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Abstract 

Networks of workstations are fast becoming the standard 
environment for parallel applications. However, the use of 
“found” resources as a platform for tightly-coupled runtime 
environments has at least three obstacles: contention for 
resources, differing processor speeds, and processor 
heterogeneity. All three obstacles result in load imbalance, 
leading to poor performance for scientific applications.  

This paper describes the use of thread migration in 
transparently addressing this load imbalance in the context of 
the CVM software distributed shared memory system. We 
describe the implementation and performance of mechanisms 
and policies that accommodate both resource contention, and 
heterogeneity in clock speed and processor type. Our results 
show that these cycles can indeed be effectively exploited, and 
that the runtime cost of processor heterogeneity can be quite 
manageable. Along the way, however, we identify a number of 
problems that need to be addressed before such systems can 
enjoy widespread use. 

1. Introduction 
The realities of fast and cheap communication networks, 
combined with the emergence of the Internet as a 
commodity workspace, have led to a new emphasis on 
parallel and distributed applications and systems. 
Dedicated, homogenous parallel systems will always be 
an option, but the sheer number of cycles available in non-
dedicated environments dwarfs those available in 
dedicated environments. The advent of fast commodity 
networks has made these cycles available.  

The drawback is that these environments are usually 
heterogeneous in both resource capacities, such as 
otherwise-identical systems with differing clock speeds, 
and in terms of resource types, such as between Pentiums 
and Alphas. Moreover, such applications usually need to 
co-exist with other applications running on the same 
systems. This is especially troublesome for tightly-
coupled applications, i.e. those that communicate with 
fine granularity. 

This paper presents a case study in the utility of such 
environments for running parallel programming systems 
normally associated with more tightly-coupled 
environments, such as SP-2’s or clusters of workstations 
on the same high-speed LAN. We are specifically 
interested in the extent to which we need special operating 
system and programming model support. We evaluate 
mechanisms and policies that support automatic 
reconfiguration of software distributed shared memory 

(SDSM) applications in such heterogeneous 
environments.  

We focus on SDSM applications in order to have a 
demanding application base. While some would argue that 
SDSM systems have little utility even in dedicated, 
homogenous environments, much less the heterogeneous 
environments that are investigating, we believe that long-
term trends point the other direction. These trends are (i) 
the increasing ubiquity of small-scale shared-memory 
multiprocessors, (ii) the convergence between hardware 
and software implementations of DSM, and (iii) the 
similarity in application-restructuring principals needed 
for large-scale hardware DSM and small-scale software 
DSM.  

First, dual and quad-processor shared memory 
machines are now appearing on desktops. As parallel, 
multi-threaded applications become the norm rather than 
the exception, the ability to extend the same (or a similar) 
programming paradigm across network boundaries 
becomes more important.  Second, the boundaries 
between hardware and software DSM are becoming more 
blurred. The FLASH [1] multiprocessor uses a protocol 
processor that looks and acts suspiciously like the user-
programmable Lanai communications coprocessor used in 
Myrinet networks [2]. Finally, applications often need to 
be restructured in order to perform well on SDSM 
systems. However, the immediate goal of the restructuring 
is to improve data locality, precisely the same 
restructuring that needs to be done in order to get good 
performance on large-scale hardware DSMs [3], such as a 
128-node SGI Origin. 

We address two concerns with trying to exploit this 
type of environment. First, the parallel jobs may have to 
compete with other jobs for resources. Handling this type 
of contention is more complicated than merely scaling 
down the expected performance by the percentage of CPU 
cycles that the parallel job’s process can be expected to 
get. Fine-grained parallel applications usually need each 
constituent process to be responsive, i.e. to handle 
incoming requests promptly. Such responsiveness is 
compromised if the parallel process is not scheduled when 
requests arrive. 

Second, heterogeneity poses a whole slew of 
problems. We focus on systems with heterogeneous 
capacities in this paper, omitting discussion of 
heterogeneous processor types because of space 
considerations. Systems with heterogeneous capacities are 



 

binary-compatible machines with potentially differing 
clock rates, network interfaces, and disks. This creates 
load-balancing problems for parallel applications that 
statically distribute work.  

Despite these obstacles, there are reasons to be 
hopeful. We are attempting to exploit “found” resources. 
While high efficiency is desirable, any advantage that we 
obtain is worthwhile because the resources are otherwise 
idle.  

Section 2 characterizes the applications, the 
environments, and the SDSM system that we will use. 
Section 3 discusses mechanisms and policies useful in 
implementing load-balancing through thread migration. 
Section 4 uses these mechanisms and policies to tolerate 
contention for resources, Section 5 does the same for 
environments consisting of machines with differing 
capabilities, and Finally, Section 6 concludes. 

2. Applications, system, and environments 
Our platform is the CVM software distributed shared 
memory system [4], modified to work in our target 
environment. The modified version of CVM supports 
multiple threads per node, thread migration, and 
heterogeneous sets of machines.  

2.1 System characterization 
All of our performance results are based on 100Mbit Fast 
Ethernet. Finding an acceptable network configuration 
was a non-trivial exercise. Although we have a number of 
high-performance networks in our department, all connect 
homogeneous sets of machines. While we have many fast 
machines, we have only a limited number of slower 
machines. We addressed both problems by using a small 
numbers (4) of processors connected by Fast Ethernet. 
While using fewer machines prevents us from studying 
scalability, we are still able to study the central issues of 
this paper: the ability of thread migration to address load-
balancing problems created by both non-dedicated 
machines and unequal processor capacities. As such, the 
system configurations used in this paper are conf-hom, 
four 255 MHz Pentium II processors, and conf-speed, two 
266 MHz Pentium II machines, one 200 MHz Pentium 
Pro machine, and one 133 MHz Pentium machine.  

Table 1 shows the result of several benchmark tests. 
The boxes on the diagonal give costs of performing a 
bcopy() and htonl() on 8192-byte pages. Numbers 
off the diagonal show average round-trip latency seen by 
the requester for remote page, diff, and lock requests. A 
diff is a summary of the modified bytes on a single page. 
Lock requests are “1-hop”, meaning that they are 
immediately satisfied by the destination rather than being 
forwarded. Note that links to and from the Alpha and 
Power2 machines are 10 Mbit/sec. 

2.2 Application characterization 
Our application suite consists of applications from a 
number of places. water, spatial, barnes, and fft 
are ubiquitous applications from the Splash-2 suite [5]. 
tsp, an implementation of the travelling salesman 
problem, and Gauss, which performs Guassian 
elimination with partial pivoting, are both from Rice. 
expl and adi are dense stencil kernels typical of 
iterative PDE solvers, parallelized by the SUIF [6] 
compiler. swm contains a mixture of stencils and 
reductions, and is from the SPEC benchmark suite. Table 
2 summarizes input sets and shared segments sizes. 

Figure 1 shows four-processor speedup of the 
applications on conf-hom, connected by UDP/IP over 
FastEthernet. The speedup of each is broken down into 
categories with size proportional to their contribution to 
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Figure 1: 4-Processor application speedup 
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Table 1: Remote request latency 

Apps Description Problem 
Sizes 

Shared 
Pages 

adi ADI integration kernel 64K 2321 
expl Explicit hydrodynamics 512×512 2509 
fft 3-D fast Fourier transform 64×64×128 3587 
gauss Gaussian elimination 2048x2048 2050 
sor Successive Over-Relaxtion 2048×2048 4097 
tsp Traveling salesman problem 19 cities 99 

spatial Spatial Water molecular 
dynamic 4096 mols 339 

swm Shallow-water model 512  2006 

water molecular dynamic 
simulation 512 mols 43 

Table 2: Application characteristics 



 

execution time. The components are comp, the time spent 
running application code, segv, the time spent incurring 
and servicing segv signals (page faults), sigio, the time 
spent servicing remote requests, barrier, the average 
time spent waiting at barriers due to load imbalance, and 
lock, the time spent waiting for remote lock requests to 
succeed. The same categories will be used throughout this 
paper. Six of the eight applications get speedups of at least 
3.0 on the four processors. The exceptions are fft and 
swm, which share large amounts of data and consequently 
have large segv times. The largest overhead category for 
most of the applications is barrier, which implies load 
imbalance. Note that this balance is not necessarily due to 
imbalance in the work assigned to nodes. Instead, 
imbalance is often created by unequal distributions of 
consistency actions, page faults either incurred or 
serviced. The largest overhead in fft and swm is caused 
is segv, corresponding to page faults. These applications 
share far more data than any of the others, and hence incur 
many more page faults.  

We also ran the applications on UDP/IP over Myrinet 
[7]. This configuration made little difference, as the 
Myrinet IP stack is slower than FastEthernet for small 
messages. 

Note that tsp is included primarily as an example of 
an application that balances load implicitly, and therefore 
does not need system-level load-balancing support. 

3. Multi-threading and thread migration 
Load balancing of iterative scientific codes is generally 
not necessary on dedicated, homogenous clusters. 
Scientific codes are usually balanced already, and 
dedicated clusters do not add any sources of imbalance. 

However, all three environmental challenges 
considered in this paper, resource contention and 
heterogeneity of both capacity and processor type, result 
in differing execution rates across nodes. Since the 
majority of our applications use barrier synchronization in 
order to avoid data races, either the application or the 
system must balance load in order to use resources 
efficiently.  

Reconfiguration of running applications is usually 
accomplished inside the program. For example, the tsp 
application discussed in this paper uses a centralized task 
queue that balances load implicitly. However, most 
scientific codes use a more static computation model.  

We perform online reconfiguration transparently to 
the application via thread migration. Thread migration is 
the obvious choice because threads are visible to the 
system, and generally each has work statically assigned to 
it. Moving a thread, therefore, also moves the work. All of 
our applications can already be parameterized to run on 
different numbers of processors. Since sharing between 
threads is through a shared segment that is visible on all 

nodes, running with 8 threads on each of four processors 
can be made indistinguishable (except for performance) 
from having 1 thread on each of 32 processors.  

To summarize: our runtime strategy is to: i) derive 
relative processor capacities through online measurement, 
ii) derive mappings of individual threads to nodes by 
using online data-sharing information, and iii) perform a 
single migration phase where threads are reshuffled. 

Note that thread migration with homogenous 
processors is relatively easy, no type information is 
needed to translate object formats as data is passed 
between machines. Scientific applications like the ones 
discussed here usually have simple call graphs, and hence 
shallow stacks. The result is that thread migration is 
always cheaper than transferring a page. 

3.1 Load balancing 
Good load-balancing requires accurate information about 
either relative node capabilities, or of the relative amount 
of work each thread performs. Given one, the other can be 
derived from online measurement. With the exception of 
tsp, all of the applications in this study are iterative 
scientific workloads that partition work relatively equally 
among all threads. We can therefore use instrumentation 
of the first iteration of each application to drive our thread 
reconfiguration policy. 

Given threads with equal amounts of work, we can 
derive relative processor capacities, ci, as follows: 
 ( )i i

i
i

bar wait osc
T
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=  (1) 

where bar is the total time between a designated pair of 
barriers, waiti is the total amount of time spent waiting on 
remote requests or the second barrier to complete, and Ti 
is the number of threads on node i. The osi variable is the 
amount of time spent by the operating system to 
implement communication calls, protection violation 
changes and faults, etc. Operating system trap costs can be 
measured directly, but the cost of calling signal handlers 
on protection violations, for example, need to be inferred 
from the number of occurrences and an average cost. On 
some systems, most notably AIX 3.2, the cost of 
protection changes and signal handlers can vary 
dramatically  [8]. However, an average still gives a good 
guide. 

Given relative node capacities, we can derive new 
thread distributions as follows. The number of threads that 
should be on node i, NTi, can be expressed as: 
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where n is the number of nodes in the system.  
One major problem with Equation (2) is that NTi is 

not guaranteed to be an integer. However, for any set of 
new thread capacities, NTi, integer solutions can be 



 

derived. Let x be the largest floating point divisor that 
goes evenly into all NTi, and into differences NTi - NTj, for 
all i, j. The total number of threads needed with such a 
thread distribution is then: 
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Unfortunately, this number is likely to be large for 
any heterogeneous system, and large numbers of threads 
incur significant frictional costs. Figure 2 shows 
application performance as the number of threads per 
processor is increased from 1 to 8 threads per node on 
conf-hom. The slight increases in performance at small 
numbers of threads are due to latency hiding [9, 10]. Note 
that this increase would be much larger if we took startup 
costs into account, as in [10], but we consider only steady-
state execution here. Additionally, we are not currently 
restructuring applications to avoid the problems discussed 
by Thitikamol [9], such as per-thread reductions, and 
duplication of thread state. These numbers impose a limit 
on the number of threads that we can use before 
performance degrades. Note that some of the lines are not 
smooth. The reason is that the pattern of sharing between 
threads can change with the number of threads, and 
communication (and therefore performance) generally 
correlates strongly with thread sharing. We therefore limit 
the total number of threads in our configurations to eight 
times the number of nodes, or 32 for the four-node 
configurations that we study. Integer NTi values (the 
number of threads on node i) are derived by rounding. 
Note that the use of a small number of threads practically 
guarantees load imbalance. 

While this approach requires relatively static sharing 
patterns and environments, much of the discussion in this 
paper is also applicable to more dynamic and irregular 
applications. Additionally, multiple rounds of 
measurement and reconfiguration could be used to 
accommodate long-running applications. 

3.2 Thread mapping 
Once the number of threads on each node has been 
determined, the actual threads to be mapped to that node 
need to be identified. In general, we would prefer to co-
locate communicating threads. Thread-sharing patterns 
can be graphically illustrated using correlation maps [11]. 
Correlation maps are grids that summarize the number of 
pages shared between each pair of threads. Correlation 
maps can be shown graphically as two-dimensional 
squares, where the darkness of each point represents the 
degree of sharing between the two threads that correspond 
to the x,y coordinates of that point.  

4. Contention for resources 
Parallel applications running in non-dedicated 
environments must often compete for resources. This 

competition can affect overall parallel performance much 
more than would be indicated by a simple analysis. 

Consider the situation where one of four processes of 
a parallel application runs on the same machine as an 
external sequential application. Assume each parallel 
process contains eight user-level threads. A simple 
analysis might conclude that the parallel process that must 
compete with the sequential process would be slowed by a 
factor of two, in which case the thread distribution should 
be changed from 8-8-8-8 to 9-9-9-5, or 10-9-9-4. 
However, the situation might be far worse. 

First, competing processes contend for resources 
other than the CPU, such as bandwidth.  

Second, the parallel process’s performance will suffer 
if it is not a strong competitor for the CPU. Consider a 
simple round-robin scheduler. A parallel job that 
communicates frequently would tend not to use its entire 
time slice, while a competing CPU-bound process might 
always do so. The CPU-bound process would obtain more 
cycles. 

Finally, time-slicing might also hurt the parallel 
process’s responsiveness. SDSM processes receive data 
and synchronization requests asynchronously.  These 
requests need to be handled in a timely manner in order to 
avoid delaying the requester unduly. CVM’s request 
handling is structured around signals being 
asynchronously generated when requests arrive. However, 
the signal is only delivered if the destination is currently 
scheduled. In the worst case, the message might be 
delivered only after all other active processes have used 
their entire time slices. This lack of responsiveness will 
directly degrade the performance of threads on other 
processors. 
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Figure 2: Speedup vs. total number of  threads 



 

Figure 3 shows the slowdown from the dedicated 
(unloaded) case that occurs when a single processor is 
also hosting a sequential process that consumes 50% of 
the CPU when run in isolation. Figure 4 shows analogous 
data for a sequential process that consumes 100% of the 
CPU when run in isolation. For each application, we show 
a cluster of three bars showing slowdown i) if the thread 
distribution is left unchanged (8-8-8-8, called “fixed”), ii) 
if we use a straightforward algorithm (“auto”) that adjust 
the number of threads as in the example above and in 
Section 3, and iii) the slowdown with the “best” thread 
distribution. The best configuration is determined by 
running multiple candidate configurations and choosing 
the one with the lowest running time and is not intended 
to be representative of a strategy that can be used in a real 
system. Each bar is broken into the same five categories 
as Figure 1. Even with the 100% load, the automatic 
scheme produced a configuration almost as good as the 

best configuration for all but sor and swm. 
We can calculate the best possible slowdown in the 

latter case assuming uniform work and communication. 
The total work needs to be divided into 3.5 pieces rather 
than 4, so the non-loaded processors each perform 28.6% 
of the work instead of 25%, an increase of 14%.  Other 
than gauss and swm, actual slowdown ranges from 23% 
to 37%. The performance of the worst, swm, is because 
swm gets poor speedup to begin with, leading it to be a 
poor competitor versus the sequential load. 

Table 3 shows the “auto” and “best” thread 
distributions whose performance is shown in Figure 3 and 
Figure 4. The best distribution generally places fewer 
threads on the loaded node than the “auto” distribution, 
presumably because of the reasons discussed at the 
beginning of this section. Nonetheless, the auto approach 
performs significantly better relative to the best possible 
distribution than with non-dedicated environments.  

5. Heterogeneous processor capacities 
Clusters of machines with heterogeneous processor 
capacities naturally arise in environments where machines 
are bought frequently. Machines purchased just weeks 
apart often have significantly different clock rates. 
Requiring that clusters be completely homogenous, 
therefore, would eliminate many opportunities for 
parallelism. 

Our heterogeneous capacity configuration, conf-
speed, consists of two 266 MHz PentiumII’s, a 200 
MHz Pentium Pro, and a 133 MHz Pentium. On average, 
the latter two machines have a capacity of 85% and 38% 
of the PentiumII’s, leading to an average potential 
speedup of 3.23 over sequential execution on one of the 
PentiumII’s. This figure assumes that the application 
scales linearly to begin with, so realizable speedups are 
smaller.  

Figure 5 shows speedups relative to PentiumII 
executions for two thread distributions: the auto 
distribution implied by processor capacity and the “best” 
distribution, as in Section 4. Most of the applications 
perform well, with the exception of fft and swm. These 
two applications again have large bandwidth 
requirements. Matters are far worse than for conf-hom 
because execution time is dominated by page faults, 
which are very slow when directed at one of the slower 
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Figure 3: Homogeneous with one 50% loaded node 
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Figure 4: Homogeneous with one 100% loaded node 

  adi expl fft gauss spatial sor swm water 

best 10-10-10-2 11-10-10-1 10-10-10-2 10-10-9-3 9-9-9-5 10-10-10-2 10-10-9-3 10-10-10-2
50% non-dedicated 

auto 9-9-10-4 9-9-10-4 9-9-9-5 10-9-9-4 9-9-9-5 9-8-9-6 10-10-10-2 10-9-9-4
best 10-10-9-3 9-9-9-5 10-10-10-2 10-10-10-2 10-9-9-4 10-10-9-3 10-10-9-3 10-10-10-2100% non-

dedicated auto 9-9-10-4 10-9-10-3 9-9-9-5 8-8-8-8 9-9-9-5 8-8-9-7 10-10-9-3 10-9-9-4
best 9-9-5-9 11-10-2-9 11-10-4-7 10-9-4-9 11-10-4-7 11-11-1-9 10-10-3-9 10-11-4-7heterogeneous  

processor capacity auto 9-9-5-9 10-9-3-10 11-11-3-7 9-9-4-10 11-11-4-6 11-11-1-9 10-10-3-9 11-10-4-7

Table 3: Thread distributions 



 

machines. 

6. Implications and conclusions 
Many researchers have proposed ways to exploit 
otherwise-idle resources in non-dedicated environments 
[12]. However, most investigated sequential or coarse-
grained distributed applications because of the inherent 
overheads in such environments.  

Conventional wisdom holds that tightly coupled 
applications can only be profitably parallelized on sets of 
roughly comparable machines that are connected by fast 
networks. However, in one case we were able to obtain 
performance improvement even from a machine five 
times slower than the fastest in the configuration. The key 
to evaluating performance in this environment, however, 
is in remembering that these resources are otherwise idle. 
Any use of found resources that improves execution time 
is well spent; linear parallel speedup is not necessary. 

This paper has described the performance of nine 
demanding applications running on top of a modified 
version of the CVM SDSM in such environments. We 
separate the key performance challenges into three 
categories: contention for the CPU resource, 
heterogeneous processor capacity, and heterogeneous 
processor types. Most of the applications achieved good 
speedup relative to the fastest constituent node, despite the 
tight coupling of processes and fine-grained 
communication required by the SDSM system. 

CVM performs well by balancing load through thread 
migration. The automatic thread distribution mechanism 
performed well for all but a few of the applications 
running in non-dedicated environments. Our future work 
will include investigation into the use of multiple rounds 
of reconfiguration as a means of narrowing the gap even 
further. 

A second major issue that needs to be addressed is the 
use of SDSM systems in heterogeneous environments. 

Though this issue has been addressed before, no study has 
is both current and comprehensive. We believe that by 
adding several restrictions to the programming model we 
can minimize the direct costs of heterogeneity. It remains 
to be seen whether these restrictions can be eased without 
hurting performance, but our restrictions required very 
few changes to our suite of nine applications. 
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Figure 5: Speedup with heterogeneous speeds 

 (relative to fastest node) 


