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Abstract
A “home” sharing environment consists of the data

sharing relationships between family members, friends,
and acquaintances. We argue that this environment, far
from being simple, has sharing and trust relationships as
complex as any general-purpose network.

Such environments need strong access control and pri-
vacy guarantees. We show that avoiding information
leakage requires both to be integrated directly into (rather
than layered on top of) replication protocols, and propose
a system structure that meets these guarantees.

1 Introduction

The research community has recently produced a
plethora of work describing replication mechanisms and
policies for sharing personal data in “home” environ-
ments [7, 8, 13, 16, 17, 18, 19, 22, 23, 25]. Table 1 sum-
marizes the main emphasis of these projects, which no-
tably does not include security. Personal data could in-
clude digitized versions of music, images, videos, as well
as financial records, contact lists, etc. Much of this work
describes a number of ways to express replication poli-
cies semantically, and these policies are used to replicate
personal data across multiple devices. These approaches
have the potential to dramatically change how personal
data is managed, but we argue that the potential could
be even greater but for limiting assumptions in many of
these projects.

The first limiting assumption is that personal data con-
sists primarily of read-only multimedia files. Computer
science researchers are often motivated by use cases
that are more applicable to themselves than the average,
relatively non-technical adult. Given the recent explo-
sive growth in personal computing devices, however, the
amount and diversity of data and devices used by re-
searchers might be a good predictor for the non-technical
adult a few years, or even months, from now. If so,
personal data includes not only read-only multimedia
files, but also mutable files, including work-related doc-
uments, personal projects, financial records, and many

other types of data. Personal devices could include a
range of desktop machines and mobile devices, includ-
ing laptops, tablets, and smart phones. We contend that
replication policies appropriate for read-only multimedia
are not sufficient to handle this diversity of data types and
devices.

The second, and more important, limiting assumption
is that the “home” environment is inherently single-user.
Most current work considers only replication across an
individual’s data, and assumes that each device should
be able to replicate any personal data. This is clearly
false. As a simple example, consider that an individual’s
audio and video files might not only be replicated across
his/her own devices, but also across the devices of family
members, roommates, a dorm floor, friends, and possi-
bly mere acquaintances, and least when they are within
physical proximity. Furthermore, this same data might
be shared across collaborators on a hobby project, de-
spite not sharing a local area network. Not all of these
users should have access to all data, and not all devices
have the same need or functionality to secure data.

So...What is so Special About “Home Sharing”?
The phrase “home sharing” clearly implies a number of
network and sharing characteristics, but relying on these
implied characteristics would result in unintentional se-
curity breaches.

There are certainly implied trust relationships, as one
individual might implicitly trust a spouse with all data.
However, all multimedia might not be appropriate to
share with all family members, all course materials
would not be appropriate with all roommates, and fi-
nancial records would be tightly held. Instead, different
types of data would be expected to be shared differently.

Physical proximity is clearly implied. However, many
devices are by definition mobile, and will not be local all
of the time. Further, sharing is not necessarily limited
to the immediate family, and could easily span cities or
continents.

Finally, the home sharing environment carries with
it expectations of easy administration. Perhaps more
than any of the other implications, this one holds true.
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System Focus System Focus
Anzere [22] device transparency through logical predicates HomeViews [8] mixing of SQL and capabilities to create user-

specific read-only data views
Bayou [26] eventual consistency, log-based consistency, con-

flict resolution through merge procedures
Perspective [23] facilitates easy data sharing between multiple

users through logical data predicates
BlueFS [16] server-based distributed file systems for mobile

devices
PodBase [18] data durability and availability, replication guar-

antees
Cimbiosys [19] semantic data management through content fil-

ters; focus on efficiency (eventual filter consis-
tency, eventual knowledge singularity)

PRACTI [1] framework that offers combinations of partial
replication, topology independence, and arbitrary
consistency

EnsemBlue [17] integrates consumer electronics in data manage-
ment systems for “home”

UIA [7] personal names and optimistic name resolution

EYO [25] device transparency by full metadata replication
in every device

ZZFS [13] uses a low-power network interface to inform
new data placement policies

Table 1: Existing systems along with their primary focus. Our purpose is to demonstrate the lack of focus on security.

University and corporate networks are administered by
technical staff. Sharing between users and devices on
a home network must often be administered by non-
technical users [12]. Previous work used semantic de-
scriptions of data to create high-level replication policies
and communication schedules. For example, Perspec-
tive’s views [23], Cimbiosys’s filters [19], and Anzere’s
predicates [22] allow placement of data aggregations to
be specified in terms of predicates across data tags. We
contend that access control should similarly be amenable
to specification at a high level.

To summarize, interactions between users and devices
on a home sharing network are not qualitatively different
from users and devices on a more general-purpose net-
work. Sharing and trust relationships are often asymmet-
ric (the fact that Alice shares personal information with
Bob does not imply reciprocation) and can take a vari-
ety of forms. Therefore, the need for access control and
security protocols is prominent in these environments as
well.

The rest of this paper develops the thesis that access
control and information leakage are important issues in
home environments. We argue that access control and
strong cryptographic mechanisms must be integrated di-
rectly into (rather than layered on top of) the replica-
tion protocol to avoid information leakage. Such a sys-
tem could provide the flexible sharing and strong privacy
guarantees needed by users.

2 But...What About the Cloud?
Use of cloud services has become so dominant, both in
reality and in mindshare, that it is almost obligatory for
papers advocating other approaches to demonstrate why
the cloud does not solve all of our problems.

There are several parts to this answer. First, if by a
“cloud” we are referring to a large cluster of reliable
data or application servers in a data center, we are in-
herently discussing a non-local solution. This type of
storage works extremely well for multimedia streaming
and archival storage, but the latency gap between local
and non-local communication will never close, making
clouds less appropriate for collaborative activities where

consistency is an issue (though cloud latencies might suf-
fice for interactive activities, such as editing documents
in Google Docs). This is even more true if we consider
the many cases where device connectivity is still either
poor (in a relative sense), or even nonexistent.

Second, cloud storage is ostensibly highly available
but observed outages are frequent [20, 24, 5, 21]. Failure
recovery can be challenging in these systems [9], leading
to serious incidents of data loss.

Finally, clouds are usually owned and administered by
other entities. Not only does this entail obvious privacy
challenges, but privacy can even be at odds with cloud
provider business models, which often treat user behav-
ior and access characteristics as their product.

However, whether or not a cloud is used is actually ir-
relevant to the mechanisms and policies discussed in this
paper. We feel they are more easily and profitably imple-
mented in local systems, but cloud interfaces and policies
are malleable and will probably eventually accommodate
any necessary changes.

3 An Approach, and Problems Therein
The majority of work in this area concentrates on data
placement, but without access control or authorization
restrictions. Any data in “the system” is allowed to mi-
grate anywhere. The assumption is that security issues
(access control, authentication, confidentiality) are or-
thogonal to issues of data replication, and may be han-
dled through existing mechanisms at higher levels. Once
users are authenticated onto participating devices, they
essentially have access to all system data.

One exception is the extension of Cimbiosys to en-
force policies disseminated as ordinary objects contain-
ing SecPal access rules [28]. This approach may be prob-
lematic, as Cimbiosys does not enforce eventual consis-
tency or multi-item coherence. More importantly, while
SecPal statements are signed, data is unencrypted (infor-
mation leakage), the system assumes a single trusted au-
thority, and the underlying system requires communica-
tion through a tree-like hierarchy in order to meet stated
efficiency goals.
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3.1 Role-Based Security
The previous sections make clear the conflicting require-
ments for a security architecture in a home sharing sys-
tem: 1) it should be flexible and functional, and 2) it
should be easy to manage for a non-technical user.

However, providing access control in home environ-
ments is a hard problem because data sharing character-
istics are affected by many issues, including human rela-
tionships, content, and system design. Users want access
control; however, their lack of technical knowledge often
leads to misalignment between actual computer security,
and what users think is computer security [12]. Another
difficulty arises because ownership in common environ-
ments is not always well defined [10].

We believe that an access control scheme for home
environments should give the ability to users to orga-
nize their collaborators into dynamic groups, much like
online social networks organize users’ contacts. Users
should be able to manage these definitions easily. More-
over, the candidate scheme should be flexible and sup-
port fine-grained access rights for all of its users and their
objects. Several recent user studies of access control in
home environments [4, 10, 11, 12] advocate similar ap-
proaches. However, the majority of this work assumes
simpler sharing patterns and constraints than we explore
here.

We advocate augmenting object metadata to include
application-specific semantic information as label-value
pairs, which can then be used to inform both the replica-
tion protocol and the security architecture.

The overriding goal of our system is to preserve users’
privacy. At a high level a role is similar to a Google+
circle, or a Facebook list. At a lower level, a role would
be defined as a set of cryptographic secrets, together with
boolean role predicates over object labels. Any device
of a specific role can view and modify those objects that
meet the role’s predicate.

For example, Alice, Bob, and Charlie might be stu-
dents who have decided to keep notes collaboratively for
a class they both take. Alice acts as “role master”, creat-
ing role Alice.Notetakers with role predicate and ac-
cess rights ‘‘class==cmsc818 and type==notes’’.
She then assigns this role to the devices of all three stu-
dents. After each class, Alice’s careful notes are propa-
gated to Bob’s and Charlie’s devices, where they make
their own additions. The final versions eventually propa-
gate back to Alice.

3.2 Access Control Issues
Role predicates can be used to completely describe data
that may be seen or modified through a given role. Any
data access outside the realm of these predicates we de-
fine as information leakage.

Information leakage is extremely problematic in these
environments because of the combination of two desir-
able properties of replication protocols. First, partial
replication means that not every replica (or device) needs

to have a replica of every piece of data. This seems an
obvious requirement. After all, an MP3 player does not
need to have copies of movies or financial records.

Replication protocols for home environments also
generally support topology independence, meaning that
any device can exchange replication data or metadata
with any other device. Metadata does not have to be
explicitly routed anywhere, it eventually gets copied ev-
erywhere through pairwise exchanges. Partner choice in
the pairwise exchanges could be random, or chosen to
prefer high-bandwidth or highly-available connections.
Topology independence is also important in allowing the
home environment to be dynamic. No device need know
the complete system membership, and changes in system
membership do not require global consensus.

However, partial replication combined with topology
independence implies that a device might be given meta-
data for data that it has no right to access. In terms of
roles, a device might be given role-inappropriate data
during pairwise exchange.

This situation is at the heart of our contention that ac-
cess control is currently implemented at the wrong level
for these systems. For example, Bob and Charlie are col-
laborating on a two-person project in cmsc818. Bob cre-
ates role Bob.project, and assigns this role to both his
and Charlie’s devices. Assume Bob works on the project
at a coffee shop whose WiFi is down, at a table with Al-
ice. His project updates can be communicated through
local network connections to Alice’s device, where they
will later be transmitted to Charlie’s device at the apart-
ment Alice and Charlie share.

No clear-text information about the project should leak
to Alice. However, access control implemented above
the level of the replication protocol has no way to con-
trol, or even detect, this information leakage. Access
control implemented in concert with the replication pro-
tocol allows role-inappropriate information to be safely
encrypted.

What’s In a Role?
The simple view of role-based access control is that
members should only have access to data viewable
through their roles. Users outside a role are considered
eavesdroppers, and the system should not leak them in-
formation. Whether or not this is possible is a function
of the specific role implementation, and how the data is
stored.

Part of the difficulty arises because we cannot assume
that users, especially non-technical users, will come up
with roles that are completely orthogonal, i.e., do not
share any data. Furthermore, overlapping roles might be
unavoidable. For example, it may be infeasible to deter-
mine a priori whether a role that allows access to finan-
cial records overlaps with a role concerned with vaca-
tion planning. We therefore contend that any flexible de-
sign must support overlapping roles, and not make strong
assumptions about the relationships between user predi-
cates.
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A Replica With More Than One Hat
Just as a single device can be used for more than one pur-
pose, a single replica might wear more than a single hat
(role). However, a replica with multiple roles introduces
ambiguities in what types of sharing is allowable, and
what types of sharing are really information leakage.

For example, let us now assume that Charlie decides
that the project documents should include one of the lec-
ture notes: may10.notes. There are now two distinct
roles, Notetakers, or N, and Project, or P. We refer to N’s
role predicate as Npred . For the purposes of this exam-
ple, N pred ∩ Ppred = {may10.notes}, which we name
Oleak. We assume the existence of an update mechanism,
such as an anti-entropy based [26] protocol that permits
replicas of the same role to exchange update/invalidation
information.

If Charlie creates an update, xi, to may10.notes while
working on the project, the semantics of applying xi at
one of Bob’s machines, d, are not immediately clear. Ap-
plying this update to d’s local copy of the object is correct
from the perspective of role P, but may10.notes is also
covered by N. If these modifications eventually propa-
gate to Alice’s devices, which have the N role though not
P, information leakage has occurred.

This could occur as follows. One common way to en-
capsulate object updates is to represent them as whole-
object overwrites. If so, a subsequent modification of
one byte of may10.notes by d in role N would result in
a new role N update that would explicitly include data of
xi, i.e. data from an update from a different role.

Alternatively, updates are often communicated as
deltas, i.e. insertions of bytes at a specific offset from
the beginning of the object. If so, imagine that xi was an
insertion, meaning that the object size changes. A new
append to x, even in role N, would be at a different object
offset than if xi had not been applied. The new update,
when applied at another device of role N, might even be
an insertion at an illegal offset.

Most replication systems support eventual consis-
tency, a very weak form of consistency that nonetheless
requires all replicas of an object to eventually agree on
the object’s final state. The natural extension of this
property to a system with roles is to define eventual
role consistency, which would require replicas playing
a given role to eventually agree on the final state of all
objects in that role’s predicate. Stated another way, all
objects in a role’s predicate must be role-consistent with
respect to that role. In the example above, d’s copy of
may10.notes is role-consistent with respect to P, but
not with respect to N.

4 Another Approach, With Solutions
This section describe potential solutions to the issues
raised in the previous section. We can address the
multiple-hats information leakage problem by stating
that there is, in fact, no problem. An object-centric def-
inition of consistency might allow any updates to object

x to be seen at any device whose role predicate(s) in-
clude x. This approach is amenable to simple reasoning
and implementation, but clearly does not rise to the level
of non-interference [14], which states that low-security
results are unaffected by high-security data. In our con-
text, we would restate this to say that data from one role
should not affect the data accesses of another role.

A more general solution is to directly support the role-
centric definition of consistency we implicitly assumed
in the previous section. No data from an update of one
role should be accessible by devices that do not play that
role. We can meet this goal by maintaining per-role ver-
sions of a single object in any replica that plays multiple
roles. Received updates from a given role are only ap-
plied to the version of the object specific to that role.

Local reads and writes are more problematic. A local
write could be applied to all local versions of an object,
but a local read must either apply to a single version,
or return multiple versions to the application. While the
multiple versions approach has been often used to ac-
commodate conflicting updates [6, 23], these semantics
seem inappropriate when distinct versions have different
security characteristics.

Instead, we will require application reads to at least
implicitly specify a context. This could be an additional
read parameter, session definitions that aggregate mul-
tiple accesses into a single context, hints provided by a
provenance-tracking subsystem [15], or even heuristics
informed by locality and history. Writes could be simi-
larly categorized.

This is somewhat analogous to the notion of abstract
files in quFiles [27]. There, the version of a file read
is dependent on the device characteristics. Here, the ver-
sion is dependent on access characteristics implied by the
device’s role(s).
How Do We Route That?
One-way pairwise information exchange is usually op-
timized by the source sending only data not seen at the
destination. This data is often summarized through the
use of version vectors or vector timestamps. However,
preventing role-centric information leakage requires that
if metadata for role P is given to a device that is not of
that role, all data must be encrypted or randomized. This
even includes object ID’s of a metadata packet. If a de-
vice x learns that device y just created a new modification
for an object in role P, it has potentially learned some-
thing of value.

We prevent this by requiring all data, except a ran-
domized GUID, be encrypted on non-role devices. The
source of unidirectional pairwise exchange learns about
data already held by the destination through an accumu-
lator, which we define here as a general data structure
that can be queried for specific items, but not enumer-
ated. The source then sends only those updates to the
destination that do not match the destination’s accumu-
lator. The source learns nothing of the destination, other
than it had not seen the updates in question. Neither the
source nor the destination need even learn the role(s) of
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the other.
Accumulators could be represented as bloom filters [3]

or cryptographic accumulators [2]. Cryptographic accu-
mulators are very space-efficient, but might be computa-
tionally expensive. Bloom filters might be a good com-
promise, though their space requirements scale with the
number of keys for a given probability of false positives.
Hence, some means of pruning the keys in bloom filters
would be needed.
Flexibility
Consider the protocol pitfalls avoided with the ap-
proaches outlined above. Naively applying encryption
without integration into the replication protocol would
have broken the protocols. Implementing access control
above the replication layer would have allowed informa-
tion to leak among roles. Allowing communication only
between like-role devices would have broken topology
independence. The sum total of our approaches results
in an efficient and flexible system.

5 Conclusions
A “home” sharing environment is as complex as any
general-purpose network. Replication and security pro-
tocols must therefore handle this complexity while meet-
ing goals of completeness (eventual consistency) and se-
curity.

This paper has outlined several problems inherent to
such protocols, and sketched a solution based on in-
tegrating the security architecture with the replication
protocol, using accumulators to communicate encrypted
meta-information, and using version forking to prevent
information leakage between roles.
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