
Bilateral Anti-Entropy for Eventual Consistency
Rebecca Bilbro & Benjamin Bengfort

{rebecca,benjamin}@rotational.io
Rotational Labs, LLC

Queenstown, Maryland, USA

Peter Keleher
keleher@cs.umd.edu

University of Maryland Department of Computer Science
College Park, Maryland

Abstract
Eventually consistent systems are often more cost-effective
to implement and maintain than their strongly consistent
cousins. Gossip-based anti-entropy methods can be used
to improve the consistency of such systems. However, ob-
servational data suggests that such improvements come at
the cost of perennial data egress, significantly mitigating
savings in a geo-replicated context. This paper presents ob-
servations collected from an eventually consistent system
deployed in production clusters across the US, Germany,
and Singapore. A bilateral anti-entropy process facilitates
data synchronization for an application accessed globally
and around-the-clock. Replication metrics such as latency,
conflict, and the duration and productivity of anti-entropy
sessions seem to indicate that it is possible to quantify trade-
offs between consistency and visibility latency such that
staleness can be not only bounded, but fine-tuned.

Keywords: eventual consistency, geo-replication, anti-entropy
replication, distributed systems
ACM Reference Format:
Rebecca Bilbro & Benjamin Bengfort and Peter Keleher. 2022. Bi-
lateral Anti-Entropy for Eventual Consistency. In Principles and
Practice of Consistency for Distributed Data (PaPoC ’22), April 5–8,
2022, RENNES, France. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3517209.3524083

1 Introduction
While the literature on eventual consistency now extends
back many decades, new and important use cases are emerg-
ing for globally connected systems (e.g. regulation, global
health, machine learning/MLOps, cryptocurrency, etc) that
are bringing these concepts to the foreground for applica-
tions developers. This paper presents lessons learned from
implementing and running a geo-replicated deployed even-
tual consistency store for a production application serving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PaPoC ’22, April 5–8, 2022, RENNES, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9256-3/22/04. . . $15.00
https://doi.org/10.1145/3517209.3524083

users around the world. As architects and maintainers of the
system, we have a unique opportunity to track and observe
the patterns and behavior that emerge from the system’s
underlying bilateral anti-entropy routine which serves as its
eventual consistency engine.

Anti-entropy is a mechanism for achieving eventual con-
sistency by enabling remote peers to periodically synchro-
nize, compare object versions, and make local repairs. Our
implementation is inspired by the Bayou system [22] as well
as subsequent research into gossip protocols [13] and their
optimizations [16, 18]. More recently, we’ve worked on using
adaptive methods to strengthen consistency via probabilistic
guarantees [10].
Our interest in exploring replication conflicts in partic-

ular stems from the literature on conflict-free replicated
data types [17, 21] as well as foundational concepts about
coordination-free consistency measures [14]. In particular,
we are interested in exploring observed conflict patterns
during replication that can provide insights into the fine-
tuning of consistency and staleness [7, 8] with respect to the
cost-effectiveness of the overall system.

2 A Global Directory Service
This paper explores the behavior of the GDS ("Global Direc-
tory Service"), an eventually consistent system deployed in
production clusters across the US, Germany, and Singapore
The GDS, shown in Figure 1, is a complete network; all

nodes can replicate with any other node in the network.
The GDS also produces full replication, meaning all nodes
receive all objects. Writes are made by clients to replicas
in all regions. GDS administrators, who generate a large
proportion of writes, are located in the US, which results in
a write imbalance.
The GDS replicated data store supports an application

that facilitates secure, low-latency transfer of private benefi-
ciary and sender compliance information for international
cryptocurrency transactions regulated under the Travel Rule.
Organizations that agree to adopt the Travel Rule Informa-
tion Sharing Architecture (TRISA), a shared protocol for
information transmission [15], may enroll themselves using
a web application that enables a certificate authority via
a series of APIs to generate, verify, and deliver their iden-
tity and signing certificates. Public certificates are stored
together with organizational details to enable lookups and
verification during cryptocurrency compliance transactions.
Messages containing these secure envelopes are transmitted

https://orcid.org/0000-0003-0660-7682
https://doi.org/10.1145/3517209.3524083
https://doi.org/10.1145/3517209.3524083
https://doi.org/10.1145/3517209.3524083

PaPoC ’22, April 5–8, 2022, RENNES, France Bilbro, Bengfort, and Keleher

Figure 1. The GDS Architecture implements full replication
and is a complete network.

via mutual authentication (mTLS) [5] connections through a
suite of gRPC [3] services.

The Travel Rule only applies to international virtual asset
transactions, so by definition the GDS is required to be a
globally distributed network. Most geo-replicated systems
[9, 11, 24, 25] prioritize scaling to large numbers of nodes for
high throughput and wide-area durability. The GDS flips the
script – as the facilitator of a peer-to-peer network, we pri-
oritize lower latency via physical proximity (not to mention
the compliance benefits of region-aware data storage). The
size of the GDS replicated data store is therefore very small
relative to its geographic footprint: our goal is to host pri-
mary and secondary nodes in separate availability zones per
cloud region so that TRISA members querying the directory
have the lowest possible latency for the best durability.

TRISA is an overlay on the blockchain; it was therefore a
critical requirement that the GDS not participate directly in
compliance information exchanges, merely facilitate them
(lest it be considered a centralized service - the boogieman
of cryptocurrency). The GDS has two primary roles: register-
ing a member onto the network and locating and describing
counter parties in a compliance exchange. Registration and
amending directory records (e.g. the write workload of the
system) happens rarely, usually once a year, and involves the
coordination of only two parties: the Virtual Asset Service
Provider ("VASP") itself and the TRISA administrators. Locat-
ing and describing counter parties in a compliance exchange
is the vast majority of the GDSworkload and involves several
different kinds of reads: searches, index-based look ups, as
well as full scans of the directory listing, shown in Figure 2.
Because of this, we generally describe GDS as a read-heavy
workload that can tolerate stale reads but must repair con-
flicting writes as soon as possible. While a stale read might

lead to a retry of a travel rule information exchange, an in-
valid write could lead to a compliance failure; the former is
more routine while the latter would be very harmful.

The GDS service is a gRPC API that exchanges data in the
protocol buffer format [1, 3]. Because the directory service
is primarily about looking up and returning specific records,
the easiest optimization in the data store was to reduce the
amount of data processing required and simply store the
protocol buffer records in the database. The GDS therefore
requires a fairly basic key/value document store with eco-
nomical global replication and data storage, and this is what
pushed us towards implementing our own data storage layer,
an adapted version of leveldb [12, 20] that includes an index-
ing side car to support more flexible search. The result is a
hybrid between a traditional key-value store and a document
store implemented in the Go programming language.

The system is currently deployed as stateful sets in three
independent Kubernetes clusters hosted by Google Kuber-
netes engine in Germany, Singapore, and the United States.
Communication between replicas and from clients is secured
via mTLS with no additional specialized networking. The
pods themselves are fairly basic - each Pod requests 2.0 CPUs
to support concurrent requests in multiple go routines as
well as a background anti-entropy process. Memory and disk
requests are 2Gi and 500GiB respectively. The primary vari-
able cost is the networking cost of communicating between
regions, which we’ve stabilized via tuning anti-entropy pa-
rameters, as described in this paper. In total, we’re operating
The GDS for several hundred dollars a month instead of sev-
eral thousand dollars if we’d used alternative geo-replicated
data stores.

2.1 Bilateral Anti-Entropy
An anti-entropy process similar to the mechanism described
in [22] facilitates periodic data synchronization between
peers in the GDS system. At some configurable interval, a
replica (the "initiator") will select a peer (the "remote") in
the system at random and initiate an anti-entropy session.
Bilateral anti-entropy guarantees us eventual consistency
[23] via a "latest writer wins" policy which ensures that both
replicas are synchronized to the latest versions on either the
initiator or the remote.
Bilateral anti-entropy is critical for cost effectiveness be-

cause it halves the number of object versions that have to be
transmitted to repair both replicas, particularly when writes
are balanced across the system. It also enables additional
cost-saving techniques that are discussed in §4.

From the perspective of the initiator, anti-entropy occurs
in two phases; first, in the "push" phase, the initiator sends
a message to the remote for each object in its local data
store. Each message contains the version vector [6, 19] of
the object, which includes the object’s version number, its
parent, as well as the initiator’s global process id. During the
push phase, messages consist only of metadata and do not

Bilateral Anti-Entropy for Eventual Consistency PaPoC ’22, April 5–8, 2022, RENNES, France

Figure 2. The GDS workload is read-heavy; write activity is
bursty but relatively rare.

include object data, a cost-saving mechanism which reduces
data egress. After the initiator has finished the push phase,
it sends a completion notification to the remote peer, which
signals the beginning of the "pull" phase. In this second
phase, the initiator receives version vectors and data from
the remote for any object that requires local repairs at the
initiator.

From the perspective of the remote peer, anti-entropy also
occurs in multiple phases. First, the remote will begin receiv-
ing a series of messages from the initiator containing version
vectors. The remote will use these to determine which ob-
jects to later request from the initiator. Any object for which
the initiator has a later version than the remote peer will
be answered with a request from the remote to the initiator
for a "repair": a subsequent message containing the object
data as well as the metadata so that the remote may update
it’s local data store. Once notified that the initiator’s push
phase is complete, the remote can determine any objects it
has locally that the initiator does not have, and will send
these to the initiator to allow it to make local repairs.

When comparing version vectors, if a concurrent change
has been applied to an object, meaning that it has the same
version but different values from the perspective of the orig-
inator and the remote, the global process id of the two peers
will be used as a tie-breaker, where the value supplied by the
peer with the lower of the two ids is given precedence (this
is known as a "stomp" and will be discussed later). Global
process ids are assigned as new peers come online and guar-
anteed to be unique.

In addition to gossiping about object data, peers also repli-
cate network information during anti-entropy sessions, in-
cluding all known peers and their global process ids. Thus, in
order to begin the anti-entropy process, at least one peer in

the network must be made aware of other peers with which
it can gossip.

3 Conflicts
The detection and analysis of conflict is a particular focus
in this paper as they provide a means of reasoning about
consistency in the GDS.
From the perspective of two users engaging with GDS

from opposite sides of the world, conflict is most likely to
manifest as a stale read for one or both. For instance, a mem-
ber lookup by the first user might suggest the second is not
yet a certified member of the system, even though the sec-
ond user’s certificates have been issued. Such errors interfere
with the trust principles of the system, so it is important to
be able to detect conflicts and understand their causes so
that the anti-entropy process can be optimized. In particular,
we tune the time between anti-entropy sessions to ensure
the expected duration [8] of a stale read is less than the retry
duration typical to GDS clients. This practical application of
probabilistically bounded staleness has allowed us to apply
a reasonable engineering semantic (e.g. retry after 30 sec-
onds) that is directly tied to our consistency model without
exposing the details of the data store to the client.
The most problematic though also most rare conflict is a

fork created by concurrent writes to the same object. We con-
sider each object to have its own version history such that
every write to an object creates a new conflict-free, monoton-
ically increasing version number [6, 19] that references the
previous local object’s version as the parent. The ideal ver-
sion history is a linear one - e.g. every version is the parent to
at most one child version. A concurrent write occurs when
writes are applied to two different replicas between anti-
entropy sessions, resulting in a parent version that has two
children – the linear history forks. The more replicas writing
concurrently, the greater the number of competing versions.
As the write throughput increases, forks can quickly turn
into branches.
Note that overlapping read/write quorums are not the

most effective solution to handling forks in our network.
We require reads to happen in the geographic region of the
client, which means we can have at most a read quorum
of 3 (e.g. the primary and secondary nodes in that region).
However, this requires us to have a write quorum size that
will cover all geographic regions, a configuration that will
only tolerate single failures and will not tolerate partitions.

3.1 Conflict Detection
In the context of the GDS, we define two types of conflicts
that are easily detectable and a good operational measure of
the consistency of the system.

First, a "stomp" is when the remote replica identifies that it
and its initiating peer have differing values for the same key,
but the same version number for the object. This suggests

PaPoC ’22, April 5–8, 2022, RENNES, France Bilbro, Bengfort, and Keleher

that the two replicas have concurrently incremented their
versions of the same object, but at the behest of two different
and conflicting write requests. In this case, the unique global
process id (PID) of each replica must be used as a tie-breaker;
the replica with the lower of the two PIDs wins and the value
it has for the key replaces the value previously stored at the
losing replica’s corresponding key. We see stomps as a useful
way of understanding which if any objects are being written
to concurrently by geographically distributed users (such
objects should be rare). We are also interested in understand-
ing how frequently PIDs must be used to break ties. PIDs
are assigned to peers when they join the system and are
not expressly designed to encode precedence, though stomp
behavior might help to uncover unintentional partisanship
in the network’s behavior. Later as you’ll see, we exploit this
property to gain an application-level semantic that allows
us to give precedence to system administrators.

The second type of conflict we track in the GDS is a "skip";
a skip is counted any time either replica must update an
object’s version in an increment greater than 1. For example,
if Replica Alpha initiates replication with Bravo, and Bravo
receives from Alpha the version 5 for a given key that locally
is stored at version 3, in determining that it must perform
a local repair, we also log a skip conflict because Bravo will
have skipped version 4 altogether. Skip conflicts can be a
means of identifying peers or groups of peers that are updat-
ing and synchronizing objects much more quickly or slowly
than the rest of the network.

3.2 Conflict Resolution
Using a policy of "latest writer wins", we are guaranteed
eventual consistency – one of the concurrent versions will
be selected as the latest version using the precedence of
the replica that wrote to it. Unfortunately, this semantic
tends to be rather indiscriminate and must be used with
care because it can allow single writes to select between
two longer branches or create version thrashing where the
replicas keep switching between two branches as writes
continue. While we’d prefer to keep "the longest branch"
or "the most replicated version" – these semantics require
global knowledge that is not present at synchronization time;
therefore we’ve elected to use a conflict resolution method
based on the access patterns of the GDS.
Our system has two types of users who write to direc-

tory records: members who create and edit their directory
record and administrators who verify members and issue
certificates. Of these types of writes, the more significant
is the verification and certificate issuance write; which will
more directly impact reads in normal GDS operations. Our
administrators are all located in North America, therefore
as a first step, we keep our highest precedence replicas in
North America to help ensure that administrator writes take
priority. More generally, we do store geographic provenance
information with objects, and only allow certain operations

to occur in the region where the object was created. Note that
we greatly benefit from working time zones in this scenario
as well; writes by members in Singapore are likely to be at
least 4 hours ahead of writes created by administrators and
vice versa, minimizing the likelihood of forks and making
us more confident in using an eventually consistent system.
When a conflict does occur, we mark the version as re-

quiring resolution. When the conflict is a skip, the latest
version is marked as pending until the versions between the
latest local version and the updated version are populated
and the presence of a stomp can be verified. When a stomp is
detected, the versions from the forked parent are all marked
as in conflict. We have introduced a special write operation,
merge that identifies multiple parent versions. When the
merged version is replicated, all prior versions through to
the forked parent are marked as resolved. Merged versions
are replicated similarly to other writes, meaning that the
recency bias could cause merged version to be stomped, and
concurrent merges and writes that require additional down-
stream merges, but eventually merges will repair the version
history into a linear sequence. Right now the merge oper-
ation is manual, meaning that in a write-heavy workload
we would quickly fall behind, but we hope to introduce au-
tomatic document merging soon and explore how merge
replication influences consistency and the branching factor
of versions.

4 Cost Effectiveness
Another key focus of our research on the GDS has been to
track sufficient data so that anti-entropy is a cost-effective
solution. For example, making replication bilateral rather
than simply unidirectional is not necessary for successful
anti-entropy replication, but has been shown to substantially
improve consistency by reducing visibility latency [10]. The
introduction of the "pull" phase is intended to improve the
consistency of the system by making each anti-entropy ses-
sion more productive. However, there is a cost associated
with each session, one which we would like to be able to
control.
Ideally the system can be carefully tuned to provide as

much consistency as is necessary for its effective operation,
while minimizing its operating budget. In practice, the best
means of reducing costs derives from reducing egress by ex-
changing onlymetadata during the "push" phase, exchanging
objects more selectively (discussed in §4.1), and by minimiz-
ing unnecessary anti-entropy sessions (discussed in §4.2).

There are two types of monthly costs in running the GDS
system: fixed costs in the form of Kubernetes managed re-
sources such as nodes and disks; and variable costs that are
largely related to the amount of network traffic. We consider
disk space a fixed cost in our system even though we’ve
implemented a data store because the amount of disk space
required per month is easy to estimate for our read-heavy

Bilateral Anti-Entropy for Eventual Consistency PaPoC ’22, April 5–8, 2022, RENNES, France

workload. Because the fixed costs are easy to estimate, we
consider them a baseline and attempt to minimize them with
respect to normal operation.
The variable networking costs are where the real costs

associated with geographically-replicated data systems come
in - and they can be tougher to estimate. For Google Cloud
Platform, network egress between regions can range be-
tween USD $0.01 to $0.15 per GB. The version metadata that
we maintain is on average 832 bytes. In a naive implementa-
tion of anti-entropy, a data store with 100,000 objects would
transmit at least 0.0832GB in the absence of writes. For a 10
node system, operating with an anti-entropy interval of 5
minutes, this represents an estimated price of USD $580 per
month in egress costs when no actual data is being replicated.
Moreover, we know that the anti-entropy interval is directly
related to the consistency of the system – a 5 minute interval
dramatically increases the probability of inconsistencies; to
achieve SLA targets, an anti-entropy interval of 15 seconds is
most appropriate, a naive baseline cost of over USD $11,000
per month in a stable state! These figures helped us under-
stand why commercial solutions for geo-replicated databases
are so expensive, particularly when they implement strong
consistency semantics - every access incurs egress costs. In
order to make our system cost-effective, we needed to find
ways to modify replication to reduce the amount of messag-
ing while still maintaining our consistency semantics.
Note that we have chosen to replicate individual objects

(documents) in our system rather than the pages of our un-
derlying LSM-Tree database. Although this results in the
exchange of more object metadata, it helps us control exactly
what data we’re sending across regions (to minimize the
amount of data transfer) and ensures that replication is not
influenced by background operations such as compaction.

4.1 Object Sampling
In the push phase, the initiating replica must iterate through
all objects in its local database and send CHECK requests
to the remote replica to pull later versions from the remote
and push local versions if required. However, in the com-
mon case, an object has not been modified since the last
anti-entropy request, meaning that the large majority of
messages sent result in no improvement to consistency. We
have implemented the optimization of having the initiating
replica send only version vectors in the push phase, which
saves on sending all objects thereby reducing the volume
of message traffic. However, we have also explored several
further improvements.

One option might be for each peer to track changes since
their last anti-entropy session and only send those changes
during the next session; however this would prevent changes
on the remote from being easily sent back to the initiator,
which is necessary for bilateral anti-entropy.

Instead, we have implemented an object sampling mecha-
nism that leverages a key observation about the replication

behavior of the GDS. If an object has been recently modified,
it has a very high likelihood of being synchronized during
the next anti-entropy session. Over time, that probability de-
creases until the object is modified again. This means we can
detect objects whose version vectors should be sent based on
a decreasing probability relative to the time since the object’s
last modified timestamp. This mechanism works during both
the push and pull phase iterations over the database.

Figure 3. Repairs over time demonstrate natural fluctuations
in write activity in GDS, resulting in short periods of stale-
ness experienced in each region.

4.2 Adaptive Anti-Entropy
In previous work, we explored the use of reinforcement
learning to replace uniform random selection of anti-entropy
peers with a multi-armed bandit strategy of selection [10].
Using an adaptive cost function allowed us to further mit-
igate cross-region costs by allowing a network to emerge
where some peers preferred cross-region connections, other
preferred local connections, and replication tended to spread
through close connections rather than make long distance
hops. We are currently in the process of collecting observa-
tions about the replication behavior of the GDS to define an
application-specific cost function to incorporate this work
into the GDS. We also plan to include network segment
weighting to further reduce costs, taking advantage of the
Google egress pricing model between regions.

5 Observations
A great deal of behavior of the GDS is accessible via logging
and added data collection tools. The GDS uses both the ze-
rolog library [4] as well as a Prometheus [2] client that allows
for the close tracking of the system’s replication behavior.
Of particular interest to this report are metrics on observed
latencies for reads and writes, the yield of anti-entropy ses-
sions, and the number of type of conflicts detected during
synchronization.

5.1 Read and Write Latency
Reads, writes, deletes, and iterations over GDS data are each
tracked at each peer, disaggregated by the namespace (i.e.

PaPoC ’22, April 5–8, 2022, RENNES, France Bilbro, Bengfort, and Keleher

Figure 4. The anti-entropy process in the GDS is configurable. Changes to the anti-entropy synchronization interval, size of
the network, and number of managed objects impact the frequency of skips and stomps – a proxy for measuring visibility
latency because a conflict implies that the object was not fully replicated before being accessed.

index) of the object. Total objects per namespace are also
tracked, as well as tombstones – objects that have been
deleted at a particular peer. The latency of each operation is
also measured, such that it is possible to evaluate the time
taken for each successful RPC call to complete, disaggregated
by the type of call.

Tracking read andwrite latency has allowed us to carefully
study the impact of changing the anti-entropy interval (the
frequency with which peers synchronize) on GET and PUT
operations.

5.2 Anti-Entropy Yield
Anti-entropy behavior is also tracked in the GDS, including
counts of each anti-entropy session by peer and by region
(there is often more than one replica supporting each region)
and the time taken for anti-entropy sessions to complete (dis-
aggregated by peer). In Figure 3 we see repairs as a time se-
ries, aggregating peers to their region. Repairs happen when
a peer discovers that its anti-entropy partner has a more
up-to-date version of an object and requests the updated ob-
ject from its partner. Repair data enables us to analyze how
productive synchronization is in terms of the amount of new
information shared during each session. It can also allow us
to detect patterns between regions and certain peers that
can help uncover topologies of staleness with the network.
It is also useful to be able to gauge the productivity of

anti-entropy during each phase. Recall that traditional anti-
entropy replication does not necessitate a second phase at all,
requiring only the initial push phase. The second phase is an
addition targeted at improving consistency, but comes with
additional latency and the cost of more messages sent across
the network. To this end, GDS tracks pushes (e.g. objects
that exist locally and which are sent as repairs) and pulls
(e.g. objects that are locally repaired during anti-entropy)
separately to allow us to investigate the yield of each phase
independently. As with the other anti-entropy metrics, these
are disaggregated by peer and region.

5.3 Stomps and Skips
Finally, the GDS tracks numbers of versions per peer (which
may indeed be a proxy for anti-entropy sessions from the
perspective of an individual peer in the network), as well as
counts of stomped and skipped versions, disaggregated by
peer and region.
A peer logs a stomp every time it makes a local repair

that requires it to overwrite an object version and value
because its PID was of lower precedence compared to its
anti-entropy partner. A skip is logged every time a peer’s
local repair requires it to advance the version of an object
in an increment greater than one, meaning it has missed at
least one iteration in the global version history.

Stomps and skips are important for local reasoning about
replica consistency so that replicas can provide users timely
information. In Figure 4 we can see the impact on visibility
latency of tuning different parameters of the system and its
anti-entropy process such as the anti-entropy synchroniza-
tion interval, the size of the network, and the number of
managed objects in the GDS. It could be possible to try to
replicate a global version history, which could then be used
to more completely reason about visibility latency, branches,
and stomps. However, even if we were to replicate the ver-
sion history without data, there would be no guarantee at
any given point in time that a replica knows the full state of
the system, as this version history would also be eventually
consistent (and in the case of failures, may never be fully
replicated).

6 Future Work
The requirements for global coverage of a read-heavy work-
loadmay suggest a number of commercially available databases
well suited to the task. However, the pricing of these solu-
tions expect large scale deployments of "traditional" geo-
replicated systems, making them impractical for a context
such as TRISA’s volunteer-led professional working group.
Configuration of an open source or community version is a
good, economical alternative, but frankly still much larger
and much more complex than our use case required.

Bilateral Anti-Entropy for Eventual Consistency PaPoC ’22, April 5–8, 2022, RENNES, France

Architecting the GDS required us to reason about con-
sistency in a way that applications developers generally do
not, and we discovered many more variables to consistency
than the relationship between access throughput and the
synchronization interval. We anticipate that future work will
yield a tunable model of eventual consistency to enable glob-
ally replicated data stores that prefer cost-effectiveness over
strong consistency semantics. Even better, a probabilistic
model would allow developers to directly modify system
behavior in a way that was right for the application.
This work may also lead to new ways of thinking about

composed operations and the tolerance that different types of
operations have for the risk of consistency failure. Exposing
conflict probability to the application layer (e.g. via thresh-
olded transactions) might help create different operation-
oriented policies that would be easy for an application de-
veloper to reason about.

Much of the consistency literaturewe have found concerns
maintaining consistency in the face of faults. In practice, the
administration of a geo-replicated database is complex and
difficult, and there are many different potential causes for
inconsistencies that should not be taken for granted. As such,
we are enthusiastic to share our data and findings with the
systems community and hope that it will encourage further
research on eventual consistency. In particular, we believe
algorithmic solutions that include configuration, adaptation,
variable load, and endurance will make a distinct impact
on how applications developers orchestrate the complex
interactions of modern and future systems.

References
[1] 2011. Protocol Buffers: Google’s Data Interchange Format. https://

developers.google.com/protocol-buffers/
[2] 2014. Prometheus / Prometheus.io. https://prometheus.io/
[3] 2018. Grpc / Grpc.Io. https://grpc.io/
[4] 2021. Zero Allocation JSON Logger. https://pkg.go.dev/github.com/rs/

zerolog
[5] 2022. Mutual Authentication. https://en.wikipedia.org/wiki/Mutual_

authentication
[6] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. 2002. Ver-

sion Stamps-Decentralized Version Vectors. In Distributed Computing
Systems, 2002. Proceedings. 22nd International Conference On. IEEE, 544–
551. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1022304

[7] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M.
Hellerstein, and Ion Stoica. 2012. Probabilistically Bounded Staleness
for Practical Partial Quorums. 5, 8 (2012), 776–787. http://dl.acm.org/
citation.cfm?id=2212359

[8] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M.
Hellerstein, and Ion Stoica. 2014. Quantifying Eventual Consistency
with PBS. 23, 2 (2014), 279–302. http://link.springer.com/article/10.
1007/s00778-013-0330-1

[9] Nalini Moti Belaramani, Michael Dahlin, Lei Gao, Amol Nayate,
Arun Venkataramani, Praveen Yalagandula, and Jiandan Zheng. 2006.
PRACTI Replication.. In NSDI, Vol. 6. 5–5.

[10] Benjamin Bengfort, Konstantinos Xirogiannopoulos, and Pete Keleher.
2018-07-05. Anti-Entropy Bandits for Geo-Replicated Consistency. In
Proceedings of the 38th International Conference on Distributed Com-
puting Systems (ICDCS) (Vienna, Austria). IEEE Computer Society

Press.
[11] James C. Corbett, JeffreyDean,Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-
pher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s Globally
Distributed Database. 31, 3 (2013), 8. http://dl.acm.org/citation.cfm?
id=2491245

[12] Sanjay Ghemawat and Jeff Dean. 2014. LevelDB, A Fast and Lightweight
Key/Value Database Library by Google.

[13] Bernhard Haeupler. 2015. Simple, Fast and Deterministic Gossip and
Rumor Spreading. 62, 6 (2015), 47. http://dl.acm.org/citation.cfm?id=
2767126

[14] Pat Helland. 2015. Immutability Changes Everything. 13, 9 (2015), 40.
http://dl.acm.org/citation.cfm?id=2884038

[15] Dave Jevans, Thomas Hardjono, Jelle Vink, Frank Steegmans, John
Jefferies, and Aanchal Malhotra. 2020. TRISA Whitepaper Version 8.
Technical Report. https://trisa.io/trisa-whitepaper/

[16] Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold
Vocking. 2000. Randomized Rumor Spreading. In Foundations of Com-
puter Science, 2000. Proceedings. 41st Annual Symposium On. IEEE,
565–574. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=892324

[17] Martin Kleppmann and Alastair R. Beresford. 2017. A Conflict-Free
Replicated JSON Datatype. 28, 10 (2017), 2733–2746.

[18] Yamir Moreno, Maziar Nekovee, and Amalio F. Pacheco. 2004. Dynam-
ics of Rumor Spreading in Complex Networks. 69, 6 (2004), 066130.
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.066130

[19] D. Stott Parker, Gerald J. Popek, Gerard Rudisin, Allen Stoughton,
Bruce J. Walker, Evelyn Walton, Johanna M. Chow, David Edwards,
Stephen Kiser, and Charles Kline. 1983. Detection of Mutual Incon-
sistency in Distributed Systems. 3 (1983), 240–247. http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1703051

[20] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abra-
ham. 2017. Pebblesdb: Building Key-Value Stores Using Fragmented
Log-Structured Merge Trees. In Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, 497–514.

[21] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In Symposium on Self-
Stabilizing Systems. Springer, 386–400.

[22] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer,
Marvin M. Theimer, and Brent B. Welch. 1994. Session Guarantees
for Weakly Consistent Replicated Data. In Parallel and Distributed
Information Systems, 1994., Proceedings of the Third International Con-
ference On. IEEE, 140–149. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=331722

[23] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,
Mike J. Spreitzer, and Carl H. Hauser. 1995. Managing Update Conflicts
in Bayou, a Weakly Connected Replicated Storage System. 29 (1995).

[24] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J Abadi. 2012. Calvin: Fast Distributed Trans-
actions for Partitioned Database Systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data. ACM,
1–12.

[25] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-
sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-
rice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora:
Design Considerations for High Throughput Cloud-Native Relational
Databases. In Proceedings of the 2017 ACM International Conference on
Management of Data. ACM, 1041–1052.

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://prometheus.io/
https://grpc.io/
https://pkg.go.dev/github.com/rs/zerolog
https://pkg.go.dev/github.com/rs/zerolog
https://en.wikipedia.org/wiki/Mutual_authentication
https://en.wikipedia.org/wiki/Mutual_authentication
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1022304
http://dl.acm.org/citation.cfm?id=2212359
http://dl.acm.org/citation.cfm?id=2212359
http://link.springer.com/article/10.1007/s00778-013-0330-1
http://link.springer.com/article/10.1007/s00778-013-0330-1
http://dl.acm.org/citation.cfm?id=2491245
http://dl.acm.org/citation.cfm?id=2491245
http://dl.acm.org/citation.cfm?id=2767126
http://dl.acm.org/citation.cfm?id=2767126
http://dl.acm.org/citation.cfm?id=2884038
https://trisa.io/trisa-whitepaper/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=892324
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.066130
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1703051
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1703051
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=331722
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=331722

	Abstract
	1 Introduction
	2 A Global Directory Service
	2.1 Bilateral Anti-Entropy

	3 Conflicts
	3.1 Conflict Detection
	3.2 Conflict Resolution

	4 Cost Effectiveness
	4.1 Object Sampling
	4.2 Adaptive Anti-Entropy

	5 Observations
	5.1 Read and Write Latency
	5.2 Anti-Entropy Yield
	5.3 Stomps and Skips

	6 Future Work
	References

