and the runtime cost seen by the source and desti-
nation nodes. “Send” shows the cost of creating and sending the
migration message. “Reply” shows the cost of reading the request
and sending the reply message. Note that these communication
costs are relatively large, reflecting our use of kernel-based IP
primitives. These costs can be amortized by including more than a
single thread in a message. Communication costs could be re-
duced by more than an order of magnitude through use of zero-
copy protocols such as BIP [14] running on top of a Myrinet [15].
“Scan” is the cost of scanning the stack for pointer values, up-
dating any pointers found, and copying the stack into its new
location. This cost can be considerable, but is still insignificant
compared to communication overheads. For the “reserve” ap-

proach, the “scan” column just refers to the cost of copying the
stack out of the migration message. Both columns labeled
“Other” consist of local bookkeeping, such as manipulating local
thread queues to reflect incoming or outgoing threads.

In all cases, the cost of thread migration compares favorably
with the cost of fetching a remote page. While the stack sizes are
small, we believe them to be typical of scientific codes. Larger
stacks could be handled efficiently by demand fetching all but the
top pages. The migrations were timed in Water-Nsquared.

Shared data
Finally, each node has a specific perspective on the consistency of
shared state, shared by all local threads. Migration of a thread
from one node to another requires that the view of the destination
be as advanced as that of the source, just as with synchronization.
This usually only has to be addressed explicitly by systems that
implement relaxed consistency models. As discussed in Section 2,
such memory models often delay the performance of specific
shared accesses in order to reduce overall communication re-
quirement. Figure 1 illustrates the problem. Assume that each of
processes P1 and P2 contain at least one thread. Thread t1 of proc-
ess P1 migrates to P2. Before migrating, however, t1 modifies
shared data variable x. If the migration completes before the con-
sistency information arrives, a subsequent read by the same
thread at its new location could return an old value. In an LRC
protocol like D-CVM’s, notice of the modification would not
arrive until the subsequent barrier. Hence, the read could return a
stale value.

The inconsistency can be addressed by appending consis-
tency information to the messages that migrate the thread. Alter-
natively, a thread’s source processor can release to the thread’s
destination processor before the thread is activated on the new
processor. Our system takes the latter approach, moving threads
only at predefined synchronization points.

4. Parallelism and load balance
Our overall goals are to maximize parallelism, to minimize load
imbalance, and to minimize communication. The combination of
these goals is a form of the multi-way cut problem, and is NP-
hard. While good approximation schemes have been found for the
general form of the communication minimization problem [16],
our problem is complicated by the fact that we must also address
load balancing and parallelism. We therefore decompose our
problem into three distinct tasks:

(1) determining the number of nodes that will result in the
greatest speedup,

(2) minimizing load imbalance by adjusting the number of
threads per node, and

(3) minimizing communication by taking sharing into account
when mapping threads to nodes.

Ideally, of course, these tasks should be performed at the same
time because they are all interrelated. Since the amount of com-

Source DestinationStack
Size Send Other Total Reply Scan Other Total

SP2 r 1704 1272 14 1286 157 149 5 311
(switch) s 1704 1261 15 1276 116 270 5 391
Alpha r 832 2226 122 2348 180 103 44 327
(ATM) s 832 1782 125 1907 181 127 46 354
UltraSp r 1280 2475 72 2547 119 185 7 311
(ether) s 1280 2457 72 2529 121 216 8 345

Table 1: Migration Costs (usecs)
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munication can affect an application’s efficiency, the mapping of
threads to nodes could affect the number of nodes at which the
best performance is achieved. However, addressing all of these
issues simultaneously can make the complexity of the required
algorithms u nmanageable.

4.1 Number of nodes
We determine the number of nodes on which to run a parallel
application with the help of an initial guess provided by the user
at startup time. As the application continues to execute, the sy s-
tem tracks processor efficiencies by measuring the proportion of
time spent waiting on communication and synchronization. These
efficiencies are compared to system-wide high-water and low-
water thresholds. If the efficiency is below the low-water thres h-
old, we assume the application would be better off running on
fewer processors. The converse is true for the high-water mark.

Consider the
speedup curve shown in
Figure 2. The diagonal
line represents linear
speedup, so the degree to
which the speedup curve
diverges from the line
represents the ineff i-
ciency with which the
application is being ex e-
cuted. At point A, the
efficiency is high, so we
can reliably assume that increasing the number of processors will
improve overall speedup. At point B, however, the efficiency is
very low, and we can assume that decreasing the number of pro c-
essors will either increase the speedup, or not hurt it significantly.
In either case, we can check the result of changing the number of
processors by comparing efficiencies before and after the change.

Our thresholds were chosen to maximize a single applic a-
tion’s speedup, but they may also be chosen to improve overall
system throughput. Maximizing speedup at all costs might not be
the best choice if the slope of the curve in Figure 2 is a very low
positive number. Currently, our system uses 80% for the upper
efficiency threshold and 20% for the lower.

This simple heuristic will perform poorly if an application’s
speedup curve has local minima. For instance, some applications
perform poorly unless the number of threads is a power of two.
The most general approach to this problem is to provide an API
that allows the system to be informed of application-specific
scheduling information [17].

4.2 Thread capacity
A truly general load-balancing facility must be able to accomm o-
date both heterogeneous node capacities and threads that perform
varying amounts of work. The capacity of a node depends on both
the intrinsic capability of the node, as well as the proportion of
this capacity being consumed by other jobs. The residual capacity
of a node is a dynamic measure that can evolve during the course
of an application’s execution. Thread resource requirements
might also vary.

Systems should ideally be able to estimate both node capac i-
ties and thread resource requirements at runtime. Unfortunately,

obtaining both at the same time is truly a hard problem. A rough
estimate of residual capacities can be made if relative thread
requirements are known. Conversely, knowledge of residual c a-
pacities and fine-grained tracking of CPU usage can be used to
estimate the resource requirements of each thread. Furthermore,
the problem is greatly simplified in dedicated environments that
have homogeneous nodes, or with applications whose threads
perform equal amounts of work. We distribute threads uniformly
in our experiments because both simplifications apply for our
environment and applications.

However, we can develop a more general formulation by le t-
ting wi represent the work to be done by thread i, and Rj represent
the residual capacity of node j. We deliberately leave the units of
wi and Rj unspecified, as only their relative magnitudes matter.

Assuming that there are N nodes and T threads, then the amount
of work Wi that should be assigned to node i is:
Note that Wi is some abstraction of work, not necessarily the
number of threads. Also, this formulation ignores the influence of
communication on the cost of performing each chunk of work.
This information is not available if we have not yet mapped
threads to nodes. The impact of this general formulation on thread
mapping is discussed in Section 5.4.

5. Thread correlation and mapping heuristics
The final task identified in Section 4 is to map specific threads to
nodes. This decision would ideally be made with global inform a-
tion. However, dependence on global state introduces the issue of
timeliness into the system, as well as new sources of overhead.
More importantly, not all decision processes deal well with i n-
complete or stale information.

Nonetheless, we use global information for three reasons.
First, the amount of state needed to summarize sharing behavior
for our heuristics is only i*n2, where i is the size of a short integer
and n is the number of threads. This quantity of information can
easily be carried in a single message for realistic numbers of
threads. Second, sharing information can be piggybacked on top
of existing global synchronization operations, e.g. barriers. The
only new messages are those that migrate threads between nodes.
Finally, thread mapping can be used to adapt to dynamically
changing environments. However, the variation that we wish to
take advantage of will be at least on the scale of tens of seconds,
not milliseconds. The cost of a single decision can therefore be
amortized across a relatively large amount of comput ation.

5.1 Cost evaluations
Our goal in mapping threads to nodes is to minimize communic a-
tion. Communication occurs in D-CVM for two reasons: synchr o-
nization and data fetches. Modulo application non-determinism,
communication is minimized by moving communicating threads
to the same (or nearby) nodes. Since our system has a uniform
remote access cost, communication between a pair of threads can
only be reduced or eliminated by co-locating them. Co-locating all
threads on the same node would eliminate all communication, but
presumably not produce the best overall performance.
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Changing the mapping of threads to nodes can have una n-
ticipated effects on performance, such as the influence of co-
location on the actions performed by the underlying DSM. Ho w-
ever, these secondary effects are likely to scale with communic a-
tion costs, so we can treat them as one in our system.

A comprehensive cost function that summarizes the desi r-
ability of a given mapping of threads to nodes must take paralle l-
ism, load balance, and communication requirements into account.
However, we assume both parallelism and load balance have
been addressed through the steps outlined in Section 4. Hence,
the only remaining characteristic to be summarized is commun i-
cation cost.

Communication cost can be measured in a number of ways.
Seemingly obvious metrics include messages counts, and the total
amount of communicated data. The problem with these metrics is
that they only reflect sharing between nodes, not between the
individual threads on each node. For example, a large amount of
communication between nodes ni and nj is not sufficient to deter-
mine which threads on those nodes are sharing resources.

We therefore use information from the underlying DSM
protocols to generate metrics that measure sharing between ind i-
vidual threads. Data sharing between threads can be tracked by
correlating accesses to shared memory by the threads. Two
threads that frequently access the same shared pages can be pr e-
sumed to share data. We define a density function as the access
rate of thread i to page p. The correlation of two threads over
page p can be computed as the product of the density function of
the two threads for page p. The overall correlation of the two
threads, then, is the sum of the correlations for each page in the
system [18]. Unfortunately, page-based DSMs have no efficient
way of deriving density functions because they can not track ind i-
vidual accesses. Instead, accesses are tracked only at the gran u-
larity of a page. Systems that capture shared writes through b i-
nary rewriting [19] rather than page faults could presumably
capture accurate densities. However, this would add overhead to
all writes unless function cloning is used.

More generally, the notion of an access rate is difficult to
capture. Once a page has been mapped locally, subsequent a c-
cesses to the page proceed transparently. Hence, we can not track
the rate of individual accesses. A rough estimate could be o b-
tained by tracking the average length of time a given page r e-

mains invalidated before being revalidated. Unfortunately, this
estimate could be greatly affected by intervening events. For i n-
stance, 100 usecs is a long interval if it contains only local a c-
cesses. However, a remote access can take milliseconds. Such
events make it unlikely that the rate of page revalidation would
accurately reflect the access rate.

We therefore use the number of pages shared across node
boundaries as a predictor of the amount of communication that a
mapping of threads to nodes will produce. We define the correla-
tion of a pair of threads as the total number of pages shared b e-
tween the threads. We define the cut cost of a given mapping of
threads to nodes as the sum total of all thread-pair correlations for
which the component threads are on distinct nodes. Note that this
definition could be extended to deal with non-uniform commun i-
cation networks by multiplying thread correlations by link-
specific coefficients.

5.2 Intra- versus inter-node information
The obvious way to determine the amount of sharing between
threads is to track DSM page faults. Tracking page faults can give
a rough estimate of system sharing. However, this passive track-
ing approach only identifies sharing between threads of different
processors. Since all local threads share the same access rights to
each page, multiple local threads can access a page without
causing more than a single page fault. No information is gained
about sharing between threads located on the same node. Hence,
decisions must be made with only partial information, often
leading to bad long-term choices. These bad choices are disco v-
ered only after the threads have migrated to other processors.
Once a thread migrates from a host, the interactions between that
thread and those left behind become visible in the form of ne t-
work page faults. These faults can be used to identify threads that
should be moved back to their original position, r esulting in the
ping-ponging of threads (or thread thrashing) across the system.

Figure 3 shows the percentage of complete sharing inform a-
tion gathered by the passive tracking approach as a function of the
number of migration rounds. Even at the end of the migrations,
the passive tracking only comes close to obtaining complete i n-
formation for SOR, by far the least complex of our applications.
Each round consists of gathering page fault information for an
iteration of the application, followed by migrating threads to new
locations.

The applications averaged slight more than six rounds of m i-
grations before stabilizing, although Figure 3 shows all rounds in
which new information is gained. The term “stabilizing” is used
advisedly. Recall that passive correlation tracking only learns
about the first local thread to access a page during any synchron i-
zation interval. This means that the speed at which information is
accumulated is non-deterministic. A configuration might appear
optimal for several iterations before the non-deterministic sche d-
uling of threads reveals new information. This happened for w a-
ter, where migrations occurred eight times, followed by two i t-
erations in which no better configuration was found, followed by
one last iteration in which new information caused a final round
of migrations to occur.
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5.2.1 Active correlation tracking
Thread-thrashing can be avoided if we have information about
correlations between local threads before the re-mapping takes
place. D-CVM obtains this information through an active corre-
lation-tracking phase, which provides complete correlation i n-
formation for all thread pairs, local and remote. The algorithm
uses two data structures: per-page correlation bits, and per-thread
access bitmaps:
1) At the start of the tracking phase, all pages are read-

protected and the correlation bit of each page is set. The
pages’ previous states are saved in the page structure. The
thread scheduler is placed in a special mode that prevents
thread-switching from occurring until the next barrier has
been reached.

2) At each access fault for a page whose correlation bit is set
(a correlation fault), the corresponding bit in the per-thread
access bitmap is set, and the correlation bit is reset. The
page is then returned to its original state and the fault ha n-
dler returns. If the access type would have caused a viol a-
tion outside the correlation-tracking phase, a second fault
occurs and is handled normally.

3) At the next barrier, the system switches to the next thread,
sets all correlation bits again, and once again read-protects
all pages. This thread is then allowed to proceed in the
same manner as the prev ious thread.

4) The tracking phase ends when all threads reach the next
barrier. At the end of the correlation-tracking phase, all co r-
relation bits are reset and untouched pages are returned to
their correct states.

After the tracking phase has ended, the per-thread access bitmaps
specify exactly which pages each thread accessed during the
tracking phase.

Note that we do not distinguish between read and write ac-
cesses. The reason is that co-locating two consumers of the same
data gives us the same benefit as co-locating a producer-consumer
pair. Page faults are avoided in both cases. The sole exception is
that we filter out pages that are written only during initialization
because read-only pages do not cause page traffic.

The tracking phase has two primary forms of overhead. The
most obvious is the cost of the correlation faults. This cost scales
with the number of pages accessed locally, and the degree of
sharing between the local threads. Given a system with n nodes
and p pages, the local threads will usually access at least p/n
pages, more if there is a large amount of data sharing between
threads. Local sharing increases the number of faults because
each shared page incurs more than one page fault. However, the
cost of correlation faults on distinct nodes is i ncurred in parallel.

The second cost results from disabling the thread scheduler
during the tracking phase. Turning off the thread scheduler elim i-
nates the latency toleration advantages of per-node multi-
threading. The performance impact of losing this amount of l a-
tency toleration is usually on the order of 10-15% [20], and is
only incurred during the active correl ation-tracking phase.

We could implement active correlation-tracking without
turning off the thread scheduler. However, pages would need to
have a correlation bit for each local thread. Furthermore, each
thread switch would require the state of all pages to be updated to
correspond to the new thread’s correlation bits. The impact of

these changes would likely overwhelm the advantages of using
the thread scheduler.

Table 2 shows the runtime overhead of active correlation
tracking for three local platforms. This overhead is calculated
from the number of correlation faults and the cost of handling
correlation faults on each platform. The platforms shown here are
an SP-2 running AIX 4.2, a cluster of 266 MHz Alpha multipro c-
essors running Digital Unix 4.0, and a cluster of 266 MHz
Pentium II’s running Linux 2.0.32. The worst overheads are on
the Alpha platform, but even here the maximum overhead only
reaches 36%. The maximum overhead on Linux is only 8%,
showing the value of fast user-level signal-handlers.

The last two columns of Table 2 show the number of corre-
lation faults as a function of the number of remote misses in the
default case, and of the number of shared pages. “Correlation
faults per shared page” gives an indication of why SOR is such a
pathological case for the correlation-tracking mechanism. SOR is
a nearest-neighbor application, and therefore only exchanges
shared updates for border rows. However, the correlation-tracking
mechanism incurs faults on all pages, even the interior pages that
are not shared.

The last column shows the number of correlation faults as a
function of the number of shared pages. This number gives a
rough estimate of the number of threads sharing each page. A ‘1’
would indicate no sharing, larger numbers indicate the degree of
sharing between threads. For example, Ocean has a total of 3200
pages. If the data on these pages were distributed evenly across
32 threads, each would be responsible for 100 pages. However,
Table 2 indicates that each thread touches 952 pages during each
iteration. Nonetheless, Ocean’s overhead is only 18% for the
Alphas, and 4% for the Pentium II machines.

Nonetheless, the tracking process is too costly to perform
often. However, correlation tracking only has to be repeated in
response to changes in the environment or the application. The
cost can therefore be amortized over the rest of the computation.
For example, even SOR’s overhead on the Alpha platform might
be tolerable if amortized across ten iterations, and would certainly
be tolerable if each application performed 100 such iterations.

As noted above, all overhead of the tracking phase is i n-
curred locally, and in parallel across nodes of the system. This
implies that the absolute runtime cost of the tracking phase
should not increase as the number of nodes is increased. This is
in contrast to the passive ping-ponging approach (see Section
5.2), in which increasing system size would probably increase the
number of thread migrations. Additionally, the system might also
take longer to settle.

The absolute cost of this tracking phase is sensitive to the
overall amount of sharing in the system. Since sharing means that
multiple threads are accessing the same pages, such sharing i n-
creases the total number of segmentation violations. Systems with

Slowdown While Tracking Correlation Faults
rs6000
AIX

Alpha
UNIX

Pentium II
Linux

/ remote
miss

/ shared
page

barnes 2% 3% 1% 0.12 6.93
FFT 6% 10% 2% 0.10 1.51

ocean 11% 18% 4% 0.25 9.52
SOR 22% 36% 8% 4.46 1.34
water 1% 2% 0% 0.08 6.55

Table 2: Correlation Tracking Overhead



little or no sharing are therefore insensitive to the number of
threads. However, as sharing increases, the number of threads can
become signif icant.

5.3 Correlation maps
At the end of the tracking phase, each node has complete access
bitmaps for each local thread, but only incomplete information
about remote threads. The local bitmaps are sufficient to dete r-
mine a local thread’s affinity for an entire remote node. Systems
with a high degree of multi-threading might find this useful in
allowing nodes to unilaterally send threads elsewhere. Systems
like D-CVM, on the other hand, generally use rather coarse-
grained threads. Hence, thread exports usually need to be ba l-
anced by an equal number of thread imports. Good decisions
about which thread(s) should be imported usually require global
information.

D-CVM enables a global re-mapping process by appending
all access bitmaps to the next barrier arrival message. Once all
processes have arrived, the master computes thread correlations
by counting the number of pages accessed in common by each
pair of threads. The set of all correlations can be depicted visually
in a two-dimensional correlation map, which shows increasing
thread pair correlation by darker shades of gray.

Figure 4 shows 32-thread correlation maps for FFT. Figure 4
(a) shows a mapping of eight threads to each of four nodes. We
have added node boundaries in the form of black outlines, i.e. the
box in the lower left shows that threads 1-8 are on the same node.
The map shows a well-defined structure in which all of the dark
areas are concentrated along the diagonal, and contained within
the outlines that represent individual nodes. Hence, we infer that
this mapping would eliminate most communication. Any dark
areas outside the node outlines imply network communication
because they represent sharing by threads located on distinct
nodes.

By contrast, Figure 4 (b) shows that a mapping of four
threads to each of eight nodes captures only half of the dark areas.
The implication is that a four-by-four mapping would have much
less communication than an eight-by-two mapping. What is not
clear from the map is to what extent this communication adva n-
tage would translate into a performance advantage. Hence, our
current heuristics would have no way of identifying the four-by-
four mapping as a good one. Nonetheless, Table 3 shows that this
is, indeed, the case. The four-node configuration has fewer than
half the number of remote misses, messages, and overall ban d-
width requirements of the eight-node configuration. These a d-
vantages translate into an overall running time that is 8% faster

for four nodes than for eight nodes. Perhaps, more importantly,
the four-node configuration consumes only half the resources of
the eight-node configuration.

Finally, Figure 4 (c) shows a correlation map resulting from
a random mapping of threads to four nodes. Note that the majority
of the dark areas are outside node boundaries, and communication
behavior can be expected to be worse than for the mapping of
Figure 4 (b).

There are essentially two empirical approaches to estimating
the relative importance of communication and parallelism. The
direct approach is to actually run the application in different co n-
figurations, and to search for the fastest configuration [21]. Un-
like the original system in which this technique was used, reco n-
figuration in D-CVM (i.e., thread migration) is relatively ine x-
pensive. Hence, this approach might be practical for long-lived,
computationally expensive appl ications.

The second approach is to measure component communic a-
tion costs and to attempt to relate them to overall running time.
For example, assume that the system detects that page faults co n-
sume 50% of the overall running time during execution of an
eight-by-two configuration. A good heuristic might be able to
combine this information with the correlation map shown in
Figure 4 and deduce that the four-by-four configuration is worth
trying.

5.4 Thread-mapping heuristics
Given correlation maps and the thread capacity of each node, we
can now attempt to map threads to nodes in a way that minimizes
communication. This problem is related to the classic bin-packing
and weighted-cut problems. However, our problem is essentially
the packing of a number of differently sized bins, such that the
weight of the items being packed depends upon which bin is b e-
ing considered. One final complication is that we also want to
min imize the number of threads that have to be migrated.

We tested both leader-based and leader-less versions of each
of the heuristics discussed below. Leader-based heuristics attempt
to minimize thread migrations by constraining the “leader” of
each node to remain on the same node in the new configuration.
Leaders are those threads with the lowest total communication
requirements. If the current configuration is good, the leaders will
tend to prevent other threads from migrating as well. Leader-
based algorithms work best in cases where highly correlated
threads are already co-located on the same node.

A mapping of a thread to a node is not considered if the a d-
dition of the new thread would overwhelm the node’s thread c a-
pacity. Unfortunately, non-uniform capacities or requirements
might cause fragmentation of available capacity, preventing all
threads from being assigned under the above policy. We assign
any leftover threads to those nodes that have the greatest remai n-
ing capacity, regardless of sharing beha vior.

AscEdge
Our first heuristic, AscEdge, uses the standard approach of
“weighted cut” heuristics in attempting to ensure that non-

Time
(secs)

Bandwidth
(bytes)

Msgs Misses

4x8 2.39 7691340 1904 973
8x4 2.61 15644028 4052 2267

Table 3: FFT Configurations

(a) (b) (c)

Figure 4: 32-thread FFT, 26 x 26 x 26 - (a) on four nodes,
squares indicate thread sharing that does not cause network
communication, (b) on eight nodes, as above, (c) randomized
thread assignments for four nodes



communicating threads are not co-located. AscEdge treats threads
and the sharing between them as nodes and edges of a weighted
graph, respectively. We map threads to processors by sorting
edges according to weight (correlation between the threads) in
ascending order, breaking ties by choosing on the edge with the
lowest-numbered node (thread). The endpoints of each edge are
put onto distinct nodes, if possible. Each thread is put onto the
node with which the thread has the highest aggregate correlation
(through the threads currently on the node). Nodes are preferred
in numerical order in the case of ties. One potential problem is
that even the highest-cost edges, which are processed last, might
be placed on distinct nodes, causing large amounts of commun i-
cation.

DesEdge
DesEdge is similar to AscEdge, except that the edges are pro c-
essed in the reverse order, and threads are placed into the same
processor, if possible. This variation handles the edges with high
communication costs explicitly, rather than implicitly as with
AscEdge.

DesNode
DesNode, our final heuristic, works directly with threads.
Threads are sorted by aggregate communication requirements. In
terms of the above graph, the weight of a thread (a node of the
graph) is the cost of communication across a cut that separates the
thread from all other threads. Threads are sorted in descending
order, and are mapped to nodes with which they have the highest
aggregate correlation.

5.5 Heuristic performance
Our evaluation consists of two parts. First, we evaluate the accu-
racy of our heuristics by comparing the cut costs of the configura-
tions generated by each heuristic with that of the optimal config u-
ration. Second, we study the value of the cut cost as a predictor of
communication requirements and overall performance. None of
the untuned heuristics took longer than 1.5 milliseconds for any
of our applications.

Table 4 shows the cut costs and communication that result
from running each of the heuristics. The first five columns give
cut costs. The second set of five columns gives the amount of data
communicated per iteration, and the last five columns give the
number of messages sent each iteration. The heuristics AscEdge,
DesEdge, and DesNode are abbreviated ‘ae’, ‘de’, and ‘dn’, r e-
spectively. Leader-based variants are identified by ‘-l’ suffixes.

Additionally, we also show the communication costs of the opt i-
mal configuration (‘opt’), and of a random configuration (‘r’).

Although there is a large amount of variation across the di f-
ferent applications and heuristics, the configurations generated by
de-l are optimal for all but barnes, where the de-l configuration
has a cut cost less than 1% higher than optimal. De-l minimizes
the effects of fragmentation by handling the costliest edges first.
Additionally, the leader-based approaches help to ensure that
nodes are filled at the same pace. The problem with filling nodes
at different paces is that highly-correlated threads might not both
fit on the same node.

Cut costs match up quite well with the amount of data and
the number of messages sent. However, the differences in cut
costs are exaggerated in the byte and message totals. This implies
that the pages handled better by some of the heuristics cause
relatively more communication than pages handled equally well
by all of the heuristics.

 Figure 5 shows the execution times resulting from the use of
each of the heuristics, normalized to the execution time of the
random heuristic. Overall performance matches up well with the
communication requirements shown in Table 4. Original spee d-
ups are 5.0, 4.5, 1.5, 7.1, and 5.0 for Barnes, FFT, Ocean, SOR,
and water, respectively. The “default” mapping of threads to
nodes closely approximates the optimal performance in this env i-
ronment. However, the performance of default mappings in he t-
erogeneous or non-dedicated environments could easily be closer
to the performance of the random heuristic.

5.6 Synchronization b ehavior
So far, we have discussed only data sharing. However, threads
also communicate in order to synchronize. Hence, a general-
purpose cost function would seem to require taking both into
account when assessing the viability of a candidate configuration.
We have found, however, that the specific mapping of threads to
nodes tends to affect synchronization behavior less than sharing
behavior. While rigorously characterizing application synchron i-
zation behavior is beyond the scope of this paper, we can unsc i-
entifically divide synchronization operations into three different
categories. First, many operations use global barrier synchroniz a-
tion. The cost of this synchronization is often significant to the
application’s overall performance. However, barrier cost is
largely independent of any particular thread configuration, pr o-
vided that load is balance. The reason is that all threads must
participate, regardless of their loc ation.

Many pair-wise lock synchronizations can be categorized as
either reductions or work queue operations. In the former case,
locks are used to arbitrate access to global sums or bounds. The
need for such access is either uniform, i.e., all threads need to
contribute to a given sum, or entirely unpredictable, as when
locks are used to guard access to a global minimum. Moreover,
the particular order that threads gain access to these synchroniz a-
tion variables is often non-deterministic. Hence, past access b e-
havior is unlikely to be a good predictor of future accesses. Fi-
nally, work queue synchronization behaves similarly to reduction
operations in that all threads access the work queue at least occ a-
sionally, and the relative access order is highly d ynamic.

As the above discussion shows, synchronization behavior is
not a viable candidate for use in determining thread configur a-
tions. While there is certainly a large class of applications for
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which synchronization is more important than data sharing, the
performance of such applications is better addressed through
latency-hiding techniques.

6. Related Work
Thread migration has also been studied in the Millipede [22] and
PARSEC [18] DSMs. Both systems implement thread migration
in the context of sequential consistency rather than a relaxed
consistency model. This makes comparisons with our system
difficult, as sequentially-consistent systems suffer from both false
and true sharing. Relaxed consistency models hide false sharing
effectively without recourse to multi-threading [7]. Thread-
scheduling algorithms on modern systems, therefore, only address
performance problems due to true sharing.

Both systems implement forms of passive correlation sche d-
uling, in which remote page faults are used to gain information
about data sharing between threads. As discussed in Section 5.1,
this technique fails to provide information about the affinity b e-
tween local threads, and can cause thread thras hing.

In addition to correlation scheduling, PARSEC also impl e-
ments a “suspension scheduling” algorithm that temporarily su s-
pends threads involved in page thrashing. Suspension scheduling
effectively deals with the same performance problems as the delta
mechanism, which is only needed in single-writer protocols.
Hence, suspension scheduling is unlikely to be of use with more
modern underlying consistency mechanism. This is crucial in
evaluating the performance results in this paper, as two of the
three applications speed up only through suspension scheduling.
The performance of the remaining application, water-nsquared
from SPLASH-2 [23], improves by approximately 17%. However,
the paper gives no absolute performance information for this a p-
plication, and in fact does not specify how many processors are
used.

MOSIX [24] is a distributed operating system that automat i-
cally migrates processes for load balancing and for the avoidance
of virtual memory thrashing.  The system does not support DSM
and does not take sharing or communication into account when
determining migration targets. However, the system ensures that
a process’s entire environment migrates transparently with the
user. A data structure called a deputy is left on the migrating
process’s old node in order to provide forwarding addresses for
interaction with the old node’s enviro nment.

Load balancing can also be accomplished implicitly through
compile-time data placement [25]. Such techniques have the a d-
vantage of not incurring any runtime overhead at all. However,
they are generally applicable for a smaller set of applications than
runtime techniques. Furthermore, they assume dedicated, hom o-

geneous environments. By contrast, runtime techniques can adapt
to changing environments and applic ation sharing patterns.

Several studies [21, 26] have detailed ways in which the
runtime system can empirically determine the number of proce s-
sors that allows the best speedup for a given application. A co m-
mon characteristic of these systems is that the runtime system
systematically tries different numbers of processors and uses a
hill-climbing approach to converge to a local maximum. This
approach has two drawbacks. First, the local maximum might not
be a global maximum. Second, the search procedure can be very
expensive, as the cost of migrating entire Unix processes across
nodes is non-trivial. Our approach resembles a very slow hill-
climbing algorithm (which assumes a good initial guess from the
user), but can migrate work at a fine granula rity.

7. Conclusions
This paper makes three contributions. First, we describe the d e-
sign and implementation of the active correlation-tracking
mechanism. Active correlation tracking captures complete sharing
behavior without network communication or thread thrashing. We
use this information to create correlation  maps, which summarize
sharing information among all threads in the system.

Second, we define the correlation of a pair of threads as the
number of pages shared by the threads. The cut cost of a thread
mapping is the sum total of the correlations of all thread pairs
that are split across two nodes. We show that a mapping’s cut
cost works quite well as a predictor of communication requir e-
ments and overall performance. This is quite important, as the
more intuitive notion of rate is either difficult to capture, and
easily distorted by implementation details. The utility of the cut
cost metric is not specific to our system. However, it is likely to
be less valid for protocols and programming models that do not
tolerate false sharing well.

We also evaluate several heuristics for finding thread ma p-
pings with low cut costs. The best for our applications was the
leader-based descending-edge heuristic, which produced cut costs
that averaged only 0.3% higher than optimal. The heuristic works
by assigning the heaviest edges first, and by using fixed leaders to
ensure that nodes are filled evenly.

Of course, this study only scratches the surface of mapping
algorithms. We studied only a single system configuration, 32
threads distributed across eight nodes, and only a single set of
thread capacities, all the same. This study could be extended to
look at the ability of the heuristics to cope with differing thread
capacities, and tradeoffs between communication costs and the
number of thread migrations. Additionally, local decision-making
is likely to be better suited to highly dynamic environments than
is global decision-making.

Cut Cost Total KBytes Communicated Data Request Messages
barnes FFT ocean sor water barnes FFT ocean SOR water barnes FFT ocean SOR water

opt 99458 2240 9792 28 11230 21122 17096 49876 867 8165 15011 3583 25727 196 2441
ae 102121 2960 11041 32 11902 26885 29703 82810 982 13899 24649 6450 34965 224 4199

ae-l 99458 2960 10918 36 11826 21122 31748 77736 1098 13467 15011 6737 33557 252 4064
de 100918 2240 12751 28 11651 23450 17096 144028 867 11683 16873 3583 51818 196 3547

de-l 100416 2240 9792 28 11230 23347 19021 49876 982 8176 17494 3812 25727 224 2442
dn 101276 2240 13592 32 11985 24726 17190 162050 982 14555 18182 3583 61330 224 4106

dn-l 100416 2240 11304 28 11835 23348 17191 103845 867 13559 17502 3587 41049 196 4097
r 103737 3440 14681 108 12091 27632 51428 121948 2943 14979 22022 10974 40689 700 4158

Table 4: Impact of thread mapping on communication statistics



Finally, the holy grail would be to integrate communication
minimization, load imbalance minimization, and parallelism
maximization into a single heuristic. The best approach to this
problem is likely to combine aggressive monitoring of local eff i-
ciencies with sophisticated heuristics. We are continuing to work
on this problem.
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