
Sparks: Coherence as an Abstract Type

Peter J. Keleher
Department of Computer Science

University of Maryland
College Park, MD 20742

keleher@cs.umd.edu

Abstract

Sparks is a protocol construction framework that treats
records of coherence actions as abstract types. Sparks’ cen-
tral abstraction is the coherence history, an object that sum-
marizes past coherence actions to shared segments. Histo-
ries provide high-level access to coherence guarantees. We
motivate our work by discussing synchronization design in
distributed shared memory systems, and show how histories
can be used to cleanly create more efficient synchronization
than is currently used.

1 Introduction

This paper discusses the use of write-histories (or just
histories) to refer to past coherence actions in the context
of software Distributed Shared Memory systems (DSMs).
A history is an abstract object that summarizes past mod-
ification to shared segments. Histories can be compared,
added, and subtracted. We advocate using histories in or-
der to address two problems with current DSM systems:
(1) a mismatch between system and application semantics,
and (2) a lack of any high-level mechanism with which to
implement automatic or semi-automatic prefetching.

The first point is mainly concerned with synchronization
behavior of shared-memory applications. Most DSM sys-
tems provide efficient synchronization primitives that are
implemented along side of coherence mechanisms, not on
top of them. The reason for the separate implementation
is that shared memory and synchronization have very dif-
ferent semantics, and it is therefore difficult to efficiently
implement the latter on top of the former.

However, most system typically provide support for only
a very limited set of synchronization types, such as barrier
and locks. Some systems additionally provide support for
reduction types [4], but, in general, application programmers
are expected to implement high-level synchronization types
on top of low-level synchronization types. This approach is

inherently inefficient, because the aggregate semantics of a
high-level synchronization type implementation can usually
only be approximated by using lower-level synchronization
types as building blocks, and the approximation must neces-
sarily be conservative. Hence, such high-level types often
have much higher runtime costs than strictly required by
application semantics.

By expressing coherence actions as a high-level object,
we hope to make explicit coherence actions efficient, yet
writable by ordinary mortals. At the same time, histories are
a precise enough notion that powerful and varied synchro-
nization types can be expressed in them without unintended
consequences.

The second major use of the the history mechanism will
be in capturing past shared accesses and using them to pre-
dict and anticipate future accesses. This technique uses
read-histories, a variant of histories that records access
misses on shared pages rather than shared modifications.
Read histories are used to record access misses during one
iteration of an outer loop, and to later replay an approxima-
tion of the data movement initiated by those misses so as
to prevent future access misses. Hence, such replay mech-
anisms will be a a form of prefetch, and will help hide the
latency of the shared accesses.

This technique has been used before[9], but only as an ad
hoc technique written specifically for a single application.
By using histories, the process is semi-automated. Record-
ings are made essentially by taking snapshots of a process’s
read history before and after the region to be recorded.
The earlier snapshot is subtracted from the later, leaving
a record that consists only of access misses incurred during
the recording period.

When the program or user determines that a similar access
pattern is occurring (i.e. the next iteration or the outer loop),
any modifications to the shared pages that were missed dur-
ing the recording are sent to the process that missed on them.
Using histories, the entire mechanism can be expressed in
only a few lines. However, the mechanism is powerful
enough to allow the prefetch to apply only to a single spec-

Acq()
Ins(x)
Rel()

Acq()
Ins(y)
Rel()

Acq()
Rem(x)

Inv(p , p)x y

Inv(p)
x

P1 P2 P3

Figure 1. Lock-based queue

ified range of addresses, the extent of a given object, or to
only a single thread of a multi-threaded process. A sim-
ilar mechanism can be used to initiate bulk movement in
producer-consumer interactions.

The rest of the paper proceeds as follows. Section 2
describes the relaxed consistency models from which the
history mechanism grew. Sections 3 and 4 describe the use
of histories in building efficient high-level synchronization
types, and Section 5 concludes.

2 Background

DSM systems support the abstraction of shared mem-
ory for applications running on loosely-couple distributed
systems, i.e. workstations on a general-purpose network.
While early systems strictly emulated the sequentially con-
sistent [8] programming model of tightly-coupled multipro-
cessors, most recent systems support relaxed consistency
models such as lazy release consistency (LRC) [5], a close
relative to the eager release consistency (ERC) [3] mem-
ory model. DSMs that implement ERC delay propagating
modifications of shared data until they execute a release,
and then the modifications are performed globally. Under
LRC protocols, processors further delay performing modifi-
cations remotely until subsequent acquires by other proces-
sors. Additionally, the modifications are only performed at
the processor that performed the acquire. The central intu-
ition of LRC is that competing accesses to shared locations
in correct programs will (almost) always be separated by
synchronization. Since coherence operations are deferred
until synchronization is acquired, we can piggyback consis-
tency informationon the existing synchronizationmessages.
In general, LRC performs better than ERC by eliminating
consistency messages and further hiding the effects of false

Acq()
Ins(x)
Rel()

Acq()
Ins(y)
Rel()

Acq()
Rem(x)

Inv(p)x

P1 P2 P3

0

1

2

0

1

0

1

Figure 2. Sparks-based queue

sharing.
The Sparks class library can be used to build high level

synchronization objects that accurately reflect the synchro-
nization objects’ coherence semantics. Our approach is re-
lated to the causality annotations of CarlOS [7], but Sparks
will provide a much richer set of mechanisms and finer
control over the scope of consistency actions. Sparks will
replace the top layer of CVM. Since coherence in LRC
systems like CVM is driven by synchronization, it is also
entirely proper to view Sparks as a toolkit with which to
write DSM protocols.

3 Synchronization Support

DSMs typically separate synchronization support from
shared address space support in order to achieve good per-
formance [1, 2, 6, 4]. Such systems provide a limited set of
synchronization primitives (locks, barriers), and expect ap-
plication programmers to build sophisticated synchroniza-
tion constructs in terms of them.

However, buildinghigh level synchronizationobjects out
of synchronization constructs supplied by the DSM system
(such as locks or barriers) is often inappropriate, because the
coherence constraints implied by the DSM constructs may
be more strict than those needed by the high level object.
Figures 1 and 2 show lock-based and Sparks-based dis-
tributed queue implementations in an LRC environment. In
both cases, process P1 creates and inserts item x, P2 creates
and inserts item y, and P3 retrieves item x. LRC systems
transitively require the acquirer of a lock to see all shared
updates seen by the last releaser. In the lock-based queue of
Figure 1, both P2 and P3 see all updates seen by P1, and P3

sees all updates seen byP2. More to the point,P2 invalidates
its copy of the page containing x and P3 invalidates its copy

of the pages containing both x and y. However, P2 never
needs to see x. It merely transfers knowledge ofx’s creation
fromP1 to P3. Similarly,P3 does not need to know about y.
Therefore, neither P2’s invalidation of the page containing
x, nor P3’s invalidation of the page containing y are neces-
sary. In general, applying unnecessary coherence operations
can waste bandwidth, create extra CPU overhead, and cause
unnecessary page faults, especially in the presence of false
sharing.

3.1 Histories

History objects allow users to express and manipulate co-
herence constraints. By applying one node’s current history
at another node, the second node’s view of shared state is
brought up to date with respect to events seen by the first.

More formally, a history is a partially ordered set of
intervals [5], where an interval describes a portion of the
execution of a single processor. Intervals contain write no-
tices, which are generally just indications that a given page
has been modified. Applying such a notice usually inval-
idates the associated page. However, a write notice may
also contain the newly written data, and hence application
of the write notice updates the page instead of invalidating
it. Intervals represent a logical unit of time; they have no
correspondence with real time. In a distributed system, new
intervals typically start at each non-local synchronization
event.

Histories have three types of extent: a temporal extent,
a segment extent, and a thread extent. The temporal extent
specifies the interval of time for which events are summa-
rized. A limited temporal extent can be used to name only
those events that occurred during part of an execution, such
as between two synchronizations. Temporal extents are de-
scribed by using version vectors to summarize the earliest
and latest included intervals of each processor in the system.
The temporal extent of P3 after the lock acquire in Figure 2
could be written as:

f?;?;?g f0; 1; 1g (1)

meaning that the history summarizes all intervals from the
start of execution to i01 (interval 0 of P1) on P1, to i12 on P2,
and to i13 on P3.

The segment extent names the segment of shared mem-
ory that may be affected by the history’s write notices, i.e.
all those pages for which the history might carry write no-
tices. The primary purpose of the segment extent is to limit
the scope of a history’s consistency actions to a subset of
shared memory. While a segment in a page-based DSM
consists of a set of pages, segments could also be composed
of arbitrarily-shaped objects in distributed object systems
such as Midway [1], or CRL [4].

class History f
TemporalExtent temporal;
SegmentExtent segment;
ThreadExtent thread;

void register(int on or off);

void operator += (History *);
void operator -= (History *);
void apply();
UpdateData *get data();

g;

Figure 3. History Class

The thread extent names the set of threads whose write
notices may be contained in the history. Usually this in-
cludes all threads in a system. For example, the thread
extent of H3 is P1, P2, and P3. However, limiting the
thread extent has several uses, including limiting the infor-
mation passed to a global barrier by each node (each may
wish only to inform the barrier master about local inter-
vals), and integrating prefetching with thread scheduling on
multi-threaded nodes.

A history’s write notices are contained within the inter-
section of the temporal, segment, and thread extents. In
Figure 2, interval i01 contains a single write notice for the
page containing x.

3.2 Operations on Histories

History semantics allow for addition, subtraction, and
application. Adding histories Hi and Hj results in a new
history that contains all intervals named in either Hi or Hj.
Subtracting histories can be use to limit temporal scope.
Subtracting Hi from Hj limits the temporal scope of the
resulting history to the interval of time seen by Hj but not
by Hi. History subtraction can be used to create a compact
representation of all shared updates to the extents covered by
a history during a specific interval of time. Finally, applying
a history at a node takes consistency action corresponding
to the notices named by the history, usually invalidation.

4 Programming with Sparks

The initial prototype of Sparks is being written as a C++
class library. Later versions may migrate to a language-
based approach as we expand the scope of the research
to include compiler-based analysis of synchronization and
automatic protocol verification.

A simplified definition of the History class is shown
in Figure 3. This definition allows histories to be added,
subtracted, and applied. Additionally, some protocol im-
plementations of get data() will return all data present

locally whose creation is described by the history’s write no-
tices. The apply routine can be used to update pages when
the history is applied elsewhere. The register routine
is used to tell Sparks to begin recording shared writes in a
given history.

Adding histories Hi and Hj results in a new history that
contains all intervals named in eitherHiorHj. For example,
the coherence operations that take place in a lock acquisition
on an LRC system can be expressed by:

Hacq += Hrel;
Hacq.apply();

where Hrel refers to the current history of the last releaser
of the lock, and Hacq refers to the current history of the
acquirer. The existence of a history detailing modifications
to shared memory does not imply that any coherence oper-
ation has taken place. Consistency action only occurs when
a history is applied to the local version of shared mem-
ory. In the above example, the first line merely creates a
description of shared modifications seen by either the ac-
quirer or releaser. No action is performed until the resulting
history is applied in the second line. All three extents may
be modified by an addition.

Histories may also be subtracted. Subtracting Hi from
Hj limits the temporal scope of the resulting history to
the interval of time seen by Hj but not by Hi. History
subtraction can be used to create a compact representation
of all shared updates to the extents covered by history Hin

during a specific interval of time:

History Hsave;
extern History Hlocal;

void begin record () f
Hsave = Hlocal;

g

History * end record () f
return Hlocal - Hsave;

g

where we assume Hlocal is registered (recording is turned
on) and has been tracking local accesses. The history re-
turned by end record contains a complete record of the
intervals that were created or learned about between the calls
to begin record and end record. The next section
presents possible uses of this type of construction.

4.1 High-Level Synchronization: Queues

As discussed above, unintended consequences can result
from using constructs as powerful as Locks to build high
level synchronization types. In the case of the lock-based
queue in Figure 1, the unintended consequences are proces-
sor P2’s invalidation of page px, and P3’s invalidation of py.
The only intended consequence is P3’s invalidation of px.

The Sparks-based queue implementation in Figure 2
stores the history of the data producer with the object in
the queue. When the data is consumed by P3, P1’s history
is applied P3.

4.2 Reductions and Mutual Exclusion

Many operations in parallel programs can be described as
reductions, or operations that are associative and commuta-
tive. The semantics only require mutual exclusion between
consecutive reducers. However, reductions are typically im-
plemented using locks. Locks are stronger than necessary
because their implementation updates later reducers with all
coherence actions taken by prior reducers. The only coher-
ence actions that need to be performed are those to the data
modified by the reduction.

Reductions can be implemented in Sparks similarly to
locks, except that temporal and segment extents limit the
scope of the histories transferred between consecutive re-
ducers. The below code presents the relevant aspects of a
reduction:

reduce(SegmentExtent * object) f
send request for object to current owner
extract history Hobj from reply
Hobj� >apply();
Hobj� >register(TRUE);

�compute reduction()

Hobj� >register(FALSE);
Hobj� >segment = object;

g

The first two lines fetch the reduction token, together with
Hobj, the history of previous reductions on that object. Next,
Hobj is applied, and then registered in order to record new
actions into the reduction object. After the reduction has
been computed, Hobj is un-registered, and the segment ex-
tent is limited to the object. This last step is necessary
because the reduction may have modified shared data out-
side of object. Hobj is then ready to be passed to the next
reducer of the same object.

4.3 Prefetch Playbacks

Prefetch playbacks is a technique that allows us to record
access misses taken during one iteration, and to play back
the next update to the same data as an update during a
subsequent iteration.

The coherence histories described so far are essentially
records of write faults. We can use a similar mechanism
to record read faults. If we assume routines analogous to
begin record and end record for ReadHistory
objects, the following code could pass a record of a compute

phase’s read misses to synchronization routines for replay
during the next iteration:

for (...) f
...

barrierX();
begin read record();

compute();
ReadHistory *Hlocal = end read record();
barrierX� >attach(Hlocal);

...
g

We are assuming that begin read record() and
end read record() allow a history of read misses to be
captured, that barrierX() is a global barrier operation,
and that the attach operation lets us inform the barrier of
the misses that we took subsequent to leaving it. During
the next iteration, barrierX will use Hlocal to dissemi-
nate the read miss information on barrier releases, allowing
other processors to stream in data they produce before the
misses occur again.

Recording and playing back data transfers was first used
by the Mukherjee [9] in the context of a sequentially con-
sistent DSM. Our work differs in two ways. First, our
recording mechanisms will be part of the synchronization
type definitions. The playbacks will be initiated by auto-
matic heuristics, making them more reliable and easier to
apply. All of the above mechanism could have been hidden
inside special-purpose barrier routines provided by library
builders. We pulled much of it outside the barrier routines
for explanatory purposes. Second, our technique will be
used for prefetching, not to maintain coherence. We will
not violate correctness if subsequent iterations access dif-
ferent data.

5 Conclusions

Parallel systems are clearly reaching a point where in-
creasing affordability is making their widespread acceptance
possible. However, this transition will not take place unless
parallel machines are easy to program, and perform well.
Current DSM systems handle the first problem, but do less
well with the second.

Our research will bridge the gap between loosely-coupled
and tightly-coupled systems by using the Sparks abstractions
to reduce and optimize data movement in DSM systems.
As large-scale systems increasingly resemble multiproces-
sor nodes connected by DSM, we expect our techniques to
become common not only in clusters of stock workstations,
but in the most powerful systems as well.

An implementation is underway.

References

[1] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The
Midway distributed shared memory system. In Proceed-
ings of the ’93 CompCon Conference, pages 528–537,
February 1993.

[2] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Imple-
mentation and performance of Munin. In Proceedings of
the 13th ACM Symposium on Operating Systems Prin-
ciples, pages 152–164, October 1991.

[3] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared-memory multiproces-
sors. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 15–26,
May 1990.

[4] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A.
Wallach. CRL: High-performance all-software dis-
tributed shared memory. To appear in The Proceed-
ings of the 15th ACM Symposium on Operating Systems
Principles.

[5] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy re-
lease consistency for software distributed shared mem-
ory. In Proceedings of the 19th Annual International
Symposium on Computer Architecture, pages 13–21,
May 1992.

[6] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel.
Treadmarks: Distributed shared memory on standard
workstations and operating systems. In Proceedings of
the 1994 Winter Usenix Conference, pages 115–131,
January 1994.

[7] Povl T. Koch, Robert J. Fowler, and Eric Jul. Message-
driven relaxed consistency in a software distributed
shared memory. In Proceedings of the First USENIX
Symposium on Operating System Design and Imple-
mentation, pages 75–86, November 1994.

[8] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28(9):690–691,Septem-
ber 1979.

[9] Shubhendu S. Mukherjee, Shamik D. Sharma, Mark D.
Hill, James R. Larus, Anne Rogers, and Joel Saltz. Ef-
ficient support for irregular applications on distributed-
memory machines. In Proceedings of the 1995 Con-
ference on the Principles and Practice of Parallel Pro-
gramming, July 1995.

