Consistency Maintenance in Large-Scale Systems

Pete Keleher
keleher@cs.umd.edu
Department of Computer Science
University of Maryland

August 6, 1997

1 Problems

The new-found connectivity spawned by the emergence of the WWW 1s clearly the most challenging, and
potentially rewarding, issue facing the systems community today. This explosion of growth provides a number
of opportunities, together with a like number of challenges. Both the opportunities and the challenges
center around the new-found ability to tie together widely separated pieces of information into at least
a semi-coherent whole. The problem of maintaining coherency in large-scale systems without sacrificing
performance 1s the focus of this position statement. We are interested in system sizes from several dozen
entities, up to at least several thousand. The application domain that we assume includes (but is not
limited to) the ubiquitous world wide web (WWW), distributed databases and client-server applications,
distributed collaboration systems,; and traditional parallel HPC codes communicating either via message-
passing or software distributed shared memory (DSM).

One of the central challenges raised by these new systems is that of efficiently maintaining consistent
shared state in wide-area systems. Although the reasons for the high cost of such systems might seem
obvious, we review them below.

e Scale -

The large scale of wide-area systems poses problems both in the amount of meta-information needed to
track copies or replicas of shared state, but also in update propagation when shared state is changed.
Distributed applications in wide-area networks could be very large, having hundreds or thousands of
disparate components. The WWW is a good example. Each page or object published on the WWW
and cached elsewhere is an object that is effectively shared across all of the objects that currently
cache it. Rather than requiring a WWW server to track (potentially thousands of) cachers for each
and every object that it exports, the prevalent practice currently is to require cachers to periodically
query the object’s server to see if the object is ”stale”. This technique distributes the state across the
cachers, rather than creating a resource consumption bottleneck at the server. Secondly, and more
importantly, this approach allows cachers to individual determine their own toleration for shared data.
This point will be discussed more below.

e Dynamicism -
Wide-area networks are inherently dynamic. The set of browsers viewing a given WWW page varies
enormously from one minute to the next. Network partitions, congestion, and failures at many different

levels of the system can increase the amount of variability still further. Clearly, any system of organizing
meta-information must be able to cope with quickly changing information.

e Heterogeneity -



Wide-area systems are inherently heterogeneous, whether at machine and processor level, or just in
the capacity of the connections between individual components and the rest of the network. These
differences can be categorized either as either performance or platform heterogeneity. The latter is
more serious because it usually can not be ignored. For most purposes, however, it suffices to provide
a method of transforming a common network format into the local format of each system.

2 Approaches to Solutions

The following sections enumerate potentially promising areas of systems research, all with the overriding
goal of allowing consistency to be efficiently maintained in large-scale systems.

2.1 Global Consensus Avoidance

The amount of communication needed to reach global consensus scales at least linearly with the size of the
system, and can be much worse. While techniques such as as broadcast busses and secondary synchronization
busses can improve performance of tightly-coupled systems, these techniques can not generally be used in
larger systems. Hence, global consensus should be avoided when possible. Unfortunately, global consensus
is needed for some tasks, and very convenient for others. For example, parallel applications often alternate
phases where information is collected from the entire set of shared data, and phases where each entity
modifies the portion of data ”owned” by that entity. Global ”barrier” synchronization is needed in order to
delineate the two.

The same domain contains situations where the global consensus is merely convenient, not necessary.
Jacobi-type applications often shared data only among neighbors. Even though synchronization to mark
the end of a phase 1s is necessary only between neighbors, global barrier synchronization is often used
because of convenience, and because there is a large gap in power between lock synchronization and barrier
synchronization.

The most effective way to avoid this type of ”synchronization fragmentation” 1s to create flexible synchro-
nization and communication primitives. Such primitives will allow users to better match synchronization
calls with application needs. In turn, better matches should allow performance to scale better.

2.2 Exploiting the Absence of Peer-to-Peer Relationships

Both client- and server-initiated approaches to maintaining consistency with WWW browsers work because
modifications to web objects are only made visible at the web server’s port. The system effectively behaves
as a single-writer system in which the owner of each object is static. Moreover, objects have a property
analogous to spatial locality, in that most objects that are common accessed together are hosted by the same
server. These characteristics enormously simplify the problem of ensuring that a given replica is current.

More generally, the fact that each web object has a single node can be thought of as application-specific
semantic information about sharing characteristics. As such information can be crucial in scaling applications
to large systems, we advocate research into finding useful sharing relationships, and methods for deriving
such relationships from systems and applications.

2.3 Tolerating and Exploiting Transient Inconsistency

One implication of avoiding global consensus 1s that temporary inconsistencies may develop between replicas
of a single shared object. For example, distributed collaborative environments often allow different ”views”
of a system to independently specify whether they should be updated optimistically or pessimistically. An
optimistic interactive view might display the results of local transactions to a user before they have been
committed. The view "rolls back” if and when the view 1s found to have displayed changes from transactions
that eventually aborted.

The rollback works because of two properties of the application. First, the user of the interactive display is
presumed to be able to tolerate the inconsistency. There exist situations where this is inappropriate because
of irrevocable actions triggered by specific views. For instance, firing a missile is not usually undo-able.



Second, the technology underlying the view is versioning, and retains enough information to roll back
the view until it is consistent with respect to the rest of the system. Versioning is easy to implement if the
shared data is either small or discrete. However, versioning of structured data can be complicated by links
to objects at other sites.

Traditional approaches to these problems rely on global information and consensus, often implemented by
a "sweep” though all objects in the system. Current research is focusing on improving interactive response
through selectively allowing replicas to diverge. We advocate research into the more general problem of
predicting the performance impact of allowing inconsistency to exist within large-scale systems.

2.4 Exploring the Tradeoff Between Laziness and Eagerness

This tradeoff refers to how updates are propagated through distributed systems. Updates can be ”eagerly”
sent at the first opportunity, or ”lazily” delayed. There are many variations of each approach, but eager
systems are generally less complex, and therefore more common. Lazy systems are often made more complex
by the need for making meta (or consistency) information persistent.

In DSM systems, for example, an eager system is usually one that ”performs” writes to shared data
at the first opportunity. Single-writer protocols allow only the owner of a page to modify it, and usually
require all other copies of the page to be invalidated. In other words, consistency information (notification
of the page modification) has to be sent even before the actual modification occurs. This requirement that
remote communication occurs before the modification slows the process down considerably, but there are
advantages. For one, no state describing the modification needs to be retained once the other copies of the
page have been modified.

On the other side of the spectrum are lazy systems (systems that use lazy release consistency). Lazy
systems allow each processor to locally decide to modify any valid page. The only requirement imposed
by the consistency algorithm is that a notice describing the fact of the modification must be appended to
future synchronization messages. This approach has the obvious advantages of allowing page modifications
to proceed immediately and of allowing consistency information to be piggy-backed on already existing
synchronization mechanisms. Delaying consistency propagation also has other advantages, especially in the
presence of false sharing.

The central disadvantage of this approach is that it requires significantly more state to be retained.
Since the set of processes that synchronize directly with the modifier does not necessarily include all the
locations that cache the modified page, this information must be forwarded by those processes to others.
This implies that synchronization messages must carry both direct and indirect information. It also implies
that the original modifier does not know when, or even if, the notice eventually reaches all cachers. This last
possibility requires the modifier to retain consistency information until it directly contacts all other processes
in the system.

Hence, consistency information in lazy systems is often persistent, while consistency information in eager
systems can be discarded immediately after use. Another way to look at this is that the amount of state
that lazy systems must retain scales with the size of the system, whereas the state of eager systems scales
only with the degree of sharing. These two can coincide, but usually will not.

We advocate investigation of protocols that are lazy enough to avoid global operations, but eager enough
to limit persistent state.

2.5 Tolerating Latency

Communication cost actually refers to two separate characteristics of the communication medium: bandwidth
and latency. While bandwidth appears to be scaling with machine speed, the latency of remote requests often
does not, and indeed, can not. The reason is that latency is a function of operating system characteristics,
switch delays, and distance. While research has produced ways of coping with operating system overheads,
neither switch delay not distance is likely to go away in the near future. As bandwidth increases, therefore,
latency 1s more and more becoming the most important characteristic of any network connection.

This increasing cost of latency needs to be addressed by any wide-area system. There are at least three
promising approaches to hiding this latency. The canonical approach is prefetching, which can be accom-
plished either statically (through explicit fetches inserted by the compiler or the application programmer) or



dynamically through runtime observation. The dynamic approach is likely to be more useful in wide-scale
systems than with cache-based systems the greater cost of remote requests makes computationally expensive
predictive algorithms more cost-effective.

Multi-threading is another approach to hiding latency. The idea is to divide local work into multiple
independent threads; switching from one thread to the next as they become blocked. The drawback of
threads is that considerable programmer or compiler effort needs to be expended in order to separate out
disjoint sets of work.

Finally, several optimistic techniques that have been discussed in the literature in other contexts could be
applicable. For instance, the use of optimistic Time Warp-like mechanisms could be predicated on specific
responses to remote requests. If and when a ”wrong” response arrives, the optimistic computation can be
rolled back to the point before the request was sent.

Widespread use of this type of mechanism would require detailed application information in order to make
the predictions. However, this information does not necessarily have to come from the programmer. Instead,
it could come from the programming system on which the application is based. For instance, consider a
non-local lock acquisition in a DSM. The only response to a lock request is that the lock is granted. However,
the lock grant implies that any necessary consistency action, such as invalidation of data that is guarded by
the lock, has already taken place. One approach to hiding the remote lock latency would be to assume that
all necessary invalidations have been applied and to continue executing *before* the lock grant is returned.
If the guess is wrong, i.e. more invalidations arrive before the lock grant, the process can be rolled back.



