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Abstract
This paper evaluates the use of per-node multi-threading

to hide remote memory and synchronization latencies in soft-
ware DSMs. As with hardware systems, multi-threading in
software systems can be used to reduce the costs of remote
requests by running other threads when the current thread
blocks.

We added multi-threading to the CVM software DSM and
evaluated its impact on the performance of a suite of common
shared memory programs. Multi-threading resulted in speed
improvements of at least 20% in two of the applications, and
better than 15% for several other applications. However, we
also found that good performance can not always be
achieved transparently for non-trivial applications. Also, the
characteristics of the underlying DSM protocol can have a
large effect on multi-threading’s utility.

1. Introduction
This paper presents an empirical evaluation of the use of per-
node multi-threading to hide remote latencies the CVM [1]
software distributed shared memory (DSM) system. DSMs are
software systems that emulate shared memory semantics in
software over hardware that provides support only for mes-
sage-passing. Multi-threading for latency-hiding is a well-
known technique for hiding cache miss latencies in the hard-
ware environment [2, 3]. However, the software environment
presents special challenges.

The paradigm usually assumed in DSM-related literature
is that of a distributed system containing a single thread on
each processor. This arrangement is simple, and yet allows
reasonably high processor efficiency.  However, DSMs often
have high remote communication latencies, causing the per-
formance of such systems to be largely dependent on the fre-
quency with which remote lock acquires or data requests oc-
cur. Although the portion of this latency contributed by local
software overhead is often significant, the majority results
from time on the wire and processing at the remote location.

To see that this is true, consider Figure 1. Request la-
tency can be broken into local send overhead, Ls, wire time
for the request, W1, remote receive overhead, Rr, remote proc-
essing of the request, Rp, remote send overhead, Rs, wire time
for the reply, W2, and local receive overhead, Lr. In our envi-
ronment, wire time is insignificant compared to send and
receive OS overheads Ls, Rr, Rs, and Lr. Assuming that local
and remote OS overheads are the same, the local processing

time, Ls + Lr, is less than half the total latency of the request.
The rest of this latency can be used to run a second thread,
provided sufficient parallelism is available.

The primary performance advantage of per-node multi-
threading (MT) is that multiple threads can be used to ensure
that work is available when the currently active thread stalls
on a remote request. If the level of multi-threading is high
enough, multiple threads can often hide all remote request
latency other than local operating system overhead. Second,
the separation of the system’s virtual machine from the physi-
cal machine may allow a better mapping of the computation
on to the thread model. Specifying the number of threads in
an application independently of any particular architecture
has several advantages, including architecture independence,
clarity of expression, implicit load balancing, and ease of
code generation for parallelizing compilers [4]. MT also has
several disadvantages, mostly relating to the frictional cost of
dealing with additional threads.

This paper has three main contributions. First, we meas-
ure the effect of MT on a state-of-the-art DSM protocol and
identify factors that limit MT’s performance improvement.
Second, we assess how transparently MT can be added to
applications, both in terms of correctness and in terms of
performance. Finally, we test MT with two other protocols
and identify protocol-specific factors that affect MT’s per-
formance advantages.

The rest of this paper proceeds as follows. Section 2 de-
scribes the programming model assumed by CVM, and the
changes made to support multi-threading. Section 3 describes
the implementation of multi-threading in CVM and the im-
plications of various design choices. Section 4 describes our
performance, and Section 5 concludes.

2. Programming Model
The majority of DSM-related literature assumes a location-
transparent programming model in which the number of
threads and processors is specified as part of the input. Appli-

P1

P2

Ls LrRr Rp RsW1 W2

Figure 1: Local vs. Remote Latency



2

cation behavior other than performance is assumed to be in-
dependent of the number of system threads. Synchronization
is usually accomplished through system calls to the DSM.

While not specified in the programming model, most of
these systems locate a single thread on each physical proces-
sor in the system. The advantage of this scheme is its simple
cost modal. More than a single thread per node would intro-
duce frictional costs resulting from switching between the
local threads.

Additionally, a single thread per node simplifies han-
dling the scope of “global” application variables. CVM (and
most other DSMs) make such variables non-shared. This is
acceptable with a single thread per node because sharing re-
lationships are uniform, i.e. each thread has private stack data
and global variables. However, user-level threads on a single
node all share the same view of global variables. This is
problematic because it introduces an additional level in the
thread hierarchy: threads on a single node share global vari-
ables, while threads on different nodes have distinct copies.
Unfortunately, it is often quite difficult (and non-portable) to
ensure that application globals, CVM globals, and other li-
brary globals are assigned to distinct pages. Our current solu-
tion is to disallow modifications to global data after initiali-
zation is complete. Since global data is consistent across all
nodes until startup has finished, we thereby ensure that global
data will be uniform across the views of all threads.

Multi-threaded nodes do add an additional level to the
hierarchy of memory access times, i.e. threads that are co-
located on a single node share an affinity that is not present
between threads located on different nodes. To understand the
problem, consider an example in which a simple matrix ap-
plication allocates the computation in contiguous chunks of
rows to each thread. With only a single thread per processor,
the distribution automatically benefits from any spatial local-
ity in the computation, as all rows on a single node are con-
tiguous. In the multi-threaded case, care must be taken to
allocate consecutive chunks of the matrix to threads on the
same node. Otherwise, locality exploited by the single-
threaded system is potentially not present in the multi-
threaded case.

The division into multiple threads can be problematic
even if contiguous matrix chunks are allocated to all threads
on the same node. For example, consider the case where each
thread moves linearly through its portion of the matrix, and
there are two threads per node. If data is shared on the
boundary between each pair of threads, the data on the
boundary between two local threads will be accessed at the
beginning of an iteration by the second thread, and at the end
of the iteration by the first. Between the time of the second
thread’s access and that by the first, the data may have been
displaced from local memory because of consistency actions
or lack of capacity. The multi-threaded system will then suf-
fer more access misses than the single-threaded system, even
though the same data is allocated to each node in both cases.

This case will not affect correct even though performance
might be compromised.

In both the single- and multi-threaded cases, threads syn-
chronize through global locks and barriers. No process is al-
lowed to proceed past a global barrier before all processes
arrive. Global locks can be held by only a single thread at a
time.

3. Implementation

3.1 CVM
The DSM target used in this work is CVM, a software DSM
that supports multiple protocols and consistency models. Like
commercially available systems such as [5], CVM is written
entirely as a user-level library and runs on most UNIX-like
systems. Unlike TreadMarks [5], CVM was created specifi-
cally as a platform for protocol experimentation.

The system is written in C++, and opaque interfaces are
strictly enforced between different functional units of the sys-
tem whenever possible. The base system provides a set of
classes that implement a generic protocol, user-level threads,
and network communication. The latter functionality consists
of efficient, end-to-end protocols built on top of UDP.

New shared memory protocols are created by deriving
classes from the base Page and Protocol classes. Only
those methods that differ from the base class's methods need
to be defined in the derived class. The core DSM routines call
protocol hooks before and after page faults, synchronization,
and I/O events. Since many of the methods are inlined, the
resulting system is able to perform within a few percent of a
severely optimized system, TreadMarks, running a similar
protocol. However, CVM was designed to take advantage of
generalized synchronization interfaces, as well as to use
multi-threading for latency toleration. We therefore expect
the performance of the fully functional system to improve
over the existing base.

Memory Consistency - CVM's primary protocol implements
a multiple-writer version of lazy release consistency, which is
a derivation of release consistency[6]. In release consistency,
a processor delays making modifications to shared data visi-
ble to other processors until special acquire or release syn-
chronization accesses occur. The propagation of modifica-
tions can thus be postponed until the next synchronization
operation takes effect. Programs produce the same results for
the two memory models, provided that all synchronization
operations use system-supplied primitives, and that all con-
flicting shared accesses are ordered by synchronization or
program order. In practice, most shared-memory programs
require little or no modifications to meet these requirements.

Lazy release consistency (LRC) [7] allows the propaga-
tion of modifications to be further postponed until the time of
the next subsequent acquire of a released synchronization
variable. At this time, the acquiring processor determines
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which modifications it needs to see according to the definition
of LRC. To do so, the execution of each process is divided
into intervals, each denoted by an interval index. Potentially
each synchronization operation causes a new interval to begin
and the interval index to be incremented. Intervals of differ-
ent processes are partially ordered by assigning a vector time-
stamp to intervals for each processor. At an acquire, processor
p sends its current vector timestamp to the previous releaser
of the same synchronization variable, q. Processor q then pig-
gybacks on the release-acquire message to p write notices for
all intervals named in q’s current vector timestamp but not in
the vector timestamp it received from p.

False sharing - False sharing occurs when two or more proc-
essors access different variables within a page, with at least
one of the accesses being a write. False sharing is problematic
for software DSMs because of the large page-size coherence
units. CVM’s multiple-writer protocol reduces the effects of
false sharing by allowing two or more processors to simulta-
neously modify local copies of the same shared page without
prior negotiation.

These concurrent modifications are merged using diffs to
summarize the updates. A diff is created by performing a
page-length comparison between the current contents of the
page and a twin of the page that was created at the first write
access. If each concurrent writer summarizes its modifica-
tions as a diff, the system can create a copy that reflects all
modifications by applying the concurrent diffs to the same
copy. Concurrent diffs only overlap if the same location is
written by multiple processors without intervening synchroni-
zation, which is probably a data race.

OS interface - CVM uses the UNIX mprotect system call
to control access to shared pages. Any attempt to perform a
restricted access on a shared page generates a SIGSEGV sig-
nal (segmentation violation). The SIGSEGV signal handler
examines local information to determine the page's state. If
the local copy is read-only, the handler allocates a page from
the pool of free pages and performs a bcopy to create a twin.
Finally, the handler upgrades the access rights to the original
page and returns. If the local page is invalid, the handler re-
quests a copy from the page's owner. If write notices are pres-
ent for the page, the faulting processor requests the corre-
sponding diffs in parallel. After all necessary diffs have been
received they are applied to the page in increasing timestamp
order.

Multi-threaded CVM - We extended the original CVM to
support non-preemptive thread services, which provide most
of the functionality needed to hide remote latency. We also
modified synchronization and communication services to
function properly in the multi-threaded environment. Since
CVM’s architecture enforces the separation of the basic DSM

services from protocol-specific functions, consistency models
can usually be implemented without changing core CVM
code. We were therefore able to restrict our changes to only a
few lines of protocol consistency code.

The thread service uses a simple policy to decide when to
switch between threads. We attempt to perform a thread
switch whenever the current thread blocks on a remote re-
quest, or arrives at a barrier and is not the last local thread to
arrive. Thread switches can also occur as the result of explicit
application requests through a CVM API call.

We also modified CVM’s core synchronization routines
in order to reduce their communication requirements in
multi-threaded environments. Barrier operations were modi-
fied so that all but the last local thread will thread switch
upon arriving at a barrier. The last thread aggregates all local
arrivals into a single per-node arrival message. Barrier re-
lease messages are handled similarly.

We extended this same idea to the application level in
order to support reduction-like operations that would other-
wise use global locks. A common pattern in parallel programs
is to accumulate modifications to shared data structures lo-
cally, updating the shared structure only at the end of the cur-
rent iteration. Transparently adding multi-threading to this
type of application causes each local thread to update the
shared data structure, resulting in additional (and unneces-
sary) synchronization and data messages. We added a local
barrier mechanism that allows co-located threads to synchro-
nize with each other. Such a mechanism can be used by the
application to accumulate results from all local threads into a
single remote update. Unfortunately, this type of mechanism
cannot be generated automatically unless the reduction op-
erations are already visible to the underlying DSM. CVM
does support simple reduction types, but none of the applica-
tions in our study take advantage of them.

Additionally, the behaviors of both lock acquire and re-
lease operations have been changed. We implemented a local
queue for each lock so that multiple local acquires result in
only a single remote lock request. Threads that attempt to
acquire a lock that has already been requested locally are
placed on a local per-lock queue. The release code prefers the
inhabitants of this queue over any remote thread, even if the
remote thread requested the lock before the local threads. The
result is neither fair nor guaranteed to make progress, but
performs well for the applications in this study. This policy
would probably need to be extended in order to efficiently
support applications that use centralized work queues.

Although fine-grained thread systems can improve load-
balancing by moving work to lightly-loaded nodes, our system
implements coarse-grained, non-preemptive threads, and does
not currently support thread migration.

4. Results
This section presents a detailed evaluation of MT’s effects on
a state-of-the-art multi-writer LRC paper, together a study of
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protocol-specific effects.

4.1 Experimental Environment
We ran CVM on a cluster of eight Alpha 2100 4/275 nodes.
Each Alpha node has four 275 MHz Alpha processors and
256 Mbytes of memory. Experiments have shown between
10% and 20% performance degradation when using more
than one processor per node, independent of whether MT is
used. We therefore use only a single processor per node in
order to avoid contention at the network interface, and all of
our performance results are based on eight-processor runs.
The Alphas run Digital UNIX V4.0, and are connected via
Digital's GigaSwitch/ATM communications hub. Each node
currently has a 155 Mb/s ATM interface.

CVM runs on UDP/IP over the ATM network. Simple 2-
hop lock acquires take 937 µsecs, while 3-hop lock acquires
take 1382 µsecs. Lock acquires are implemented by sending a
request message to the lock manager, which then forwards
the request on to the last requester of the same lock. This re-
quires only two messages if the manager is also the last owner
of the lock. Simple page faults across the network require an
average of 1100 µsecs. Page fault times are highly dependent
on the cost of mprotect calls, 49 µsecs, and the cost of han-
dling signals at the user level, 98 µsecs. Minimal 8-processor
barriers cost 2470 µsecs. Thread switches cost approximately
8 µsecs.

4.2 Application Suite
Our application suite
consists of nine applica-
tions: Barnes, Erle, FFT,
Ocean, Shpatial, SOR,
SWM, WaterNsq, and
WaterSp. Table 1 lists
specifics for the applica-
tions in our study. The
Sync column indicates the synchronization operations used by
the applications.  All four applications that use locks were
modified so that locks operations in per-thread reduction op-
erations were merged at the node level before network com-
munication takes place, as discussed in Section 2. All appli-
cations were also checked for problems related to the scope of
global variables. Three applications, Barnes, WaterNsq, and
WaterSp, had some of their global variables specialized for
each thread. The last column shows the problem sizes used in
our experiment.

Barnes is a modified version of the gravitational N-body
simulation from Splash-2. Our version differs from the origi-
nal version in that several small sections of code have been
serialized in order to reduce synchronization. Erle computes
variable derivatives using tri-diagonal solver. FFT is a 3-D
fast Fourier transform that uses matrix transposition to reduce
communication. Ocean is the contiguous ocean from Splash-

2. It simulates large-scale ocean movements based on eddy
and boundary currents. Shpatial is a modified version of the
Splash-2 spatial water application that we obtained from the
SHRIMP project [8]. The primary differences between Shpa-
tial and WaterSp are that data locality has been increased and
synchronization decreased. SWM is two dimensional stencil
computation that applies finite-difference methods to solve
shallow-water model. Erle and SWM were parallelized by the
SUIF compiler [4] from sequential Fortran codes. We applied
no advanced optimization techniques during compilation.
Finally, WaterNsq and WaterSp are molecular dynamics
simulations from Splash-2. While WaterNsq uses O(N2) algo-
rithms, WaterSp uses a more efficient algorithm that works
by imposing a uniform 3-D grid of cells on the problem do-
main.

Figure 2 shows single-threaded eight-processor speedups
of these applications with Lazy Multi-Writer (LMW), Lazy
Single-Writer (LSW), and Sequential (SEQ) protocols. In
general, the results with LSW and SEQ show smaller speed-
ups than LMW, except FFT with LSW. The primary reasons
behind LMW’s superior performance are better handling of
false sharing, and the ability to make modify pages without
distributed consensus. See Section 4.4 for more details. The
expensive communication in this environment dictates rela-
tively poor overall speedups. However, the range of perform-
ance shown in Figure 2 provides an opportunity to evaluate
MT in several different contexts.

We use the term “multi-processor speedup” to refer to
speedup of eight-processor runs over the single-processor
case. “Multi-thread speedup” refers to the speedup versus the
single-threaded eight-processor case. Unless otherwise quali-
fied, “speedup” will refer to this latter definition throughout
the rest of this paper.

App Sync Input
Barnes barrier 16K particles
Erle barrier Size = 125
FFT barrier 64x64x64
Ocean barrier, lock 258 x 258
Shpatial barrier, lock 4K molecules
SOR barrier 2048 x 2048
SWM barrier 750 x 750
WaterNsq barrier, lock 512 molecules
WaterSp barrier, lock 4K molecules

Table 1: Application Specifics

Figure 2: 8-CPU Speedups for LMW, LSW and SEQ
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4.3 LMW Performance
Figure 3 shows LMW’s performance for one, two, four and
eight threads per node, normalized to single-threaded execu-
tion times. We restricted the number of threads per node to be
a power of two in our experiments because some of our appli-
cations expect this.

Table 2 shows details of multi-threading’s effect on the
low-level behavior of LMW. The table gives total bandwidth
consumption, details of remote page and lock requests, and
information on diff creation and use. Remote Faults and Remote

Locks list the total number of faults and lock acquisitions that
require network communication. Overlapping Faults and Locks

give measures of how effective the system is at overlapping
multiple remote accesses. These numbers are counts of how
many remote requests are currently outstanding each time
another remote request is initiated. Contention Faults and Locks

measure contention for resources between local threads by
counting the number of times multiple threads blocked on the
same page or lock.

Overall, the results are quite promising. Ocean, Wa-
terNsq and WaterSp each achieved multi-thread speedups of
at least 18% with four threads per node. Erle and Shpatial
also improved by at least 10%, and Barnes and SWM by at
least 5%. The final two applications, FFT and SOR, sped up
by only 2%. Since SOR’s speedup is near-linear even in the
single-thread case, we did not expect it to improve signifi-
cantly. We’ve included it primarily to show that our multi-
threaded implementation imposes little additional overhead,
even when there is very little remote latency to hide.

Figure 3 also breaks down normalized execution times
into contributions from application time (which includes all
time spent executing local DSM protocol code), time spent
waiting at barriers, time spent waiting on faults, time spent
waiting for locks, IO handling time, and time spent handling

segmentation violations. IO handling time is the time spent
servicing incoming barrier, lock and remote fault requests.
Segmentation violation (segv) handling time measures the
overhead of the operating system upcall to user space when
invalid accesses to shared memory occur. Invalid accesses are
used to inform the DSM when consistency actions need to
occur. Although we can not measure this cost directly, we can
get an approximate value by multiplying the number of seg-
mentation violations by an average cost of 98 µsecs per viola-
tion. Application times vary slightly with different numbers
of threads because we are unable to exclude the influence of
other factors that are affected by multi-threading, such as
cache and TLB behavior.

The primary advantage of MT is that time spent waiting
for the completion of remote requests can be used by other
local threads. As expected, MT reduced fault and lock times
by hiding remote latencies with useful local work. Overall,
fault times reduced by an average of about 35% for both four
and eight threads, indicating that either most latency is hid-
den at four threads (and the remain latency is software over-
head), or fours thread are sufficient to exploit all available
parallelism.

Only one of the applications, WaterNsq, has significant
lock delay. MT addresses all lock delays effectively, with im-
provements in lock handling times continuing to increase
until eight threads for all of the applications that used locks.
Lock waiting time improves by an average of 20% at four
threads, and more than 44% at eight threads. The Remote Lock

column in Table 2 shows that there is essentially no change in
the number of remote lock acquisitions as the degree of multi-
threading increases. This implies that we are able to success-
fully aggregate all local thread locks for a given reduction
into a single remote lock access. This conclusion is supported
by the lack of local lock contention.

These gains are somewhat offset by the fact that the time

Figure 3: Normalized LMW Execution Time
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spent waiting at barriers generally increases slightly as more
threads are used. The reason is that MT introduces more vari-
ability into the system by breaking a single node’s work into
thread-sized pieces, and interleaving the performance of those
pieces in a non-deterministic manner. Additionally, there is a
great deal of variation among processors in how successful
they are at hiding remote latency. MT can not be used to hide
barrier-waiting time because barrier arrival messages are not
sent until all local threads have arrived.

Directly measuring the overlap of communication and
computation is difficult because we have no way of deter-
mining exactly when replies arrive in our system. However,
the number of overlapping requests gives us some idea of how
effective we are at finding parallelism. Each incident of two
overlapped requests means that we have at least some chance
to completely hide the remote latency of one of them. In-
creasing amounts of local contention, on the other hand,
mean that we are not able to find enough parallelism to keep
all local threads busy.

For example, if thread T1 blocks on a remote page fault,
the system switches to T2, and then thread T2 blocks on either
a remote lock or remote fault, Overlapped Faults will be incre-
mented. Likewise, if T2 had blocked on the same page as T1,
then the amount of local contention for pages would be in-
cremented. In almost all cases, the number of overlapped
faults and the amount of local contention increase uniformly
as the level of multi-threading increases.

SOR is one of the exceptions. The number of overlapped
faults stays constant across two through eight threads per

node for SOR because each barrier epoch has only two remote
page faults. Hence, all available “request” parallelism is ex-
ploited with two threads.

Both versions of Spatial have decreasing amounts of page
contention as the number of threads increases. We speculate
that increasing the number of threads decreases the incidence
of false sharing between them. The regions of shared data
accessed by local threads are likely to be further apart with
more threads, and therefore less likely to be on the same page.

Neither Ocean nor Spatial has any overlapping lock re-
quests. These applications use small numbers of locks, and
the lock responses are fast. However, the primary reason for
the lack of overlap is probably that almost all lock acquisi-
tions are used in support of reduction operations. Hence, our
code modifications have already ensured that all local threads
combine to make just one remote lock acquisition.

 To some extent, local contention gives one measure of
how well suited an application is for transparent multi-
threading. SWM, for example, generated approximately
17,000 remote faults, and has local page contention approxi-
mately 7,000 times per additional local thread. The obvious
implication is that 7,000 of the original 17,000 pages are go-
ing to be accessed by every local thread. However, this meas-
ure of contention does not necessarily mean that no overlap
was accomplished, as it gives no notion of how much com-
putation was performed by the second thread before it also
blocked.

Nonetheless, large amounts of contention in an applica-
tion indicate that it is unlikely to benefit from naively in-
creasing the level of multi-threading. Such applications often
need source modification in order to fully exploit MT’s po-
tential.

The last two columns of Table 2 show the number of diffs
created and applied. Recall that diffs are used to summarize
modifications to a single virtual memory page. One of the
performance problems that MT can introduce in a multi-
writer protocol is an increased number of diffs. Multi-
threading may break the modification of a given page into
modifications by different threads. Per-thread diffs may be
created instead of a single combined diff if the threads are on
different nodes, or modify their portions of the data at differ-
ent times. The Diffs Create and Diffs Use columns of Table 2
show that this problem is negligible for Erle, FFT, SOR and
SWM. Moreover, it is only a minor problem for Barnes as
only approximately 10% more diffs are created in the eight
thread case.  Shpatial and WaterSp actually use fewer diffs as
the number of threads increases, although the same number
are created. This situation shows that increasing the number
of threads is actually increasing locality, either in time or in
space. On the other hand, Ocean generates 48% more and
WaterNsq creates 108% more diffs with eight threads than
with one, indicating that locality is being decreased.

BW Remote Overlapping Contention DiffsAppl T (kbytes) Fault Lock Faults Locks Page Lock Create Use
1 25318 4117 0 0 0 0 0 2563 13879
2 25327 4102 0 3905 0 325 0 2584 13893
4 25347 4082 0 10357 0 1054 0 2627 13921Barnes

8 25403 4087 0 20251 0 2392 0 2713 14005
1 103368 11809 0 0 0 0 0 10996 18379
2 103143 9842 0 12424 0 3759 0 10948 18333
4 103267 9153 0 26055 0 11623 0 10981 18369Erle

8 103316 9140 0 43940 0 24096 0 10991 18381
1 61191 6002 0 0 0 0 0 6016 7070
2 61204 5924 0 1086 0 5913 0 6016 7070
4 61223 5913 0 3230 0 17826 0 6016 7070FFT

8 61263 5913 0 6713 0 41538 0 6016 7070
1 118350 21237 641 0 0 0 0 13840 26424
2 102609 18736 639 14873 0 1047 0 10772 25331
4 79701 18082 648 71877 0 4260 0 13161 24307Ocean

8 138212 27168 550 25091
4

0 11972 0 20590 37613
1 32754 7254 47 0 0 0 0 1076 7532
2 32755 7217 48 5967 0 1266 0 1076 7532
4 23419 5121 48 5409 0 5224 0 1075 5477Shpatial

8 23419 5012 48 11372 0 3059 0 1076 5484
1 6736 1092 0 0 0 0 0 1091 1092
2 6741 624 0 936 0 0 0 1092 1092
4 6741 625 0 934 0 0 0 1092 1092SOR

8 6741 624 0 936 0 0 0 1092 1092
1 62975 19632 0 0 0 0 0 15193 42399
2 62954 17232 0 16080 0 7772 0 15112 42318
4 62957 17047 0 21651 0 23334 0 15131 42343SWM

8 62957 16932 0 31657 0 54439 0 15126 42338
1 22199 3679 12480 0 0 0 0 1890 8551
2 22514 4120 12479 2532 12239 510 0 2771 12186
4 22766 4100 12479 4682 36575 3204 0 3365 14642

Water
Nsq

8 23164 3900 12479 8813 84665 6374 0 3933 16963
1 38222 57437 48 0 0 0 0 8244 57708
2 38232 57404 48 36505 0 22832 0 8243 57701
4 27369 41035 48 12973 0 485 0 8244 41324WaterSp

8 27357 40882 47 23616 0 3904 0 8244 41324

Table 2: LMW: DSM Actions
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The number of messages carrying diff remains constant
for five of the nine applications, but increases with more
threads for both WaterNsq and Ocean. By contrast, the num-
ber of remote page faults decreases by like amounts for the
two versions of Spatial. As above, these differences probably
reflect changes in locality induced by new interleavings of
shared accesses as the number of threads increases.

Breaking a single diff into multiple diffs can increase the
total size of created diffs. For example, if a single-threaded
application modifies the same region of shared memory mul-
tiple times, increasing the level of multi-threading may result
in each modification being summarized in a separate diff. All
diffs but the last are pure overhead because only the final re-
sult needs to be seen at other nodes. However, Table 2 shows
that the numbers of remote faults in Ocean and WaterNsq
goes up quickly, but that the total amount of communicated
data changes only slightly. We therefore infer that the bulk of
the diffs created by subdividing single-thread diffs are non-
overlapping.

4.3.1 Effects on the Memory Hierarchy

The decrease in locality caused by MT is potentially present
not only at the page level, but also in caches and TLBs.
Figure 4 shows the total number of misses in the data cache
(D-cache), the data translation look-up table (D-TLB) and
instruction translation look-up table (I-TLB). These numbers
refer to runs on an eight-node SP-2 rather than the alpha ma-
chines because we currently have no way of getting the corre-
sponding numbers on our alpha machines. Multi-threading
speedups on the SP2 were qualitatively similar to those on the
Alphas, but lower. The results are not directly comparable, as
the machines differ in many architectural respects, including
processor, network, and cache configuration. The Alphas and
the SP-2 also differ in virtual memory page size. We partially
compensated for this by forcing the SP-2 version of CVM to
use the Alpha’s 8 KByte page size as the unit of shared co-
herence. The SP-2 has only 64 Kbytes of cache per processor,

while each Alpha processor has 16 Kbytes in the first-level
cache, and 4 Mbytes in the second level. Hence the cache
effects shown Figure 4 are probably more pronounced than on
the Alpha cluster.

Although there is a great deal of variation among the ap-
plications, both cache and TLB misses generally increase
with the level of multi-threading. The two outliers are Ocean,
which shows significant degradation of locality with increas-
ing number of threads, and WaterSp, which has fewer TLB
misses at four threads than at one. Ocean’s poor locality is
caused by the large number of thread switches. WaterSp’s
good locality is probably due to the decreased message traffic
and consequent decrease in operating system calls.

Part of the reason that cache and TLB hit ratios do not
seriously degrade is that our threads are reasonably coarse-
grained. Threads in CVM are non-preemptive, implying that
thread switches can occur infrequently. Moreover, DSM sys-
tems like CVM makes system calls at a high rate, and proba-
bly have relatively low hit ratios as a consequence.

4.4 Multi-threading with LSW and SEQ Protocols
We ran the same applications in our environment with two
additional memory consistency protocols in order to separate
protocol-specific interactions with MT from more general
effects. The additional protocols are LSW, and SEQ. Com-
plete details can be found in Keleher [1]. Briefly, however,
LSW differs from LMW in that it does not allow multiple
concurrent writers, and therefore transfers data in complete
pages rather than by using diffs. False sharing is tolerated
similarly in both protocols, but true sharing causes LSW’s
performance to degrade sharply. SEQ is also a single-writer
protocol, but implements sequential consistency rather than
the relaxed consistency model supported by the other proto-
cols. The comparative speedups in Figure 2 show that LMW
performs the best, followed by LSW, and then by SEQ. With
LSW and SEQ, Barnes and SWM were actually slowed down

Figure 4: Cache and TLB Statistics for Eight Threads
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by factor of three or more. Ocean again has no speedup at all.
LSW FFT is actually faster than LMW FFT because it does
not create diffs, and FFT modifies a large amount of data.

Neither LSW nor SEQ performs as well as LMW in the
single-threaded case because of increased remote request
times. We expected MT speedup to increase correspondingly.
However, this turns out not to be the case.

4.4.1 Multi-Threading and LSW

Figure 5 shows the performance of one, two, four and eight
threads per node for LSW. The elapsed times of all multi-
thread runs were normalized to the single thread execution
times. Figure 5 also breaks elapsed times down into the same
categories as Figure 3 did for LMW. Table 3 shows detailed
results for both LSW and SEQ, the protocol discussed in the
next section. Looking only at the LSW results for now, the
columns show bandwidth requirements, counts of remote
faults, lock messages, and incidents of page contention.

Overall, the results are somewhat disappointing. Al-
though Barnes, Ocean and WaterSp sped up by more than
20%, Erle, FFT and SWM all performed markedly worse than
their single thread counterparts. The primary problems for
Erle and SWM is increased load imbalance, as barrier wait
times increased markedly. As mentioned above, the perform-
ance of LSW is relatively unstable in the presence of true
sharing because processors contending for the same page can
result in it ping-ponging across the network (page thrashing).
We speculate that this caused the load imbalance.

FFT’s poor performance, on the other hand, is due di-
rectly to increasing fault times. Table 3 shows that the eight-
threaded run has 8324 remote faults and 41245 incidents of
local contention. This implies that for every thread that sends
a remote page request, five other local threads block on the
same page before the reply returns. This explains why little
improvement is seen. However, the reason why performance
decreases with more threads is that more remote faults occur

(20% more for eight threads than for one), and bandwidth
requirements are correspondingly higher (23%). We can only
speculate that the underlying reason for the increased page
faults is decreased locality.

Shpatial and WaterNsq sped up by 10% and 9% with
four threads per node, respectively. SOR sped up by only 1%,
but, again, this application has little request parallelism to
exploit. Multithreading effects can still be observed in these
applications, i.e. lock and fault time decreased.

Overall, six applications, Barnes, Ocean, Shpatial, SOR,
WaterNsq, and WaterSp had similar MT speedups in both

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

IO
segv
lock
fault
barrier
appl

2.13

1.70

2.111.45

ErleBarnes FFT Ocean Shpatial SOR SWM WaterNsq WaterSp

Figure 5: Normalized LSW Execution Time

LSW SEQ
Apps T BW Remote Lock Page BW Lock Remote Page

KBytes Faults Msgs Cont. KBytes Msgs Faults Cont.
1 380123 47385 0 0 1083905 0 133328 0
2 361590 45077 0 812 1145333 0 140905 7215
4 345844 43117 0 2280 1361077 0 167437 19720

Barnes

8 355526 44288 0 5289 1504527 0 185069 36046
1 111889 18400 0 0 126048 0 15498 0
2 145359 22505 0 3443 140357 0 17260 4154
4 151156 23179 0 11451 177209 0 21799 12989

Erle

8 154597 23577 0 24938 193089 0 23751 29934
1 49070 6946 0 0 99548 0 12293 0
2 50743 7151 0 5856 100715 0 12437 5818
4 54000 7548 0 17614 102302 0 12633 17448

FFT

8 60224 8324 0 41245 105477 0 13025 40854
1 171202 21368 1121 0 382394 1118 47156 0
2 154463 19194 1078 1099 397941 1114 49048 921
4 178257 22173 1133 4590 446296 1004 55021 3164

Ocean

8 309711 38591 1134 14008 682274 932 84116 10004
1 58623 7302 85 0 117290 82 14442 0
2 58630 7302 84 1258 116176 81 14301 3930
4 42114 5254 85 5264 179979 84 22180 7478

Shpatial

8 42116 5253 85 3095 239043 83 29477 7820
1 9127 1092 0 0 17754 0 2184 0
2 9135 1092 0 0 17754 0 2184 0
4 9135 1092 0 0 17754 0 2184 0

SOR

8 9135 1092 0 0 17754 0 2184 0
1 2345351 296710 0 0 2881982 0 355500 0
2 3931271 490373 0 40828 3247003 0 400541 89356
4 3615995 451211 0 114669 3006180 0 370835 159952

SWM

8 3440148 429426 0 168255 2759358 0 340394 221365
1 33952 5037 21840 0 51394 21839 6209 0
2 51310 7118 21839 765 68635 21838 8330 1021
4 50951 7076 21837 3649 63097 21837 7647 4201

Water
Nsq

8 61692 8290 21838 7029 74916 21763 9103 8676
1 463863 57482 81 0 630753 83 77555 0
2 463930 57485 81 23209 672451 84 82699 21665
4 331865 41102 84 397 650425 84 80099 5619

WaterSp

8 331862 41103 84 3852 833277 81 102685 7720

Table 3: LSW and SEQ Behavior
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LMW and LSW. Three applications, Barnes, WaterNsq, and
WaterSp, have lower speedups with LSW. This is somewhat
surprising, because LSW’s lower processor speedups imply
that there is more potential for MT speedup. Moreover, while
remote miss latency accounts for an average of 34% of single-
thread application time under LMW, the corresponding num-
ber for LSW is 45%. However, while the LMW number drops
to 24% at four threads, miss latency drops to only 36% for
LSW.

Part of the problem is the effect of MT on LSW. Recall
that LMW handles true sharing without network communi-
cation, whereas multiple processors attempting to access a
common page under single-writer protocols might cause page
thrashing (and hence additional remote misses). While the
average number of remote faults at eight threads decreases by
12% for applications under LMW, the corresponding number
of faults increases by an average of 27% under LSW. This
additional, non-deterministic work increases barrier imbal-
ance, and makes it unlikely that significant performance
gains will be achieved

The last LSW column in Table 3 shows that the amount
of local page contention under LSW is similar to the conten-
tion observed under LMW.

4.4.2 Multi-Threading and SEQ

Figure 6 shows the performance of the applications under
SEQ, our sequentially-consistent single-writer protocol. As
before, we show execution times for one, two, four and eight
threads per node, normalized to single-thread times. These
execution times are broken down into the same categories as
before. The last four columns of Table 3 show bandwidth
consumption, the number of lock messages, remote page
faults, and page contention for SEQ.

Overall, the performance of MT for applications running
on SEQ shows the same trend as that of LSW, only more so.
Despite having lower processor speedups than either of the
other protocols, and hence more opportunity for improve-
ment, MT improves performance by 20% for only one appli-
cation, WaterNsq, and by at least 10% for only two more.
Three of the applications do significantly worse with MT. As
with LSW, the performance degradation results from a com-
bination of increase fault times, and increasing barrier imbal-
ance.

Fault latency averages more than 52% of the single-
threaded execution cost, and 40% even for the best MT case.
The number of remote faults at eight threads increases by
even more than with LSW, by an average of 39% across all of
our applications. Moreover, while the incidence of local page
contention is similar for most applications under both LMW
and LSW, contention is much more pronounced under SEQ.
These effects are likely due to the fact that less page thrashing
occurs under LSW because the protocol is able to hide a great
deal of false sharing by delaying consistency actions. By con-
trast, consistency actions are performed immediately with
SEQ. Bandwidth requirements increase correspondingly.

In contrast to LSW, and especially LMW, eight threads
perform better than four threads for only a single application,
SWM. The number of remote page faults and the amount of
consequent fault latency explain the slowdown for most of the
applications. SWM’s processor speedup under SEQ is so poor
that it is difficult to understand its performance.

 Finally, note that the bandwidth requirements for SEQ
are much higher than for the other protocols. High bandwidth
tends to hurt MT speedup because data copying can not be
overlapped with any other local activity.
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4.5 Useful and Non-Useful Thread Switches
The notions of overlapped requests and local lock and page
contention discussed in Sections 4.3 and 4.4 give some idea
of the effectiveness MT and the amount of parallelism that it
can exploit. However, these metrics are incomplete in that
they don’t give any indication of the amount of computation
performed before threads block. For example, these statistics
will count situations where t1 blocks on a page request, the
system switches to t2, which computes a while, and then
blocks on a request for a different page. However, they give

no idea of how long t2 computes before the reply for t1’s re-
quest returns. Unfortunately, this number would be difficult to
obtain in our environment because replies are not signaled by
interrupts. Our system can not know that a reply has returned
until the currently active thread blocks (for whatever reason)
and we check for incoming messages prior to scheduling a
new thread.

However, we can easily instrument our system to check
the state of other threads each time the active thread blocks
on a remote request or barrier arrival, and also gives us a
better idea of how much remote latency is overlapped with
useful work. We can also get a rough estimate of the major
causes of useful work not being available.

Figure 7 divides such thread situations into four different
categories for two, four, and eight threads and all three of our
protocols. “Useful” means that useful work is available when
a thread switch occurs, either because at least one thread has
not left the last barrier, or because a reply has arrived for at
least one blocked thread. The other three categories all repre-
sent situations where no other thread is ready to run, but for
different reasons. There are far too many possible scenarios to
be enumerated in a single chart when each node has up to
eight threads. Instead, we distinguish just two special cases.
The first is “all block”, which means that all other threads are
blocked on the same page. MT has no chance of improving
performance in such situations. The second is “Tail Effect”,
which refers to the situation when all other threads have al-
ready arrived at the next barrier. Increasing the level of MT
can improve performance if the last thread to arrive at a bar-
rier incurs multiple faults after all other threads have arrived
at the next barrier. Additional threads might cause these
“tail” faults to be distributed across multiple local threads,
allowing the data requests to proceed in parallel. Finally, “no
work” refers to all other cases where no work can be found.
The number at the top of each bar is the total number of re-
mote requests and barrier arrivals at which we attempt to find
a thread with useful work.

Looking first at the eight-thread numbers for LMW,
useful work is available at half or more of thread switches for
all applications except FFT, where useful work is available
only 45% of the time. Over 90% of thread switches are useful
for five of the nine applications, and 70% for two more. For
FFT and SWM, the two applications that have the smallest
percentage of useful thread switches, the majority result from
all threads being blocked on the same page. Not coinciden-
tally, these applications are among the poorest in terms of MT
speedup. These applications would not benefit from increased
multi-threading, and in fact Figure 3 shows that both do bet-
ter with four threads than eight.

Across all protocols, the percentage of “tail effect”
switches tends to decrease with increasing MT level, and the
percentage of useful switches tends to increase. The reason is
that increasing numbers of local threads cause more thread

Figure 7: Useful and Non-Useful Thread Switches
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switches to occur at each barrier. All switches to threads that
are just leaving barriers are useful.

Both the “tail effect” and “no work” switches occur more
frequently for LSW and SEQ than for LMW. It is likely that
many of the threads at “no work” switches have also already
arrived at the next barrier, just as all threads have done with
“tail effect” switches. The percentage of such switches in-
crease for the single-writer protocols because poor handling
of false sharing tends to increase the variability in finishing
rates between local threads, i.e. some threads get delayed by
page thrashing more than others. Hence, the number of page
faults that occur after all other threads arrive at the next bar-
rier goes up.

5. Conclusions
This paper has presented the results of our experiments in
latency-hiding via per-node multi-threading. Three of our
applications sped up by at least 17% under our multi-writer
LRC protocol, and all gained at least some benefit from the
multi-threading. We identify the following as limiting factors
to multi-thread speedup:

Lack of Parallelism
The “useful” portion of the bars in Figure 7 shows the per-
centage of time that work is available when a thread switch
occurs. The extent to which this percentage continues to rise
as the number of threads per node increases gives some in-
dication about the amount of available parallelism. How-
ever, much like runtime data-race detection methods, this
information does not give any upper bound on parallelism.
It shows only the parallelism that our runtime system was
able to exploit.

Local Contention for Resources
The threads on a single node often contend or block and
wait for the same resource. Any instance of multiple local
threads waiting on the same resource means that multi-
threading potential is being wasted.

Increasing the level of multi-threading can sometimes
overcome contention induced by false sharing. However,
contention introduced by true sharing can usually only be
addressed through source modification. In other words, if
all local threads contend for the same resources, no amount
of multi-threading will improve performance of this part of
the code. In fact, care needs to be taken to ensure that per-
formance is not degraded. The reduction operations dis-
cussed below are one example of such true sharing.

Reduction operations
As the single-thread-per-node model is nearly universal,
programmers tend to accumulate results locally before
communicating with remote threads. These operations are
essentially reductions. Naively splitting a single thread into
multiple threads can result in each thread individually
communicating local results to the same remote location.

Reduction operations should ideally be identified in the
source. The result would be better performance in both the
single-threaded case and similar performance in the multi-
threaded case. Since the reductions were not identified in
the source of our applications, we modified the source to
take advantage of CVM-provided local barriers. The contri-
butions of all local threads are then aggregated into a single
remote request.

Load Imbalance
Unequal distribution of load across nodes can also prevent
MT from speeding up the application. All of our applica-
tions start with uniform load distributions, aside from small
serial portions. However, DSM communication can throw
this balance off by delaying some threads and processors
more than others.

Caches and TLBs
Context-switching between threads reduces the chance that
caches and TLBs will retain state for a given thread by the
time it switches back in. The performance of even local
computation is then degraded by increased cache and TLB
misses. A thread scheduler might attempt to increase local-
ity by using an approach closer to LIFO than FIFO. Our
scheduler does not currently take locality into account.

Application perturbation
Multi-threading changes the order that events occur, both
within and between nodes. This non-deterministic effect can
either improve or reduce different aspects of application
performance. However, to the extent that this perturbation
increases performance variability between different nodes, it
hurts overall performance.

Thread switch cost
Although not as expensive as remote accesses, switching
between local threads has a significant cost and can be a
factor with enough threads. One approach to reducing this
cost and to increasing our coverage of existing parallelism
is to combine a lightweight, fine-grained threading package
with adaptive load-balancing [9]. Lightweight thread pack-
ages [10] can be fine-grained enough that it is possible to
load-balance through thread migration, and to minimize
unhealthy interactions with the underlying DSM by bin
scheduling of threads [11]. However, such systems usually
do not allow threads to be blocked, i.e. all threads are run-
to-completion. The challenge is to build a lightweight
threading system without changing the programming model
in this way.

The primary goal of this paper was to evaluate the effect of
MT on DSM performance, and to identify factors that limit its
performance benefits. We found that MT improved the per-
formance of all of our applications under our primary proto-
col, two by more than 20%. A number of limitations are dis-
cussed above.
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The second goal was to see if MT could be added without
application modification. Our applications are all parameter-
ized by command-line options to handle different numbers of
nodes. Hence, the system can usually add per-node MT trans-
parently to the application without affecting correctness.
However, MT may not be transparent to application perform-
ance. In fact, we found that modifications were generally
needed in order to prevent lock-based reductions from caus-
ing network communication for each local thread. No matter
how cheap thread operations are made, excess communica-
tions would hurt performance. These modifications would not
have been necessary if our applications had been written for
an API that explicitly calls out reduction operations (i.e. PVM
[12]or MPI [13]).

Reductions are relatively easy to recognize in the source.
However, the more general problem of determining whether
increased multi-threading will improve performance is much
more difficult. Determining whether the potential for im-
provement exists is relatively easy. Applications that spend
significant amounts of time waiting for remote requests to be
served have potential for improvement. All of our applica-
tions except SOR fit this category. However, two properties
must hold in order for this potential to be realized.

First, increased MT must not change the interleaving of
local threads to the extent that more network faults occur.
This can happen when a thread that accesses an object more
than once is split into multiple local threads, such that the
accesses get distributed among the resulting threads. If the
threads are scheduled so that the accesses occur far apart,
interaction with other nodes might mean that the resulting
resource needs to be fetched multiple times, instead of the one
time needed by the original thread. This condition is very
difficult to identify. Moreover, it is a property not just of the
application, but also of the application’s environment.

Second, there is no opportunity for parallelism of data
requests if each thread’s performance is dominated by ac-
cesses to essentially the same set of resources (pages or locks).
For example, consider the breakdown of scheduling attempts
for eight threads under LMW in Figure 7. A large number of
such attempts for both FFT and SWM result in the “all block”
situation, meaning that all threads are blocked waiting for the
same resource. Increased MT will only add overhead to such
applications because additional threads will just block on the
same resource. Not surprisingly, Figure 3 shows that both
applications perform worse at eight threads than at four. This
condition is relatively easy to detect through post-mortum
analysis.

Our final goal was to evaluate the influence of the type of
protocol on MT’s speedups. We measured the effect of MT on
two other protocols: LSW, a single-writer LRC protocol, and
SEQ, a single-writer sequentially consistent protocol. In gen-
eral, we found that MT realized much less of its potential
with the latter two protocols than with LMW. Two aspects of
the protocols dictate this difference: communication require-

ments and the handling of false sharing.
Both of the single-writer protocols require large amounts

of bandwidth because they move data as complete pages
rather than as diffs. Furthermore, the page thrashing that
occurs with concurrent accesses to the same page increases
the number of network page faults. While MT may merge
previously separate updates, such behavior is entirely random
and hurts performance just as often as it helps. The higher
bandwidth hurts MT by increasing the software overhead
incurred by communication primitives. Such operations limit
MT speedup because they can not be overlapped with other
local computations.

LMW was carefully designed to address all forms of
sharing. Such care is crucial because the page thrashing that
can result from sharing in single-writer protocols can greatly
hurt performance. Moreover, false sharing is more likely to
happen in CVM-like DSMs than hardware shared memory
machines because the base coherence granularity is much
larger. Virtual memory pages are 8192 bytes or larger on
most new systems.

The single-writer protocols used in this study address
page thrashing by freezing newly arrived pages for a short
period before allowing them to be invalidated. While this can
reduce page thrashing, it also tends to decrease performance
for applications that synchronize at fine granularities.

We might wonder about the applicability of these tech-
niques to other environments, specifically environments with
lower-cost communication. For example, the performance of
our communication primitives is poor compared to state-of-
the-art ATM implementations, Myrinet [14], or Memory
Channels [15].

While it might seem that MT would be less useful in
such environments, the reality is likely the opposite. As noted
back in Section 1, the only portion of request latencies that
can be used locally by MT is wire time and remote computa-
tion. With bandwidth in the half-a-gigabyte range and one-
way latencies of less than 10 usecs, wire time is likely to be
insignificant for applications that are not bandwidth-limited,
as ours are not. Systems developers are therefore likely to use
low-cost polling rather than much more expensive signals to
detect incoming messages. The disadvantage of polling is that
incoming requests might not be detected in a timely manner if
communication is not regular. Hence, the “remote computa-
tion” seen in such a system is likely to be quite large, imply-
ing that MT will remain a useful technique.
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