
Object Distribution with Local Information

Bujor D. Silaghi
Department of Computer Science

University of Maryland
College Park, MD 20742

bujor@cs.umd.edu

Peter J. Keleher
Department of Computer Science

University of Maryland
College Park, MD 20742

keleher@cs.umd.edu

Abstract

We investigate the problem of distributing communicat-
ing objects across wide-area environments. Our goals are
to balance load, minimize network communication, and use
resources efficiently. However, applications running in such
environments are often dynamic and highly unpredictable.
Furthermore, synchronous communication is usually too
expensive to be used in disseminating load information. We
therefore investigate policies that use local information to
approximate desired global behaviors. Our results with
Java applications show that simple, local approaches are
surprisingly effective in capturing load information and ob-
ject relationships, and in making migration and clustering
decisions based on profiled information.

1. Introduction

Long-lived or persistent distributed applications must
be dynamically reconfigurable in order to run efficiently
in metacomputing environments. Metacomputer environ-
ments are often characterized by distribution, heterogene-
ity, and varying resource capacities. Reconfigurability can
be explicit in an application’s structure. However, this ap-
proach is unlikely to be portable, and places a large burden
on application developers. A more general approach is for
the runtime system to implement reconfiguration transpar-
ently to the application.

This paper presents a general inquiry into the problem
of object placement in such environments. Large-scale ob-
ject systems with hundreds of thousands of communicating
objects are considered, a paradigm that is likely to become
increasingly common in the future. We focused our exper-
imental evaluation on Java application traces, yet any test-
bed environment exposing such features could provide us
with similar insights.

Creating a good mapping of objects to nodes requires
several distinct steps. First, we must be able to evaluate

the load distribution of a given mapping. This generally re-
quires a way of estimating objects’ computational needs and
nodes’ computational capacities. Such an evaluation must
account for both parallelism and load balance. Second, we
must be able to evaluate and minimize a mapping’s commu-
nication cost. This problem reduces to that of co-locating
communicating objects. Neither parallelism maximization
nor communication minimization can proceed in isolation.

Object placement in a network of processors such that
both the processors and the network are efficiently used is
a hard problem. The optimal distribution of computational
and communicative entities on a network of processing el-
ements, usually referred to as the graph-embedding prob-
lem, is known to be NP-complete [4]. Researchers have
taken two approaches in dealing with this complexity [3]:
designing sub-optimal distribution policies (but with cer-
tain proven properties) for fairly general configurations, and
using optimal policies for particular application/processor
configurations. The latter approach is well-suited for ap-
plications with known behavior and which are designed to
run on specific processor configurations (trees, grids, hyper-
cubes, etc.). The first approach is less studied in the liter-
ature, and most solutions rely on restrictions to either the
applications or environment.

This paper presents a broad inquiry into object profiling
schemes, and policies for deciding when and where to mi-
grate or cluster objects in systems with many objects. More
specifically, we evaluate a broad range of approaches in the
context of the following goals:

� accommodating dynamic applications and environ-
ments - Both the applications and the set of available
processors may change during an execution.

� no reliance on a priori application information - Our
policies have no a priori information about application
communication patterns.

� scalability - We seek to avoid bottlenecks by only con-
sidering decentralized algorithms.



No previous work, to our knowledge, has taken a similar
approach in trying to solve the general distributionproblem.
The main contribution of this paper is in showing that all the
above requirements can be met by employing fairly simple
decision making policies, and that the implementation of
these policies in real systems is feasible.

2. The simulation framework

The main actors of the simulation are objects and a set
of connected processors on which objects execute. The pro-
cessor configuration and the network topology are specified
in an environment configuration file.

Time is divided into discrete ticks. Each tick is simulated
by performing a tick’s worth of work on each node in the
system in round-robin order. A simple language allows net-
work topology customization: links between processor can
be added, removed or their latency changed. Our default
network topology is a switch, with contention modeled on
destination links. We also investigate the impact of a broad-
cast interconnect, with contention modeled in all phases.

The cost to send a message between processors p1 and
p2 is given by:

cost =
os cost

speed(p1)
+ lat(p1 ; p2 ) +

os cost

speed(p2)
(1)

where lat(p1; p2) is the link latency from p1 to p2. The
first and last terms are intended to model middleware and
operating system occupancy. The cost of sending a local
message is always 1. An invocation message may trigger
the migration of the sender object, and in such cases we
scale cost by a constant factor.

2.1. The object model

Our object model includes three basic assumptions.
First, we assume globally-unique object identifiers. Sec-
ond, we assume that every object can be executed on any
processor. Finally, all of our objects are active [1], i.e. they
each have an associated local thread.

Each object performs a sequence of alternating compu-
tational and communication phases. A computational phase
only specifies the length of the computation, whereas a
communication phase involves a local or remote object. By
default, sends are asynchronous in that the local thread is
allowed to proceed immediately after the message is copied
into a system communication buffer. The effects of block-
ing sends are discussed as well. Receiving messages is a
blocking operation.

Since the Java object model is different than the one used
by the simulator, part of preparing an application trace is
mapping between the two models. This is done according

to the following invariant: a simulator object thread will ex-
ecute all the instructions executed in the context of the cor-
responding Java object by any Java thread, and only those.

2.2. Application Traces

The input data to the simulator are application traces ob-
tained by running various applications on an instrumented
Java Virtual Machine 1.2.2. The following events are rele-
vant for an object trace record: compute (records the amount
of computation performed on behalf of the object), send
(consists of the object identifier of the invoked object),
receive (records the object identifier of the invoker), new
(specifies the identifier of the newly created object).

A compute event takes a number of clock ticks equal to
the specified amount of computation divided by the execut-
ing processor’s speed. All other events take one clock tick
to execute on any processor.

2.3. Applications and processor configurations

We used six applications which we believe are represen-
tative for the Java environment. Following is a short de-
scription of the application suite.

Ajmark Is the JMark 2.0 benchmark for Java virtual ma-
chines.

Aelite e-Lite is a multi-threaded internet browser from the
ICE Browser family.

Aseqconc Denotes a mixture of mathematical algorithms,
each implemented using the fork-join parallel decom-
position paradigm [10].

Aparconc Same as above but with the individual algo-
rithms launched in parallel as Java threads.

Avchat Is the server side of the VolanoMark 2.1 bench-
mark.

Avmark Denotes the multi-client side of the VolanoMark
2.1 benchmark.

Some of the applications are highly communicative while
others exhibit a more computational behavior. Table 1 gives
a quantitative overview of this aspect. We show the number
of objects created during the run (Objects), the total num-
ber of events over all objects (E), the amount of computa-
tion performed by the application (C), and the number of
messages exchanged by its objects (M).

Table 2 shows the processor configuration parameters
used in our experiments. Max spd is the maximal speedup
by using all processors over the first processor in the lot.



Table 1. Application parameters. Large num-
bers are rounded.

App Objects E [106] C [106] M [106]

Ajmark 524; 256 61 2; 600 15
Aelite 1; 043; 580 38 540 9

Aseqconc 1; 336; 873 23 8; 500 5
Aparconc 1; 337; 260 23 8; 500 5
Avchat 65; 832 98 660 24
Avmark 433; 906 46 475 11

Table 2. Processor configurations.
Proc No procs Max spd Applications

P13 13 12 Ajmark; Aelite

P13 13 12 Avchat; Avmark

P30 30 30 Aseqconq; Aparconc

3. Algorithms and policies

Object-placement algorithms need to address three is-
sues: parallelism, load balance, and communication. There
are three situations in which object placement policies are
invoked. First, we evaluate the target of each message as a
potential new host for the message’s source. If the migration
is deemed acceptable, the source object moves to the target
prior to sending the message. Second, entire underloaded
machines are candidates for eviction, and overloaded ma-
chines are candidates to be split among multiple machines.
Finally, we consider placement of new objects.

We divide the overall problem into several sub-problems,
as follows: load estimation, load information dissemina-
tion, target suitability with respect to communication, target
suitability with respect to load balance and finally, object
placement and clustering.

3.1. Estimating processor loads

Load estimates are used for determining whether indi-
vidual migrations upon method invocation are acceptable,
for determining when to “evict” objects in group from un-
derloaded or overloaded hosts, and for determining initial
object placement. The following are the three basic load
measures used in this paper:

Lres The number of resident objects divided by the proces-
sor speed.

Lready The number of ready, unblocked objects.

Lprof Define tocomp as the number of ticks that object o
has spent computing. Define tocomm as the sum of all
clock ticks that o has spent between being blocked on
receives and the subsequent arrival of messages for o.
Let Tcomp and Tcomm be given by

Tcomp =
1

starget
�
X
o2p

ssource � t
o
comp (2)

Tcomm =
X
o2p

tocomm (3)

where ssource is the speed of the processor where the
data is profiled, and starget is the speed of the processor
which uses the collected data. Furthermore let l be
given by

l = nobj �
Tcomp

Tcomp + Tcomm

(4)

where nobj is the number objects residing on the pro-
cessor. Finally, we express the processor load as fol-
lows:

Lprof =

�
l; l � 1
�1

l
; l < 1

(5)

We say that the machine is overloaded if Lprof > 1,
and underloaded if Lprof < 0. If the machine is over-
loaded, Lprof gives the number of processors with the
same speed that could efficiently execute nobj objects.
If the machine is underloaded the absolute value of
Lprof gives how many times more objects than nobj
the processor would need in order to be efficiently
used.

We implemented two variants of this profiling method:
LO
prof maintains counts for each object instance,

whereas LPprof shares counts across all objects on the
same processor.

3.2. Disseminating processor loads

Load information is only useful once disseminated to
other processors. We evaluated the following alternatives:

Doracle The oracle approach assumes that every processor
has instantaneous and current access to the local load
estimation of every other processor.

Dappend This approach appends all local information
about processor loads to outgoing messages. In a com-
municative system, this approach disseminates current
load estimates to all nodes with little latency. A few
variants of Dappend have been examined.



3.3. Target suitability with respect to communica-
tion

The decision of whether to migrate an object to another
host requires determining whether the prospective target is
a better host than the current one. This question should
ideally be answered from a global perspective, consider-
ing the effect of the migration on overall application exe-
cution time and network utilization. However, we constrain
our decision policies to operate in the local domain because
global synchronization is expensive in large-scale systems.
We only consider objects referenced from the current object
(the migration candidate), and their respective host proces-
sors.

Let rj(i) be the number of invocations by object j on ob-
ject i. We denote object i being resident on node p as i 2 p,
and retrieve i’s host processor as h(i). For an invocation
from object s to target t, we investigate the following poli-
cies (� is an additive constant used to handle pathological
conditions):

Mnomig No migration is allowed.

Mobj Migrates the source if the most invoked reference
happens to be the current target object.

rs(t) � � + rs(i) for all i 6= t (6)

Mall Migrates the source if the current target object has
been invoked more than all other objects, cumulatively.

rs(t) � � +
X
i6=t

rs(i) (7)

Mideal Migrates the source if the cumulative invocations
to objects residing on the target processor is greater
than the cumulative invocations to objects residing on
all other processors.X

i2h(t)
rs(i) � � +

X
j 62h(t)

rs(j) (8)

Mbest Migrates the source if the cumulative invocations to
objects residing on the target processor is greater than
the cumulative invocations to objects residing on each
of the other processors.X
i2h(t)

rs(i) � � +
X
j2p

rs(j) for all p 6= h(t) (9)

Mbett Migrates the source if the cumulative invocations to
objects residing on the target processor is greater than
the cumulative invocations to objects residing on the
source processor.X

i2h(t)
rs(i) � � +

X
j2h(s)

rs(j) (10)

Malways Always migrates on invocations.

3.4. Target suitability with respect to load balance

The above policies migrate objects only if doing so does
not violate load balance invariants. We distinguish four
cases for potential migrations. Let ls and lt denote proces-
sor load estimations of the source and target. Then:

ls � 0 ^ lt < 0: Migration occurs.

ls < 0 ^ lt � 0: Migration does not occur.

ls � 0 ^ lt � 0: Neither machine is underloaded. We mi-
grate the invoker only if additional conditions regard-
ing the load ratio of the source and target processors
are met.

ls < 0 ^ lt < 0: Both processors are underloaded and mi-
gration is questionable because either or both proces-
sors might be evicted in the near future. We favor the
faster processor in this case.

3.5. Initial object placement

The initial object of an application is always created on
processor zero. Other objects are created according to one
of the following policies:

Hcreator Newly created objects are placed on the same
host as the creator.

Hleast Newly created objects are placed on the least loaded
processor.

Hnfree As above, but the least loaded processor is chosen
given the following priorities: underloaded processors,
used (but not underloaded) processors, and free pro-
cessors.

3.6. Object clustering and eviction from under-
loaded or overloaded hosts

The eviction mechanism migrates objects in groups, ei-
ther because the host processor must be abandoned due to
inefficiency, or because the host processor is overloaded and
some of its load must be transferred to some other proces-
sor.

� underloaded processors - We identify underloaded
processors by profiling the average fraction of lost
quanta during some past period or by using Lprof . All
the objects residing on an underloaded machine have
to be expelled. For each object, we select the machine
with the greatest affinity (defined by Mbest) and move
the object to that processor.



� overloaded processors - We useLprof to identify over-
loaded processors, compute the number of objects that
have to be evicted, and determine the speed of the tar-
get processor. The target processor is chosen to be a
free processor whose speed does not exceed the value
thus computed.

Objects to be evicted are selected based on a cluster-
ing policy: two partitions are created over the set of
all objects, and one of them is moved in group on the
target processor. We experimented with two clustering
heuristics, both approximations of the minimal cut.

Processors are checked periodically for an underloading or
overloading condition. These checks are more expensive
than checks for single-object migration, yet they are per-
formed much less frequently.

4. Experimental evaluation

We performed a number of experiments to assess the in-
dividual contributions of the various policies. All tests were
performed in the simulated environment presented at the be-
ginning of the paper, using Java application traces collected
a priori.

The metric used to evaluate a policy configuration is the
speedup relative to the speedup of alternative configura-
tions, or to the maximal speedup theoretically achievable
on the given architecture (see Table 2).

4.1. Load estimation

We evaluate load estimation methods in terms of initial
object placement policies. As long as object creation rates
do not dramatically drop below object destruction rates,
load imbalance is a good indicator of the actual goodness
of a load estimation policy.

The number of resident objects, Lres, performs well.
This agrees with the results of other studies, who suggest
that simple counts of active processes provide the best esti-
mates [5]. In fact, Lres performs close to optimal (10:5=12)
when applications exhibit the necessary degree of paral-
lelism (Aseqconc and Aparconc run on P13).

On the other hand, the number of ready objects, Lready ,
performs poorly. We argue that this policy is not a reliable
method of load estimation. The reason is that a combina-
tion of computationally-intensive objects and differing ma-
chine speeds can result in poor performance with this met-
ric. Choosing highly communicative applications or rela-
tively uniform execution environments givesLready a better
chance for estimating the actual load. In our case, Lready
performs worst for Aseqconc and Aparconc, both of which
are computationally intense (see Table 1).

The Lprof metrics lead to poor performance due to their
inability to collect enough data about the behavior of ob-
jects by the time most of the objects are created. This is
very apparent for Avchat and Avmark, where most objects
have been created before adequate profiling information has
been collected (see Figure 2). For this reason we do not
employ Lprof policies as direct load estimators. Instead,
we use them to estimate processor overloading. LPprof per-
forms slightly worse thanLO

prof in some of the cases, but on
the average it proves to be a good approximation of LO

prof .
The quality of load estimators is critical to good load

balancing schemes. We contrasted our policies with an al-
gorithm that is blind to processor workload, and performs
a random initial placement of newly created objects. The
degradation in performance varies from 1=2 to as much as
1=4 in some cases.

4.2. Load dissemination

We experimentally compared the two approaches for dis-
seminating load information with a variety of policy con-
figurations. In all tests the performance of Dappend is re-
markably close to that with perfect, global knowledge. In
fact, sometimes it outperformed the oracle approach, and in
one case it did so by 30%. There is therefore ample op-
portunity to spread information transitively, and this is true
regardless of whether the application is relatively more or
less dynamic.

It appears that immediate knowledge of actual load is
less beneficial than finding processor loads with a slight in-
ertia. We attribute this effect to the locality of reference
principle from an object creation / communication perspec-
tive: related objects, as given by communication patterns,
tend to be created closely in time. Knowing the exact load
could hurt performance as newly created objects will be dis-
tributed on different processors. On the other hand, slight
delays will allow these objects to be placed on the same
processor, and help towards communication minimization.
This side effect is less apparent for Avchat and Avmark

which have larger messages/object ratios and more appar-
ent for Aseqconc and Aparconc.

To verify this claim we repeated all dissemination exper-
iments with load dissemination disabled at object creation
time. With a few exceptions, we indeed obtained additional
performance improvements.

4.3. Target suitability with respect to communica-
tion and load balance

We investigate the policies used to evaluate targets in
terms of communication suitability and load balance.

Unlike load estimation, complex policies for migration
buy extra performance improvement over simpler ones. Ex-



cessively greedy policies like Mobj and Mall have a better
ratio of local to network messages but incur too many mi-
grations. Overall performance is thus hurt due to additional
migration costs. In the extreme is Malways which gener-
ates an order of magnitude more migrations and pays the
higher price. Our current migration cost is very conserva-
tive. Larger migration costs would disproportionately hurt
the performance of this approach.

The other policies, Mideal, Mbett and Mbest, which try
to capture object-processor and not object-object affinities,
perform better, with Mbett performing best in a majority
of cases. Mbett manages to improve performance up to
2:5 times over a non-migration setting with Ajmark, but no
more than 1:3 with all other applications. We believe this
is so because the iterative nature of Ajmark defines more
clearly communication patterns than any other application.
Object relationships are hard to infer since most of the ob-
jects are very short lived and they are gone by the time rel-
evant data has been profiled.

We restrict migrations in trying to preserve load balance.
For instance we are not willing to migrate from an under-
loaded processor to an overloaded one. We experimented
with different combinations of acceptable load ratio for the
source and target processor and found that performance is
relatively insensitive to this aspect. The break-even point
between allowing more migrations or preserving the load
balance is not clearly defined for the applications consid-
ered.

4.4. Object eviction and clustering

The approaches described in previous sections distribute
load over all available processors. When all nodes can be
efficiently used, initial object placement combined with one
of the migration policies can yield the expected results. A
more enlightened policy might dynamically choose to use
only those nodes that can be exploited efficiently.

This section investigates techniques that detect and elim-
inate both underloaded and overloaded processors. Under-
loaded processors are released by evicting all objects. Over-
loaded processors are de-populated by migrating objects to
other nodes. Object clustering based on profiled data is per-
formed in both cases.

With eviction we intend to model the number of used
computational nodes after the application’s degree of par-
allelism, and achieve load balance at the same time. Ob-
ject distribution as given by initial object placement, fine-
grained object migration, and object clustering will hope-
fully reduce communication constraints and help exploit in-
herent application parallelism. Figure 1 shows typical per-
formance indices of eviction combined with migration and
clustering for the test suite.

Combining object clustering with migration does in most

of the cases further improve performance over eviction
alone, most noticeably the case of Aseqconc and Aparconc.
Spectacular improvements based on online profiling of ob-
ject communication are not to be expected since most of the
objects in a typical Java application die young [12], before
relevant clustering information can be collected. Exceptions
are relatively static applications and Avmark is one of them
(see Figure 2). Indeed, forAjmark migration and clustering
can yield up to 75% improvement over eviction alone.

Parallelism is dependent upon synchronization con-
straints and the number of objects in the system. Profiles of
the number of objects and used processors for two applica-
tions are shown in Figure 2. The number of used processors
adapts quite well to the growing and shrinking of dynamic
applications, and stabilizes with static applications.

Throughout the experiments we used LP
prof to detect

overloaded processors. Similar results were obtained with
LO
prof ; we focused on the former since it is more appealing

from an implementation point of view. A host was consid-
ered to be underloaded if it was in the idle state for more
than 33% of some past interval.

4.5. Varying processor speed

In metacomputing environments resources are often non-
dedicated. A runtime system similar to ours may have to
contend with other processes for resources. We model con-
tention by changing the effective processor speed during
application execution. Due to the profiling nature of our
policies no noticeable degradation in performance has been
observed throughout the tests.

5. Related work

There is a large body of research on distributed systems
based on object or component models. We concentrate on
the ability of systems to support automatic object distribu-
tion.

Legion [6] is a metacomputer project designed to sup-
port wide-area distributed computing, based on earlier work
on the Mentat object system. Rather than implement-
ing system-wide policies, Legion provides a framework
through which programmers can supply custom object-
placement policies.

SOS [11] is an object-oriented operating system based
on fragmented objects — each object consists of a provider
and possibly multiple proxies. The system does not include
automatic migration mechanisms, but custom policies for
communication minimization can be specified by defining
communication protocols between proxies and correspond-
ing providers.

Emerald [2] is an object-oriented system (compiler and
run-time system) with support for fine-grain, medium-grain



b) Switched network

0

5

10

15

20

25

Jm
ar

k
Elit

e

Vch
at

Vmar
k

Seq
co

nc

Parc
on

c

Applications
Sp

ee
du

p

E

EC

EM

ECM

a) Broadcast network

0

4

8

12

16

20

Jm
ar

k
Elit

e

Vch
at

Vmar
k

Seq
co

nc

Parc
on

c

Sp
ee

du
p

Figure 1. Example of speedups with different combinations of eviction (E), clustering (C), and migra-
tion (M) policies, for two types of networks.

b) Application Vmark

0

2

4

6

8

10

0 10 20 30

Execution time [million clock ticks]

O
bj

ec
ts

an
d

us
ed

pr
oc

es
so

rs

Objs/500 Procs

a) Application Elite

0

3

6

9

12

0 15 30 45 60

O
bj

ec
ts

an
d

us
ed

pr
oc

es
so

rs

Objs/1000 Procs

Figure 2. Number of objects as an indication of application parallelism for two applications. We
depicted case E from the figure above.

and large-grain objects. Distribution is defined at the lan-
guage level, and allows the programmer to control the lo-
cation of objects through language operators [9]. However,
Emerald does not include automatic migration mechanisms;
the runtime-system distributes objects only as directed by
applications.

Globe [13] is specifically aimed at wide-area distributed

applications. Objects in Globe are similar to the fragmented
objects found in SOS and location transparency is provided
by the system. It is too early to tell whether and how Globe
will feature automatic distribution mechanisms.

The Coign system automatically partitions existing ap-
plications built using Microsoft’s COM standard [7]. The
Coign approach differs substantially from ours in that it



assumes static environments and an off-line training stage
prior to the actual running of the application.

6. Discussion and Conclusions

This paper has presented a simulation-based study of
several approaches to mapping communicative objects to
nodes in a wide-area system. The central theme of our study
is investigating the efficacy of simple, local policies whose
overhead does not scale with the number of objects in the
system.

Our study revealed a number of interesting trends. For
example, the most sophisticated load estimation policies did
not perform well because they took too long to accumulate
state. Instead, the best policies were simple counts of resi-
dent objects. If there is a lesson to be learned, it is that com-
plicated measures have more pathological cases than simple
measures, and a few pathological cases can dominate over-
all performance.

Second, appending incremental load information to out-
going messages performed at least as well as an oracu-
lar approach that propagated all current load estimates in-
stantly, and with zero cost. We found that perfect up-to-
date information may hurt performance because of “de-
sired side effects” that manifest due to dissemination iner-
tia. Furthermore, we learned that for systems supporting
fine-grained patterns with complex communication behav-
ior, piggy-backed information quickly disseminates infor-
mation across the system.

Third, communication-based migration decisions signif-
icantly improve if we employ more complex discrimina-
tors based on object-processor affinity as opposed to object-
object affinity. This places a premium on methods that strive
to accurately approximate this information in large dynamic
systems.

Fourth, object behavior profiling based on block-
ing/ready time is a successful candidate in estimating pro-
cessor underloading and overloading conditions. An evic-
tion mechanism can automatically grab and release proces-
sors based on application needs, thus efficiently using only
as many resources as required. Combining eviction with
migration and object clustering can achieve further perfor-
mance improvements by reducing interprocessor traffic and
synchronization.

Finally, we showed that a combination of simple, cheap
approaches to each of these areas can result in performance
nearly as good as the best approaches, including those based
on oracular information.

There is more than one direction in which our work
could be extended. First, the object model can be enriched
by adding support for passive objects, read-only objects,
shared objects, stationary objects and hard-links, which are
a means of specifying that a group of objects should always

be co-located. The key question is how can we exploit the
characteristics of each new object class in order to develop
better distribution policies.

Second, investigating more heuristics based on cluster
analysis [8] might reveal surprising results both in the con-
text of eviction as well as object cluster migration at invo-
cation, a feature we have not implemented yet.

Finally, implementation of these techniques in a real sys-
tem would provide us with more accurate feedback as to
their performance.

References

[1] A. Bakker, I. Kuz, and M. van Steen. Towards a taxonomy
of distributed-object models. In Proceedings of the Third
Annual ASCI Conference, pages 22–27, Heijen, The Nether-
lands, Jun 1997.

[2] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Dis-
tribution and abstract types in Emerald. IEEE Transactions
on Software Engineering, 13(1):65–76, Jan 1987.

[3] R. Diekmann, B. Monien, and R. Preis. Load balancing
strategies for distributed memory machines. In F. Karsch,
B. Monien, and H. Satz, editors, Multi-Scale Phenomena
and Their Simulation, pages 255–266. World Scientific,
1997.

[4] H. El-Rewini, T. Lewis, and H. Ali. Task Scheduling in
Parallel and Distributed Systems. Prentice Hall, Englewood
Cliffs, NJ, 1994.

[5] D. Ferrari and S. Zhou. An empirical investigation of load
indices for load balancing applications. In Proceedings
of the 12th International Symposium on Computer Perfor-
mance Modeling, Measurement, and Evaluation, pages 515–
528, 1987.

[6] A. Grimshaw and W. Wulf. Legion: A view from 50,000
feet. In Proceedings of the Fifth IEEE International Sym-
posium on High Performance Distributed Computing, Los
Alamitos, CA, Aug 1996. IEEE Computer Society Press.

[7] G. Hunt. Automatic Distributed Partitioning of Component-
Based Applications. PhD thesis, Univ. of Rochester, 1998.

[8] R. A. Jarvis and E. A. Patrick. Clustering using a similar-
ity based on shared near neighbors. IEEE Transactions on
Computers, Nov 1973.

[9] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained
mobility in the Emerald system. ACM Transactions on Com-
puter Systems, 6(1):109–133, Feb 1988.

[10] D. Lea. Concurrent Programming in Java. Addison-Wesley,
second edition, 1999. I.S.B.N. 0–201–31009–0.

[11] M. Shapiro. Prototyping a distributed object-oriented OS on
Unix. In E. Spafford, editor, Proceedings of the Workshopon
Experiences with Building Distributed and Multiprocessor
Systems, pages 311–331, Fort Lauderdale, FL, Oct 1989.

[12] D. Stefanovic, K. McKinley, and J. Moss. Age-based
garbage collection. In Proceedings of OOPSLA, pages 370–
381, Denver, CO, Oct 1999.

[13] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A
wide-area distributed system. IEEE Concurrency, pages 70–
78, Jan–Mar 1999.


