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Abstract

A software distributed shared memory (DSM) system allows shared memory parallel

programs to execute on networks of workstations. This thesis presents a new class

of protocols that has lower communication requirements than previous DSM proto-

cols, and can consequently achieve higher performance. The lazy release consistent

protocols achieve this reduction in communication by piggybacking consistency in-

formation on top of existing synchronization transfers. Some of the protocols also

improve performance by speculatively moving data.

We evaluate the impact of these features by comparing the performance of a soft-

ware DSM using lazy protocols with that of a DSM using previous eager protocols.

We found that seven of our eight applications performed better on the lazy system,

and four of the applications showed performance speedups of at least 18%. As part

of this comparison, we show that the cost of executing the slightly more complex

code of the lazy protocols is far less important than the reduction in communica-

tion requirements. We also compare the lazy performance with that of a hardware

supported shared memory system that uses processors and caches similar to those of

the workstations running our DSM. Our DSM system was able to approach, and in

one case even surpass, the performance of the hardware system for applications with

coarse-grained parallelism, but the hardware system performed signi�cantly better

for programs with �ne-grained parallelism.

Overall, the results indicate that DSMs using lazy protocols have become a viable

alternative for high-performance parallel processing.
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Chapter 1

Introduction

The current trend in the supercomputer industry is to build parallel machines using

o�-the-shelf processors and a high-performance interconnect. The primary reason for

this is that o�-the-shelf microprocessors are now nearly as fast as the best custom chip

sets. A relatively small number of these microprocessors linked together by a high-

performance interconnect can provide a shared address space and very high aggregate

performance. Moreover, using commonly available microprocessors provides a clear

upgrade path as new processors are produced.

As a result of these trends, the same processors used in supercomputers are often

used in ordinary workstations on local area networks. Supporting the abstraction

of shared memory on these high-performance multicomputers is an obvious idea.

However, local area networks have historically lacked the high bandwidth and low

latency of supercomputer interconnects, as well as the hardware support for imple-

menting shared memory over the message-passing interconnect. Conventional wisdom

therefore says that distributed shared memory (DSM) systems, which provide shared

address spaces to networks of workstations (see Figure 1.1), can not be implemented

e�ciently.

This thesis develops a family of lazy release consistent (LRC) protocols that e�ec-

tively address many of the problems inherent in supporting DSM on a network. LRC

protocols delay communicating consistency information until absolutely required to

do so by the memory model. At the other end of the spectrum are eager protocols,

which attempt to minimize latency by optimistically moving data before it is actually

needed. By moving data and consistency information only upon request, the lazy

protocols often require signi�cantly less communication than eager protocols. The

primary drawback of this approach is that hiding communication latency by over-

lapping communication with computation becomes more di�cult. However, we have

found that for many classes of programs, the reduction in message tra�c achieved by

the lazy protocols more than o�sets any added latency.
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Proc1
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Figure 1.1 Distributed Shared Memory

The LRC protocols have been implemented on a network of eight workstations,

and timing information from the implementations has been used to calibrate simula-

tions of up to 64-processor clusters of workstations. Our results show that e�ciently

supporting the abstraction of shared memory in software is possible for a broad class

of applications, but only with the use of high-performance protocols that are specif-

ically crafted to reduce communication requirements. Given appropriate protocols,

DSM systems can have performance comparable to hardware systems [LT88] for small

clusters, and signi�cant speedup even on large clusters.

1.1 Programming Model

The LRC protocols developed in this work provide a generic abstraction of shared

memory to application programs. Programs are multi-threaded, and synchronize

through locks and barriers. All data communication between threads is through

globally shared memory. For most programs, the memory abstraction supported by

LRC protocols is indistinguishable from that of a multiprocessor that supports shared

memory in hardware [LT88].

The protocols and the system described in this dissertation do not require user

annotation or language support. For several reasons, we feel that it is important for

DSM systems to transparently run programs written for hardware shared memory

systems.
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First, the overriding rationale for using DSM systems is that they are easier to

use than message-passing systems. DSMs handle data movement automatically, while

message-passing systems require data movement to be speci�ed by the programmer.

Requiring users to annotate shared variables or sharing patterns may negate the

underlying rationale of DSMs.

Second, we believe that low-level customization hooks can and should allow ex-

perienced users to tune system performance. However, requiring all programmers to

reason about the underlying implementation would likely be counterproductive.

Finally, none of the work described in this thesis disallows later addition of

application-speci�c semantic information. In fact, most such optimizations are or-

thogonal to the decisions made in this thesis. Beginning without any application-

speci�c information forces us to reason clearly about general application character-

istics, and to identify and address common sharing patterns. Once general-purpose

mechanisms that e�ciently support large classes of applications are in place, special-

purpose mechanisms that exploit application-speci�c information can be added to

bring the performance as close to optimal as possible.

1.2 Challenges

The following paragraphs describe the two primary obstacles to obtaining good per-

formance on a software implementation of distributed shared memory.

Communication

The high cost of communication on local area networks can hurt performance in

two ways. First, large amounts of communication can cause the network to become

a bottleneck. Historically, network multicomputers have had less bandwidth and

higher latency than hardware shared memory (HSM) machines. However, the ATM

networks used by our implementation and modeled in the simulations are fast enough

that the actual wire time of messages is always dwarfed by operating system costs.

More important on our target systems is the software overhead incurred any time

a message is sent or received. Each message send, for example, requires traversing

many di�erent levels of system software from the kernel trap down to the network

interface, often making the actual wire time an insigni�cant contributor to the overall

transmission cost. Lazy protocols are ideally suited for situations where communica-
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tion has a high per message cost, because they send messages only when absolutely

necessary, often resulting in far fewer messages overall.

False Sharing

False sharing results when the system can not distinguish between accesses to logically

distinct pieces of data. False sharing occurs because the system tracks accesses at

a granularity larger than the size of individual shared data items. Conventional

protocols typically require processes to gain sole access to a page before it can be

modi�ed. Therefore, false sharing can lead to situations where multiple processes

contest ownership of a page, even though the processes are modifying entirely disjoint

sets of data. The page may then \ping-pong" back and forth between the processes.

The LRC protocols presented in this thesis allow processes to modify pages with-

out gaining sole ownership of a page. Multiple processes can thereby modify falsely

shared data simultaneously, without network communication. False sharing is more

common on DSM systems than on HSM systems because DSMs track accesses at the

granularity of virtual memory pages, while HSMs track accesses at the granularity of

cache lines.

1.3 Lazy Release Consistency

Lazy release consistency is based on release consistency (RC) [GLL+90], a relaxed

memory consistency model that permits a processor to delay making its changes

to shared data visible to other processors until subsequent synchronization accesses

occur. Essentially, all shared accesses are divided into ordinary accesses, acquire

synchronization accesses, and release synchronization accesses. Release consistency

allows the results of ordinary shared writes to be bu�ered locally until the next release

operation.

In contrast, sequential consistency (SC) [Lam79], until recently the model imple-

mented by most bus-based multiprocessors, requires all prior shared writes to com-

plete before any subsequent shared accesses can be initiated. RC systems can achieve

large performance gains over SC systems because they allow updates to be bu�ered.

The primary disadvantage of using RC is that the memory abstraction seen by

the user is slightly di�erent than with SC. However, programs written for SC produce

the same results on an RC memory, provided that (i) all synchronization operations

use system-visible primitives, and (ii) there is a chain of synchronization between
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every pair of con
icting ordinary accesses to the same memory location by di�erent

processors [GLL+90]. In practice, most shared memory programs require little or no

modi�cation to meet these requirements.

LRC is a re�nement of RC that allows consistency action to be postponed until

a synchronization variable released in a subsequent operation is acquired by another

processor. Even then, the shared writes are made visible only to the acquiring proces-

sor. Synchronization transfers in an LRC system, therefore, involve only the synchro-

nizing processors. A release in an eager RC system requires the releasing processor

to make its shared writes visible to all other processors in the system that cache the

data. This reduction in synchronization tra�c can result in a signi�cant decrease

in the total amount of system communication, and a consequent increase in overall

performance.

1.4 Thesis

This dissertation centers around the following three claims:

Claim 1.1 DSM systems based on LRC require less communication than

systems based on comparable eager protocols.

Earlier work has shown that eager release consistent (ERC) systems outperform con-

ventional DSM systems and can approach explicit message passing in communication

requirements [Car93]. We therefore use ERC protocols as the yardstick with which

to gauge the success of the LRC protocols.

LRC protocols piggyback consistency information on top of synchronization mes-

sages, and only move data when needed. Eager protocols attempt to hide communi-

cation latency by moving data ahead of any need. Our work shows that for a broad

class of systems, the extra communication needed to move data eagerly overshadows

any gains made in hiding latency.

Claim 1.2 DSM systems based on LRC can achieve better performance

on a broader range of applications than systems based on eager protocols.

Many previous systems either restricted their focus to coarse-grained programs [LH89,

FP89], required user annotations [ZSB94, Lee94], or substantially changed the pro-

gramming model [BT88, DCM+90]. Each of these choices has merit, but none of them

is ideal from the standpoint of transparently handling a broad range of programs.
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LRC protocols can e�ciently handle complicated sharing patterns and data lay-

outs without user annotations or changes in the programming model because they

reduce the communication impact of synchronization operations. Hence, LRC allows

a broader range of existing programs to be run e�ciently.

Claim 1.3 DSM systems can often obtain performance competitivewith

hardware shared memory systems.

Claim 1.3 has been made before, but this work supersedes previous work in that

(i) we show that the lazy protocols usually perform substantially better than the

eager protocol [DKCZ93, Car93] that represents the previous state of the art, and (ii)

we back up our contention by presenting a detailed performance comparison of our

system with a hardware shared memory system that is based on the same processors

and caches, as well as extensive simulations.

1.5 Contributions

The primary contributions of this dissertation are the design, implementation, and

evaluation of the LRC protocols, and the consequent validation of the claims made

in Section 1.4.

Claim 1.1 says LRC systems require less communication than ERC systems. In

order to validate this contention, we extensively simulated several variants of each type

of system, and then built TreadMarks and analyzed its performance. TreadMarks

is an LRC-based DSM system that runs on standard workstations and operating

systems.

We also built eager versions of TreadMarks, and analyzed di�erences in perfor-

mance and communication behavior between the variants. Our results show that

there is little di�erence between lazy and eager systems for coarse-grained programs,

but the di�erence grows substantially as the programs become more �ne-grained, ei-

ther in synchronization or in data sharing. Seven of the eight applications in our suite

performed better on the LRC system than on the eager, and four of those programs

performed at least 18% better. Although there are certainly classes of programs for

which eager protocols would require less communication than LRC protocols, none of

our programs displayed this behavior.

Claim 1.2 contends that LRC protocols can e�ciently execute a broader range

of programs than eager systems. Our application suite includes a wide variety of
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programs drawn from several di�erent sources. The programs range from �ne-grained

lock-based programs to coarse-grained programs that use only barriers. The results of

Chapter 3 show that, with one exception, the LRC protocols consistently outperform

the eager protocols over all combinations of sharing and synchronization patterns.

Finally, Claim 1.3 makes the controversial contention that DSM systems can per-

form comparably to hardware-based systems. Our defense of this claim rests on two

studies.

The �rst is a comparison of the performance of TreadMarks to that of a SGI shared

memory machine that uses the same processors, primary caches, and compiler as the

machines running TreadMarks. The primary di�erence between the two systems is

the way the shared memory abstraction was implemented. Our results show that

TreadMarks performs better than the SGI for one program, and nearly as well for

several others. However, the SGI performs substantially better for the most �ne-

grained programs.

The second experiment was a simulation study driven by numbers from the im-

plementations. We were able to con�rm our conclusions from the performance study

and pinpoint where such factors as network bandwidth become a limiting factor in

achieving good performance for software systems.

Additionally, we investigated hybrid systems that used hardware shared memory

in small-scale clusters, and software DSM in between clusters. Our results show that

software system performance drops o� rapidly as system size increases. However,

hybrid systems can run coarse and medium-grained programs nearly as fast as hard-

ware for up to 64 processes. The �ne-grained programs performed little better on

the hybrid system than on the software system, primarily because synchronization

accesses usually require network communication in either case.
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Chapter 2

Lazy Release Consistency

We describe the LRC memory model and present a qualitative argument arguing

that protocols implementing LRC require less communication, and hence achieve

better performance, than protocols implementing other memory models. We then

present the design and implementation of three software DSM protocols: lazy invali-

date (LI), lazy hybrid (LH), and eager invalidate (EI). LI and LH are new protocols

that implement LRC. EI is a straightforward, invalidate-based implementation of

eager release consistency (See Section 2.3.3). EI is used as the basis for our com-

parisons in Chapter 3 because studies [CBZ91, Car93] have shown that eager up-

date protocols uniformly perform better than conventional protocols, and our own

work [KCZ92, DKCZ93] has shown that eager invalidate protocols outperform eager

update protocols.

Section 2.1 describes the user interface of TreadMarks, the DSM system in which

all three protocols are implemented. Section 2.3 describes the design and implementa-

tion of the three protocols. Section 2.4 presents a proof that LRC is indistinguishable

from conventional memorymodels under most conditions, and Section 2.5 summarizes

the chapter.

2.1 Application Program Interface (API)

TreadMarks is entirely implemented as a C library, using an interface similar to the

parmacsmacros from Argonne National Laboratory [Lea87] for process and synchro-

nization support. While the parmacs macros are implemented using m4 macros, our

DSM library is implemented as a set of procedure calls. Nonetheless, properly syn-

chronized programs using the parmacsmacros can be ported to our system with only

minor changes in naming and initialization.

TreadMarks programs follow a conventional shared memory style, using processes

to express parallelism, and locks and barriers to synchronize. Typically, the manager
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process initializes the DSM system, allocates and initializes shared memory, and then

starts a single remote process on each remote processor via Tmk startup.

The manager process passes the address of the shared region to other processes

through a Tmk distribute call. After initialization is complete, the parent and chil-

dren each perform a portion of the work, communicating only through synchronization

operations (Tmk lock acquire and Tmk lock release, Tmk barrier).

The Figure 2.1 shows a complete, runnable program that �lls an array in parallel.

2.2 Lazy Release Consistency

2.2.1 Motivation and Background

Most previous DSM systems supported the canonical consistency model, sequential

consistency (SC) [Lam79]. However, many studies have shown that sequential con-

sistency poses serious problems for e�cient distributed implementations of shared

memory, primarily because sequential consistency imposes such strict requirements

on system-wide ordering of accesses to shared memory [Adv93]. Sequential consis-

tency is de�ned as follows:

De�nition 2.1 Sequential Consistency

A system is sequentially consistent if the result of any execution is the

same as if the operations of all the processors were executed in some

sequential order, and the operations of each individual processor appear

in this sequence in the order speci�ed by its program.

This de�nition can be paraphrased as requiring all shared accesses to be consistent

with some total ordering, such that this total ordering does not violate program order.

SC does not require an implementation to actually establish a total ordering on all

accesses, but it does require all reads to return values that are consistent with such

an ordering. For instance, Figure 2.2 shows an execution that violates SC, assuming

each operation occurs atomically and program order is respected. P1 and P2 disagree

on the ordering of the writes. P1 can only conclude that w1 � r1 � w2 � r2, while P2

concludes w2 � r2 � w1 � r1. Figure 2.3, on the other hand, is a valid sequentially

consistent result because both processes can agree on an ordering that is consistent

with the returned values.
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/*

* File app.c

*/

#include "Tmk.h"

extern char *optarg;

int arrayDim = 100;

int *array;

void main(int argc, char **argv)

{

int c, start, end, i;

while ((c = getopt(argc, argv, "d:")) != -1)

switch (c) {

case 'd':

arrayDim = atoi(optarg);

break;

}

Tmk_startup(argc, argv);

if (Tmk_proc_id == 0) {

array = (int *) Tmk_malloc(arrayDim * sizeof(int));

Tmk_distribute(&array, sizeof(array)); /* Send 4-byte ptr value */

}

Tmk_barrier(0);

start = Tmk_proc_id * (arrayDim / Tmk_nprocs);

end = (Tmk_proc_id + 1) * (arrayDim / Tmk_nprocs);

if (end > arrayDim) end = arrayDim;

for (i = start; i < end; i++)

array[i] = i;

Tmk_barrier(0);

Tmk_exit(0);

}

Figure 2.1 Simple DSM program
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P1 P2

w1(x)2 w2(y)2

r1(y)0 r2(x)0

Figure 2.2 Not SC (x; y initially zero)

P1 P2

w1(x)2 w2(y)2

r1(y)0 r2(x)2

Figure 2.3 SC (x; y initially zero)

While useful as a description of a base memory model, sequential consistency is

no longer commonly used in new parallel machines. Many hardware optimizations

that are used to hide memory access latency violate SC. For instance, the example in

Figure 2.2 could be produced by a machine that has write bu�ers, and allows reads

to bypass writes in the bu�ers.

Supporting SC in the presence of non-atomic memory transactions is even more

di�cult. An update in a distributed system can be logically decomposed into a series

of sub-operations [Col91], each of which applies to a single process. If the relative

orderings of sub-operations of competing memory operations do not agree, then SC

is violated. This problem is especially severe in systems in which sub-operations

take di�ering amounts of time to complete, such as ring architectures that support

concurrent access [WHL92], or NUMA machines [BSF+91, SJG92, BFS89, Cox92,

CF89, LE91, LEK91] .

2.2.2 Release Consistency

Release consistency (RC) [GLL+90], hereafter referred to as eager release consistency,

is a relaxed memory consistency model that permits a process to delay making its

changes to shared data visible to other processes until certain synchronization accesses

occur. At an intuitive level, RC allows views of shared memory by di�erent processes

to become inconsistent until subsequent synchronization events.

A useful memorymodel must e�ectively address ease of use as well as performance.

Relaxed consistency models are attractive because they allow better performance than
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previous models. However, if the resulting programming model is non-intuitive, the

lack of programming e�ectiveness o�sets any gains in performance.

Eager release consistency addresses the performance issue by allowing write ac-

cesses to be pipelined or batched, and addresses the programming model issue by

guaranteeing results equivalent to an SC system for properly-labeled [GLL+90] pro-

grams. Informally, a program is properly-labeled if the program contains enough

synchronization to avoid data races. This concept is similar to the notion of data-

race-free, which will be discussed in Section 2.2.4.

Figure 2.4 shows how RC categorizes shared memory accesses. In order to explain

this categorization, we �rst explain the notion of competing accesses. Two shared

accesses by di�erent processes compete if they apply to the same location and at

least one is a write. Sync accesses are competing accesses used to enforce ordering

or atomicity among multiple processes. Nsync accesses are competing accesses that

do not enforce orderings, such as competing accesses to neighbor data in chaotic

relaxation algorithms. Sync accesses are further divided into acquires and releases,

acquires being used to gain access to shared data, and releases being used to

grant such accesses. Ordinary accesses are those that do not compete in executions

of properly labeled programs.

De�nition 2.2 Conditions for Eager Release Consistency

(A) Before an ordinary read or write access is allowed to perform with

respect to any other process, all previous acquire accesses must be per-

formed, and

(B) before a release access is allowed to perform with respect to any

shared

special ordinary

sync nsync

acquire release

Figure 2.4 Categorization of Writable Accesses
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other process, all previous ordinary read and store accesses must be per-

formed, and

(C) sync accesses are sequentially consistent with respect to one another.

Informally, a shared access is performed at a process when its result is visible at the

process. Acquires and releasesmay be thought of as conventional synchronization

operations on a lock, or P 0s and V 0s on binary semaphores, but other synchronization

mechanisms can be expressed as well. For instance, the arrival of a worker process at

a barrier can be modeled as a release by the worker followed by an acquire by the

manager, and departure of a worker from a barrier can be modeled as a release by the

manager followed by an acquire by the worker. Essentially, RC requires ordinary

shared memory updates by a process p to become visible at other processes only when

a subsequent release by p becomes visible at another process, q.

2.2.3 Lazy Release Consistency

While eager release consistency allows quite a bit of latitude in deciding when to

perform ordinary shared accesses, it still requires accesses to be performed globally

before a local release can complete. Lazy release consistency is a re�nement of

eager release consistency that allows synchronization transfers to take place without

performing any ordinary shared accesses globally. Instead, the shared accesses only

have to be performed at other processes as they synchronize with the performing

process.

De�nition 2.3 Conditions for Lazy Release Consistency

(A) Before an ordinary read or write access is allowed to perform with

respect to another process, all previous acquire accesses must be per-

formed with respect to that other process, and

(B) before a release access is allowed to perform with respect to any

other process, all previous ordinary read and store accesses must be per-

formed with respect to that other process, and

(C) sync are sequentially consistent with respect to one another.

De�nition 2.2 requires ordinary accesses to be performed globally at the next release,

whereas De�nition 2.3 requires only that ordinary accesses be performed with respect

to other processes as subsequent releases become visible to them.
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Figure 2.5 shows three processes exchanging synchronization in an eager release

consistent DSM using an invalidate protocol. Each process caches pages x and y.

Process P1 modi�es page x and then releases a synchronization variable. At this

point, De�nition 2.2 requires that all previous ordinary accesses, the write to page

x in this case, be performed everywhere in the system. For an invalidate protocol,

\performing" a write means invalidating other copies, so invalidate messages are sent

to all other processes that cache x. When P2 likewise modi�es page y and performs a

release, invalidate messages must again be sent to all other processes that cache the

a�ected page.

Unnecessary communication takes place at two levels in this example. First, all

three invalidation messages are useless in the sense that the targets of the invalida-

tions never access the invalidated data, and hence would not notice if their copies

became inconsistent. Second, the invalidation of x to P2 travels the same route as a

subsequent lock transfer, so a pair of messages could be eliminated by piggybacking

the invalidation to the synchronization transfer.

Figure 2.6 shows the same example under an LRC invalidate protocol. Consistency

management is moved from releases to subsequent acquires, and invalidates are sent

only to the acquiring process. Even more importantly, LRC is able to combine the

invalidation and the synchronization transfer into a single message pair because they

occur at the same time.

This simple example shows some of LRC's considerable potential to reduce com-

munication requirements over that needed by ERC. Eager systems 
ush modi�cations

globally prior to releases, but lazy systems only pass consistency information between

P  [x,y]1

P  [x,y]2

P  [x,y]3

Acq(L)  w(x)

Acq(L)  w(y)

Acq(L)

inv(x)

Rel(L)

inv(y)

inv(y)

Rel(L)

Figure 2.5 Eager Release Consistency
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P  [x,y]1

P  [x,y]2

P  [x,y]3

Acq(L)  w(x)  Rel(L)

Acq(L)  w(y)  Rel(L)

inv(x)

Acq(L)

inv(x,y)

Figure 2.6 Lazy Release Consistency

processes that synchronize with each other. LRC systems therefore need to maintain

transitive information. In Figure 2.6, the lock grant from P2 to P3 not only carries

an invalidation for y, which was modi�ed by P2, but also an invalidation for x, which

was previously modi�ed by P1.

2.2.4 Happened-Before-1

In order to support the memorymodel described in De�nition 2.3, we use a happened-

before-1 [AH93] partial ordering over all shared accesses:

De�nition 2.4 Shared memory accesses are partially ordered by happened-

before-1 , denoted
hb1
�!, de�ned as follows:

� If a1 and a2 are accesses on the same process, and a1 occurs before

a2 in program order, then a1
hb1
�! a2.

� If a1 is a release on process p1, and a2 is an acquire on the same

memory location on process p2, and a2 returns the value written by

a1, then a1
hb1
�! a2.

� If a1
hb1
�! a2 and a2

hb1
�! a3, then a1

hb1
�! a3.

The happened-before-1 relation is the transitive closure of program order and syn-

chronization order (i.e. an acquire is ordered after the last previous release of the

same synchronization variable).

LRC requires that before a process may continue past an acquire, all shared ac-

cesses that precede the acquire according to
hb1
�! must be performed at the acquiring
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process, where \performing" an access at process p means either updating or invali-

dating p's copy of the indicated data item.

LRC protocols guarantee to support the same programming model as sequentially

consistent protocols if programs are data-race-free. The following de�nitions are from

Adve [AH93]:

De�nition 2.5 A data race in an execution is a pair of con
icting op-

erations, at least one of which is to data, that is not ordered by the

happened-before-1 relation de�ned for the execution. An execution is

data-race-free if and only if it does not have any data races. A program is

data-race-free if and only if all its sequentially consistent executions are

data-race-free.

Data-race-free programs produce the same results on LRC systems as they do on

sequentially consistent systems. This requirement is usually not as arduous as it may

seem, because many (if not most) parallel programs are data-race-free already. Some

classes of algorithms, such as chaotic algorithms, can tolerate temporary inconsisten-

cies in their shared data. Otherwise, a data race usually represents a bug.

While satisfying De�nition 2.4 is by itself enough to satisfy LRC, maintaining and

using such a detailed ordering on individual shared accesses would be prohibitively

expensive. Instead, the lazy protocols generalize the ordering to apply to process

intervals. Intervals are segments of time in the execution of a single process. New

intervals begin each time a synchronization access is executed by the process. We

de�ne the happened-before-1 partial order between intervals in the obvious way: an

interval i1 precedes an interval i2 according to
hb1
�!, if all accesses in i1 precede all

accesses in i2 according to
hb1
�!. An interval is said to be performed at a process if all

the interval's accesses have been performed at that process.

The lazy protocols track which intervals have been performed at a process by

maintaining a per process vector timestamp [Mat89]. A vector timestamp consists

of a set of interval indices, one per process in the system. Let vvip be the vector

timestamp of process p at interval i. The entry for process q 6= p, denoted vvip[q],

speci�es the most recent interval of process q that has been performed at process p.

Entry vvip[p] is equal to i.

Interval �x
q , or interval x of processor q, is termed covered by vvip if vv

i
p[q] is greater

than or equal to x. We also use the notation � to represent covered .
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The lazy protocols pass consistency information in the form of write notices that

are attached to intervals. A write notice is an indication that a given page has been

modi�ed. Each interval contains a write notice for every page that was modi�ed

during the segment of time corresponding to the interval. Write notices are used in

the send set, which is the set of all write notices created during intervals that have

been performed at the releasing process, but not at the acquiring process. If vvir

is the vector timestamp of a release process and vvja is the vector timestamp of the

corresponding acquire process, then the send set consists of all intervals �x
p , such

that �x
p� vv

i
r and not �x

p� vv
j
a. In order to create the send set, vector timestamps are

included on synchronization requests.

2.3 Protocols

A TreadMarks program consists of one or more processes communicating through

sockets. In order to minimize the demands on the underlying operating system, we

do not expect lightweight process support and therefore run only a single process on

each machine.

At system startup, library routines create the requested number of processes on

other machines, set up fully connected sockets between the processes, and register a

SIGIO handler to handle incoming requests asynchronously. Each process allocates

a large block of local memory to use as the shared mapping of the virtually shared

memory. The block is located at the same address on each machine. For each page

of this memory, a \manager" processor is designated.

A SEGV handler is registered with the operating system in order to detect and

intercept write accesses to shared pages. The SEGV handler is called when a process

tries to access data on an unmapped or protected page. The handler retrieves a valid

copy of the page from the manager, adds read permission to the page, and allows

the access to proceed. The SEGV handler is also called when a write access to a valid

page is �rst performed. The handler creates a twin, or copy, of the page, and stores

it in system space. A comparison of the twin and a later version of the page is used

to create a di� , which is a run-length encoding of the di�erences between the two

versions. The di� can then be used to update other processes' copies of the page.

With the exception of the �rst time a processor accesses a page, a processor's version

of a given page is updated exclusively by applying di�s; a new complete copy of the

page is never needed.
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The only strictly necessary service that a DSM needs to provide is a coherent

view of shared memory. However, synchronizing through software-supported shared

memory can be unreasonably slow. We therefore separate synchronization mecha-

nisms from ordinary shared memory mechanisms. The advantages gained thereby

are twofold: (i) better performance for synchronization, and (ii) the opportunity to

tune shared memory consistency mechanisms to application-level synchronization (i.e.

release consistency).

2.3.1 Lazy Invalidate

Pages and Data

Shared pages each have a statically assigned manager. As indicated in Figure 2.7,

they have four possible states: UNMAPPED, INVALID, READ ONLY, and READ WRITE. At

startup, all shared pages of a given processor that are not owned by that processor

are in an UNMAPPED state.

There are three types of page faults that can occur: a cold miss, which occurs the

�rst time a page is accessed by a processor that is not the manager, a coherence miss,

which occurs when a page is accessed after it has been invalidated due to coherence

actions, and a protection fault , which occurs when a write access occurs to a valid but

READ ONLY page. Pseudo-code for the SEGV handler, which handles all three types of

faults, is shown in Figure 2.8.

On a cold miss, a copy of the page is retrieved from the manager and put into a

READ ONLY state. It does not matter whether the manager or other processors have

modi�ed the page or not.

In response to a protection fault, the SEGV handler changes the virtual memory

page's state to READ WRITE, creates a twin for the page, and saves the twin in system

space (Figure 2.9). An interval structure containing a write-notice for the page is

created at the next release. A write-notice is an indication that a page has been

modi�ed. A di� of the page is then created by comparing the current version of the

page with the twin. The comparison resolves di�erences down to the granularity of

a four byte word. After the di� has been created, the twin is discarded and the page

is placed back into the READ ONLY state.

Coherence misses occur when incoming write notices invalidate locally mapped

pages. Invalidation consists of changing a page's state from READ ONLY or READ WRITE

to INVALID, and removing all access rights from the page. INVALID pages di�er from
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write
fault

write
notice

write
notice

read
fault

write
fault

read
fault

UNMAPPED

READ−ONLY READ−WRITE

INVALID

write
fault

diff
create

Figure 2.7 Page State Transitions

UNMAPPED pages in that it is only necessary to apply a sequence of di�s to INVALID

page to re-validate them. Valid pages are never made UNMAPPED.

A coherence miss indicates that at least one other processor has made changes

to the page that should be re
ected in the local copy before it is accessed again.

In Figure 2.10, process P3 takes a coherence miss on page p, which contains data

x, y, and z. Unlike conventional protocols [LH89], lazy protocols allow processes to

determine the location of needed data entirely on the basis of local information. P3 is

therefore able to determine that there have been two previous modi�cations that need

to be applied locally before accessing z. Moreover, P1's modi�cation of x precedes

P2's modi�cation of y via
hb1
�!, so P2 must have applied P1's modi�cation of x before it

accessed the page to modify y. Since di�s are only discarded during garbage collection
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if ( p READ ONLY ) then

Allocate twin

page p  READ WRITE

else

if ( cold miss ) then

get copy from manager

if ( write notices ) then

Retrieve di�s

if ( write miss ) then

Allocate twin

Change protection to READ WRITE

else

Change protection to READ ONLY

end

Figure 2.8 SEGV handler for page p

(see Section 2.3.1), this information enables P3 to request both di�s from P2 rather

than requesting the di�s from di�erent sites. More generally, if processor q modi�ed

page p at interval �x
q , then q is guaranteed to have any di�s of page p created in an

interval �y
s , such that �

y
s

hb1
�! �x

q . Therefore even if di�s from multiple writers need to

be retrieved, it is usually only necessary to communicate with one other processor.

After the di�s have been retrieved, they are applied to the local copy of the page

in an order consistent with
hb1
�! and the process is allowed to proceed.

Locks

\Lock" and \unlock" synchronization primitives are mapped onto the acquire and

release semantic notions in a straightforward manner. Each lock has a current owner,

which is the last process that acquired the lock, and a manager, which tracks the

current owner. Figure 2.11 shows pseudo-code for lock acquisitions. In this �gure,

the notation wnp denotes a write notice for page p.

Locks are acquired by capturing per lock tokens. Each process also maintains per

lock �elds local and held that indicate whether the token is currently owned by

the process, and if so whether the lock is currently being held. If the token is local,

acquiring a lock is a matter of setting a 
ag.
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Write(x)

x:

Create twin

x:

Twin:

x:

Release:

Diff

Encode
Changes

If replicated,
write protect

Make x
writable

Diff

Figure 2.9 Di� Creation

P  [p]

P  [p]

P  [p]

1

2

3

Acq  w(x)  Rel

Acq  w(y)  Rel

inv(x)

inv(x,y) mod(y)

r(z)Acq

mod(x)

Figure 2.10 Combining di� requests (x,y,z all on page p)
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if ( local ) then

held  TRUE

return

end

Send request, with V Va, to manager

Create new interval

Wait for grant

foreach interval �x
q � send set

foreach wnp � �
x
q

if page p READ ONLY then

Change page p protection to INVALID

elseif page p READ WRITE

remove from dirty list

create write notice, if necessary

create di� for page

de-allocate twin

Change page p protection to INVALID

end

end

end

held  local  TRUE

Figure 2.11 Lock Acquisition

If the token is non-local, a request is sent to the lock's manager, which forwards the

request to the last requester of the lock. Each node maintains a next �eld per lock,

and in combination, the next �elds of the nodes waiting for a given lock implement

a distributed FIFO queue of waiting processors. The acquirer creates a new interval

after sending the request in order to avoid interference between write notices returning

from the releaser and local pages that are in a modi�ed state. Interval creation entails

adding write notices for each dirty page to a newly created interval structure. In the

general case, remote lock acquisitions take three messages, but only two are needed

if the manager owns the token.

An alternative to this static ownership scheme is to use an adaptive scheme that

relies on guesses of the token's location, and follows successive guesses to the current

owner of the token [Car93, LH89]. Since local guesses are updated to point to the

requester as the request is forwarded along, every node in the chain of guesses ends
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up knowing which process currently owns the token, and subsequent request chains

are likely to be short. However, our experience is that this type of scheme still uses

more messages than the simpler manager scheme.

Figure 2.12 shows pseudo-code for the lock request handler. The request is imme-

diately granted if the lock is not being held and the lock's token is local to the han-

dler's processor. Granting a lock involves creating a new local interval, determining

the send set, and sending the send set along with the lock grant to the requester.

The request is forwarded to the last processor that had previously requested the lock

if it is not local, or is already spoken for.

Figure 2.13 shows the pseudo-code for a lock release. If the lock has been requested

by another processor, a new interval is created, and the send set and lock grant are

sent to the requester.

if ( local ) then

if ( held ) then

save vva
else

Create new interval

send set  all intervals �x
q � vvr and not �x

q � vva
Send send set and lock grant to requester

end

else

Forward request to last requester

end

Figure 2.12 Lock Request Handler

Create new interval

held  FALSE

if ( there has been a request ) then

send set  all intervals �x
q � vvr and not �x

q � vva
Send send set and lock grant to requester

local  FALSE

end

Figure 2.13 Lock Release
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Barriers

Barriers are implemented with a centralized barrier manager that collects arrival

messages and distributes departure messages. Managers are statically assigned to

barriers in round robin order.

In terms of consistency information, a worker's barrier arrival is modeled as a

release by the worker followed by an acquire by the manager, while a departure is

modeled as a release by the manager followed by an acquire by each of the workers.

Therefore, there is a synchronization transfer from each arriving worker process to

the barrier manager, and then from the manager to each of the departing workers

when they are released.

Like lock releases, arrival messages include consistency information in the form

of a send set. Unlike lock releases, arrival messages are not preceded by a request

from the manager containing the manager's vector timestamp. Since the worker's

knowledge of the manager's vector timestamp may be out of date, the send set sent

on the arrival message may be larger than necessary. The manager simply discards

any incoming write notices that it has already seen.

Release messages also contain send sets, but these will be no larger than neces-

sary because the send sets on arrival messages implicitly include the workers' vector

timestamps.

Multiple Writers

Figure 2.14 shows an example where two processors, P1 and P3, modify logically

distinct pieces of data, x, and y. Yet because the system tracks accesses at the level

of virtual memory pages and these pieces of data are co-located on the same page,

X Y

P1 P3

page

Figure 2.14 False Sharing



25

the system must assume that the accesses are competing. In a conventional DSM

that uses a single-writer, multiple-reader protocol, the page may "ping-pong" across

the network because both processors will simultaneously try to gain sole ownership

of the contested page.

False sharing does not cause ping-ponging under any of the protocols discussed

in this chapter because they all allow multiple concurrent writers. Figure 2.15 shows

how this example might be handled under a lazy protocol. Processes P1 and P3 are

again modifying logically distinct pieces of data on the same page. Although P1 and

P3 never communicate directly, P2 can construct a copy of the page that includes all

of the changes by applying the di�s that summarize the two modi�cations. There is

no communication between the two, and yet summarizing the modi�cation as di�s

allows P2 to update its copy of the page to re
ect modi�cations made in both of the

other processes merely by applying the di�s.

We can infer from the lack of synchronization between P1 and P3 that the sharing

in this example is false sharing, because otherwise such unsynchronized accesses would

constitute a data-race, and all programs that run on our system are required to be

data-race-free.

Since all programs are known a priori to be data-race-free, modi�cations made

to a page that is falsely shared are not ordered by
hb1
�!. The modi�cations must

w(x)

r(x,y)

w(y)

P1

P
2

P3

Rel(L  )1

Rel(L  )2

Acq(L  )1

Acq(L  )2

Figure 2.15 Multiple Writers: X,Y on same page
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be non-overlapping because overlapping concurrent modi�cations would constitute a

data race. Since the di�s are known to be non-overlapping, they can be applied to

P2's copy of the page in either order without changing the �nal result.

Lazy Di� Creation

We have so far implied that di�s for each dirty page are immediately created upon a

lock release or barrier arrival. In fact, di�s can be created far less frequently without

violating correctness.

We reduce the number of di�s created through the use of lazy di�ng. Lazy di�ng

means that only a write notice is created at the time of the release; di� creation is

deferred until a subsequent request for the di� or until a write notice for the same

page is received from another process. Until a di� is actually created, additional

modi�cations to the page continue to be accumulated, and the eventual di� includes

all of the modi�cations, even those that occurred after the �rst release operation.

The gain in performance can be considerable, because the eventual di� may include

modi�cations that would have been split over several separate di�s in a system that

did not support lazy di�ng.

Reducing the number of di�s created saves considerable overhead, as di� creation

in our initial environment averages about 800 �secs a piece. A secondary bene�t is

that lock acquisitions are faster because grant messages are not delayed until di�s

are created. Finally, reducing the number of di�s can reduce the overall amount of

data sent over the network, because programs with signi�cant temporal locality often

overwrite the same locations many times, and a lazy di� will only include the last

values written to each location.

An obvious area for improvement would seem to be in combining multiple di�s

of a single page into a single di� over and above the lazy di� mechanism. This

would save bookkeeping, di� storage overhead, and possibly network communication.

Unfortunately, di� combining is possible only in very speci�c circumstances.

A simple example of the problem with di� combining is illustrated by Figure 2.16.

P1 combines di�s describing the results of operations w(x)1, w(y)1, and w(x)2 into

a single di�. In order to satisfy its read of x, P2 must apply the combined di�. The

combined di�, however, not only updates P2's view of x, but it overwrites y as well.

Therefore, P2's subsequent read of y will return 1, instead of the correct value of 2.
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w(y)1 w(y)2

w(x)1 w(x)2
P1

P2
rel

acq rel

acq r(x)2 r(y)1

Figure 2.16 Bad di� combine: x; y same page

In general, di�s can only be combined in the absence of learning of new, possibly

interleaving, di�s to the same page by other processors. One possible mechanism

would be to allow a process, P1, to combine a run of di�s di� i
1;x through di�

j
1;x,

where di� i
1;x is the ith di� of page x created by processor P1, only if there is no

di� k
2;x where di� k

2;x

hb1
�! di�

j
2;x and not di� k

2;x

hb1
�! di� i

2;x. Such a mechanism can

be implemented by retaining the twin even after a di� has been created, and using

the twin to create subsequent di�s until that processor receives another write notice

for the same page from another processor . Drawbacks of this technique include the

overhead of retaining twins, and the increasing size of the combined di�s, and slightly

complicated bookkeeping in the routines that manage di�s.

A second possibility is to discard di�s if they are completely over-written by later

di�s to the same page.

Our implementation currently uses neither of the above optimizations because our

results show that in our environment, per-message overhead is high enough that any

possible savings from di� combining are unlikely to greatly a�ect overall performance.

Garbage Collection

In an eager system, garbage collection is unnecessary because di�s are immediately


ushed to every other copy in the system, and therefore no longer needed. In a

lazy system, di�s need to be retained until it is clear that the di�s will no longer be

requested, i.e. the di�s have already been sent to every processor, or all copies of the

page have the di� applied.

In TreadMarks, any process may request a garbage collection from the manager,

which initiates the algorithm at the next global barrier, piggybacking a repo start

message on the barrier releases. At receipt of a repo startmessage, worker processes
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validate every page that is not in an UNMAPPED state. Once all pages are either

READ ONLY or UNMAPPED, a repo completemessage is sent back to the manager. After

repo completemessages have been collected from all workers, the manager sends out

repo release messages and the system continues on as before. Section 3.3.2 shows

that even this brute force approach costs little in terms of processor cycles.

2.3.2 Lazy Hybrid

The aim of the lazy hybrid protocol (LH) is to reduce the number of access misses

by speculatively moving data before it is requested, rather than only in response to

access misses. The central intuition is that processes synchronize in order to share

data, and the 
ow of data is likely to mirror the 
ow of synchronization.

The LH di�ers from LI in two respects: di�s may be speculatively appended

to lock grant messages, and di�s are 
ushed prior to barrier arrivals. This section

describes only those aspects of LH that di�er from LI.

Locks

The di�s appended to grant messages are chosen by a heuristic that uses an ap-

proximate copyset to track access to shared pages by other processes. Copysets are

initialized to the page's manager, and other processors are added when either (i)

another processor requests either a di� of the page or the page itself from the local

processor, or (ii) a write-notice describing a modi�cation to that page by the remote

processor is seen by the local processor. Processors are never removed from copysets.

The assumption behind the heuristic is that programs usually have signi�cant

temporal locality, and therefore any page accessed by a process in the past is likely to

be accessed in the future. The heuristic therefore selects di�s of pages that the copyset

indicates have been accessed by the lock destination in the past. The search for di�s is

limited to di�s corresponding to write notices in the send set. Any di�s that do not

�t into the lock grant message are sent in additional unacknowledged messages. The

additional messages can be unacknowledged because they do not contain consistency

information, and therefore do not violate correctness if lost.

Barriers

Prior to barrier arrivals, processes under the LH protocol 
ush likely di�s to all other

processes in the system. Figure 2.17 shows pseudo-code for the 
ush procedure.
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The 
ush procedure creates a send set analogous to the lock send set for each of

the other processes in the system. For each of the processes, the 
ush sends di�s

corresponding to all write notices in the send set that were created by the 
ushing

process. The 
ush operation may take multiple messages, and the messages are not

acknowledged because their loss a�ects only performance, not correctness.

Lazy Di�ng

The hybrid protocol also uses the lazy di�ng mechanism, but to less bene�t. Because

of lazy di�ng, di�s describing recent modi�cations are unlikely to have been created

yet. In order to have the hybrid make a signi�cant impact on performance, LH

overrides the lazy di�ng mechanism and creates any di�s selected by the heuristics.

This can result in many more di�s being created under LH than LI, as well as larger

lock acquisition latencies.

2.3.3 Eager Invalidate

We base our eager RC algorithms on Munin's multiple-writer protocol [CBZ91]. RC

requires all prior ordinary accesses to be globally performed before a subsequent

release is performed at any other process. The EI protocol calls a 
ush operation prior

to any release. The flush operation sends invalidates to all other processes in the

system that cache the a�ected pages. Since the local process may not have complete

information on page replication, multiple rounds may be necessary to ensure that the

foreach p 2 (system processes)

di�s  ;

foreach wn 2 ( send set to p)

if (creator(wn) = ME) then

di�s  di�s + di�(wn)

end

end

Send di�s unreliably to p

end

Figure 2.17 Hybrid Barrier Flush
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invalidates are performed on all copies of the page. Once the invalidate messages have

been received and acknowledged, the release operation is allowed to proceed.

Locks

Under EI, synchronization messages carry no consistency information, and there is

no eager equivalent of the send set. Since the consistency action takes place at the

release during the 
ush operation, an acquire consists solely of locating the process

that executed the last prior release and transferring the synchronization variable.

Lock ownership is determined as under the lazy protocols, taking either two or three

messages to return the lock grant.

Barriers

Processes arriving at a barrier call the 
ush operation prior to sending arrival messages

to the manager. Barrier messages therefore contain no consistency information.

Access Misses

The EI protocol handles page ownership analogously to lock ownership. Each page has

a statically assigned manager, but ownership of the page dynamically shifts according

to access patterns. Page ownership di�ers from lock ownership in that the owner of

a page does not have an exclusive copy of the page. Instead, the \owner" of a page

is de�ned as the most recent process to request a copy from the manager.

Figure 2.18 shows a state transition diagram for shared pages. Pages are in one of

three states: READ ONLY, READ WRITE or INVALID. Initially, the page is READ ONLY at

the manager and INVALID everywhere else. The owner is initially set to the manager.

Processes taking an access miss request a copy of the page from the page's manager.

If the manager's copy is not INVALID, the copy is returned directly to the missing

process. Otherwise, the manager forwards the request to the current owner, which

responds with a copy of the page. In either case, the process that incurred the access

miss is designated the new owner, and the state of the new owner's copy is set to

either READ ONLY or READ WRITE, depending on the type of the access.

When a write is attempted to a READ ONLY page, a copy (twin) of the page is

created and the page's state is set to READ WRITE. A 
ush operation discards all twins,

sets the twinned pages' state back to READ WRITE, and sends invalidation messages

to all other processes that have copies of the a�ected pages. If an invalidate for
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INVALID

write
fault

inval invalread
fault

READ−ONLY READ−WRITE

write
fault

flush
call

Figure 2.18 RC Page State Transitions

a READ WRITE page is received, a di� of the page is created and returned to the

invalidator on the invalidate reply, and the local copy of the page becomes INVALID.

The flush Operation

The flush operation ensures that any prior local modi�cations are performed glob-

ally. The modi�cations are performed by sending invalidations to all other processes

that cache the a�ected pages. Since local information about page caching may be

out of date, each process appends their copyset for the invalidated pages to their

acknowledgment. The returned information is used to direct additional rounds, if

necessary.

If an invalidate is received for a page that is locally in state READ ONLY, the page

state is set to INVALID and read permission is removed. If the page was in state

READ WRITE, a di� is created to describe local modi�cations, and then the page state

and permissions are changed as for READ ONLY. The di� is returned on the acknowl-

edgment message. If there is not su�cient space in the acknowledgment message

to copy the di�, an indication that the di� is available is returned instead. The

invalidating process then explicitly requests the di�(s) with another pair of messages.
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The protocol becomes greatly complicated when multiple processors attempt to

concurrently invalidate the same pages. One of these processes may be unaware of

the other until after flush completes, and either or both of the processes may receive

di�s from other processes. In this case, the protocol resorts to 
ushing all di�s to

all processes in order to insure that at least one process retains a valid copy of the

page, and that di�s are applied to every copy that remains. We observed this global

system update occuring in only one of our programs.

Strictly speaking, this implementation performs ordinary accesses earlier than

necessary, thereby reducing the opportunity for overlap of communication and com-

putation. De�nition 2.2 only requires ordinary accesses to be performed when a

subsequent release operation is performed. By de�nition, however, a release is not

performed until the same lock is acquired by another process. Therefore, the flush

operation is not required to complete until the lock is requested by another process.

However, allowing the 
ush to operate concurrently with the computation would ei-

ther increase lock acquisition latency when flush requires multiple rounds, or incur

additional signal handling overhead. In either case, the protocol is greatly compli-

cated.

2.4 Correctness

This section presents a proof that LI guarantees sequentially consistent executions for

all data-race-free programs, where a sequentially consistent execution is an execution,

or a speci�c run, of a program that could have been produced by an SC system. The

proof for LH is identical.

This proof is based on a result by Adve [Adv93] that any systemmeeting a speci�c

set of su�cient conditions guarantees to produce only sequentially consistency execu-

tions. The rest of this section re-caps some necessary de�nitions and then shows by

inspection that LI meets the required su�cient conditions, and therefore guarantees

SC executions.

DRF1 distinguishes synchronization and non-synchronization operations without

imposing any restrictions on how they are distinguished. Synchronization operations

are either releases or acquires of synchronization variables. Everything else is a data

operation. Intuitively, a program is correct if enough operations are distinguished as

releases or acquires. In this context, \enough" means that the resulting program has

no data races, or is data-race-free (De�nition 2.5).
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De�nition 2.6 and Condition 2.4.1 are from Adve's thesis [Adv93].

De�nition 2.6 A system obeys the data-race-free-1 memory model if

and only if the result of every execution of a data-race-free program on the

hardware can be obtained by an execution of the program on sequentially

consistent hardware.

Adve showed that any DRF1 system guarantees sequentially consistent executions

for all data-race-free programs. Therefore, all that remains is to show that a system

using the LI protocol is indeed a DRF1 system.

Condition 2.4.1 speci�es su�cient conditions for a system to obey the DRF1

memory model.

Condition 2.4.1 Hardware obeys the data-race-free-1 memory model

if for every execution, Edrf , of a program, Prog, on the hardware, there is

an
xo
�! (and a corresponding

hb0
�!�) that satisfy the following conditions:

(i) Data - If X and Y are con
icting operations, at least one of X or Y is

a data operation, and X
hb1
�! Y , then X(i)

xo
�! Y (i) for all i.

(ii) Synchronization - If X and Y are con
icting synchronization opera-

tions, and X
hb0
�! Y , then X(i)

xo
�! Y (i) for all i.

(iii) Control - If Prog is data-race-free, then there exists a sequentially

consistent execution, Esc, with a well-formed
xo
�! and a corresponding

hb0
�! such that (i) an operation is an Edrf i� it is in Esc, (ii) for two con-


icting operations X and Y , such that at least one of them is a data

operation, if X
hb1
�! Y in Esc, then X

hb1
�! Y in Edrf , and (iii) for two

con
icting synchronization operations X and Y , if X
hb0
�! Y in Esc, then

X
hb0
�! Y in Edrf .

The notation X(i) refers to the ith sub-operation of X. A sub-operation is the perfor-

mance of the operation at a speci�c remote site. The notation
xo
�! refers to execution

order.

The \data requirement" speci�es that con
icting updates are done atomically

with respect to one another. This requirement is ful�lled by LI because overlapping

�The ordering
hb0
�! di�ers from

hb1
�! in that

hb0
�! is speci�c to a single execution, while

hb1
�! applies to

all executions of a given program. To avoid confusion,
hb1
�! is used in the rest of the text. See [Adv93]

for the original de�nitions.



34

modi�cations are totally ordered by
hb1
�!, and di�s are always requested and applied

in an order consistent with
hb1
�!.

The \synchronization requirement" speci�es that synchronization operations are

sequentially consistent with one another. This requirement is met by observing that

all LI synchronization operations are SC with respect to one another, because each

operation completes atomically before a synchronization variable can be accessed by

another processy.

The \control requirement" exists to handle cases where reads determine if an

operation will be executed, or which address an operation will access. The control

requirement can only be violated without violating data or synchronization require-

ments if the underlying system reorders operations. Our proposed implementations

of LI do not reorder code.

2.5 Summary

Table 2.1 summarizes the message counts for lock transfers, barrier arrivals, and

access misses for each of the three protocols.

Lock acquires take either two or three messages for all three protocols.

A lock release is an entirely local operation for the lazy protocols, but entails


ushing updates for the eager protocols. As the updates must be 
ushed to all other

processes that cache the modi�ed pages, messages may have to be exchanged with all

other processes.

The EI protocol takes at most three messages to satisfy an access miss: the page

request may need to be forwarded (once) from the owner to a process with a current

copy, and then one message is needed to return the page to the missing process. Under

a lazy protocol, however, multiple di�s may need to be retrieved as well. In Table 2.1,

the concurrent last modi�ers for a page are the processes that created modi�cations

that do not causally (via happened-before-1 ) precede any other known modi�cations

to that page. In other words, they are the last processes to have modi�ed the page. In

the absence of false sharing, this set includes only a single process. This set potentially

includes every other process in the system in the presence of false sharing.

yA barrier can be viewed as a series of n � 1 release-acquire transactions between system processes

and the manager process, followed by n � 1 release acquire transactions from the manager to the

other processes. The ordering of the barrier sub-operations is the order in which barrier arrival

messages are received and the order in which barrier release messages are seen.



35

Access Miss Lock Unlock Barrier

LI 2m 2 or 3 0 2(n-1)

LH 2m 2 or 3 0 2(n-1) + u

EI 2 or 3 2 or 3 2c 2(n-1)

m = # concurrent last modi�ers for the missing page

c = # other cachers of the page

n = # processes in system

p = # pages in shared space

u =
Pn

i=1(# other procs caching pages modi�ed by i)

Table 2.1 Shared Memory Operation Message Costs

Finally, the total base cost of barrier operations for all the protocols is 2(n � 1)

messages, which represents n � 1 arrival messages followed by n � 1 barrier release

messages. Additionally, if pages are concurrently modi�ed by multiple processes, the

LH protocol requires updates to be 
ushed prior to arriving at the barrier. However,

the di�s are not sent reliably, and so the number in the table does not re
ect ac-

knowledgments.

EI's invalidations can also increase lock acquisition latency because releases can

not be performed until invalidations have been sent and acknowledged. Neither of

the lazy protocols require consistency information to be sent to other processes, but

LH often appends updates to lock grant messages, and the extra time required to

generate and process this data can slow down the lock acquisition.

Since the lazy protocols usually exchange data in the form of di�s, the total

amount of data exchanged is usually less than for EI. A potential advantage of EI is

that it creates di�s only in uncommon situations. However, as Chapter 3 will show,

the cost of the di�ng mechanism is usually minor compared to communication costs.

None of the protocols is overly complex to implement. The lazy consistency

management routines are completely implemented in 1200 lines of commented code.

Support for the hybrid protocol requires an additional 288 lines, primarily for the bar-

rier 
ush routines. The eager protocol's invalidate and 
ush routines are implemented

in 800 lines of code.

Table 2.2 summarizes anticipated tradeo�s among LI, LH, and EI.
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Lock
Remote

Prot. Prot.
Prot.

Latency
Access Msgs Data Di�s

Complexity Cost
Faults

EI Low High High High Low Low Low

LI Low Medium Medium Low Medium Medium Low

LH Medium Low Low Medium High Medium Low

Table 2.2 Protocol Tradeo�s

Overall, LI and LH tend to require less communication than EI, especially for pro-

grams that use locks. Their primary advantage is that communication is limited to

the two synchronizing processes during lock transfers. A release in an eager system

may require invalidations to be sent to processes otherwise uninvolved in the syn-

chronization. In combination with false sharing, these invalidations can then cause

additional access faults.

LH should have slightly higher lock acquisition latency due to the overhead of

creating and sending di�s with lock grants. The extra di�s should eliminate some

access misses, and hence reduce the overall number of messages.
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Chapter 3

Performance

This chapter presents an evaluation of the two lazy release consistent protocols:

lazy invalidate (LI) and lazy hybrid (LH). The protocols were implemented in the

TreadMarks distributed shared memory system. We used eight programs in the evalu-

ation: n-body simulation (Barnes), FFT, Integer Sort (IS), Linkage Analysis (ILINK),

Mixed-Integer Programming (MIP), Successive Over-Relaxation (SOR), the Traveling

Salesman Program (TSP), and a molecular dynamics simulation (Water).

Our evaluation of the LRC protocols has three components. The �rst is a compar-

ison of the performance of the lazy protocols with the performance of an eager invali-

date (EI) protocol. We use EI because studies [DKCZ93, KCZ92] have shown that EI

consistently outperforms eager update protocols, and previous studies [CBZ91, Car93]

showed that eager update protocols consistently outperform conventional DSM pro-

tocols. All of the protocols were implemented in the same system, running on the

same hardware, and incur the same costs for communication and virtual memory

primitives. The comparison therefore measures the extent to which LRC improves on

the state of art. Seven of the eight programs perform better with the lazy protocols.

Four of the eight programs, Barnes, IS, MIP, and Water, improve by at least 18%.

TSP performs 12% better, SOR performs 3% better, and FFT actually performs 18%

worse. This comparison shows the broad range of applications and access patterns

for which the lazy protocols are able to improve performance.

We then break the application execution times into four major categories: appli-

cation, Unix primitives, TreadMarks, and idle time. The central goal is to measure

the additional cost of executing the slightly more complicated lazy protocol code, and

to determine whether this additional cost is signi�cant. We found that no application

spent more than 4.3% of its time executing protocol code, and the average over all

applications and all of the protocols was only 1.2%z. By contrast, the applications

spent more than 10% of their time executing Unix primitives, and on the order of

zSplit into lazy and eager overheads!
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20% of their time was idle time, which is usually dominated by the latency of remote

requests. This latter category is therefore tightly tied to the cost of the underly-

ing communication primitives because the primitives usually take much longer than

actually serving a request. Our conclusion, for this environment, is that the cost

of executing protocol code is negligible compared to the cost of network communi-

cation. Moreover, it is the software overhead incurred by the operating system in

sending and receiving messages that dominates communication cost. For our current

system, \wire time" is an insigni�cant contributor to overall performance. Therefore,

the impact the protocols have on the amount of required communication is far more

important than the direct protocol execution cost.

Finally, we used a pro�ling tool, vt [BL92], to rewrite our executables to add in-

strumentation code that estimates execution time in terms of processor cycles. With

the instrumented code and a small library, we were able to use TreadMarks as a

parallel simulator to explore the changing relationships between the consistency pro-

tocols as we varied network and operating system parameters. This simulation is

more accurate than our previous studies because it executes the actual protocol code.

We found that the performance gap between the lazy and eager protocols is highest

in systems that have large communication costs, either because of low bandwidth or

expensive operating system primitives. The lazy protocols outperformed the eager

down to software overheads ten to twenty times less than our current system.

3.1 Experimental Environment

3.1.1 Hardware Platform

Our experimental environment consists of 8 DECstation-5000/240's running Ultrix

V4.3. Each machine has a Fore ATM interface connected to a Fore ATM switch.

The connection between the interface boards and the switch operates at 100-Mbps,

although the e�ective bandwidth is approximately 30 Mbps. The switch has an

aggregate throughput of 1.2-Gbps. The interface board does programmed I/O into

transmit and receive FIFOs, and requires messages to be assembled and disassembled

from ATM cells by software. Interrupts are raised at the end of a message or a

(nearly) full receive FIFO. The machines are also connected by a 10-Mbps Ethernet.

Unless otherwise noted, all performance numbers describe 8-processor executions on

the ATM LAN using the low-level adaptation layer protocol AAL3/4.
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3.1.2 Basic Operation Costs

Table 3.1 shows the cost of sending various sized messages over the AAL3/4 sockets.

Receipt times are comparable. The minimumroundtrip time is 450 �seconds. Sending

each of the two messages takes 80 �seconds, receiving each of the two messages takes

a further 80 �seconds, and the remaining 130 �seconds are divided between wire

time, interrupt processing and resuming the process that blocked in receive. Using

a signal handler to receive the message at both ends increases the roundtrip time to

620 �seconds.

The minimum time to acquire a non-local free lock is 827 �seconds if the manager

was the last process to hold the lock, and 1149 �seconds otherwise. In neither case

does the reply message contain any write notices (or di�s). Lock acquisition cost in-

creases in proportion to the number of write notices that must be included in the reply

message. The minimumtime to perform an 8 process barrier is 2186 �seconds. A non-

local page fault, to obtain a 4096 byte page from another process, takes 1956 �seconds.

3.2 Applications

We used eight applications in this study: Barnes, FFT, ILINK, IS, MIP, SOR, TSP, and

Water. The applications vary widely in their complexity. For example, SOR and TSP

are relatively simple, while ILINK and MIP each consist of more than ten thousand lines

of code. The programs come from several di�erent sources. Barnes and Water come

from the Stanford Parallel Applications for Shared Memory (SPLASH) benchmark

suite [SWG91]. FFT and IS come from the NAS benchmark suite [BBLS91]. SOR

and TSP were developed at Rice University. ILINK was derived from a sequential

program used by geneticists worldwide [LLJO84, CIS93, DSC+94]. MIP was developed

by researchers from the Department of Computational and Applied Mathematics at

Rice University. Both ILINK and MIP are production codes used to solve real scienti�c

and commercial problems that may require days or weeks of computation. The next

several sections describe these programs in detail.

Message Size (bytes) 8 128 1024 4096 9188

Time (�secs) 80 127 156 441 1367

Table 3.1 Cost of sending messages
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Barnes-Hut (Barnes)

Barnes-Hut simulates the evolution of a system of bodies under the in
uence of grav-

itational forces. It is a classical gravitational N-body simulation in which each body

is modeled as a point mass and exerts forces on all other bodies in the system. The

complexity is O(n2) in the number of bodies if all pairwise forces are calculated di-

rectly. Barnes-Hut uses a hierarchical tree-based method that reduces the complexity

to O(n log n). The numbers presented are for a run using 4096 bodies.

3-D Fast Fourier Transform Benchmark (FFT)

This benchmark numerically solves a partial di�erential equation using forward and

inverse FFT's. Assuming the input array A is n1 � n2 � n3 and organized in row-

major order, we distribute the array elements along the �rst dimension of A. For

any i, all elements of A[i; �; �] are contained within a single process. A 1-D FFT is

�rst performed on the n1 � n2 n3-point vectors, and then on the n2 � n3 n2-point

vectors. Each process computes its portion of the array without any communication.

Processes require data from other processes only when they are ready to work on the

n1-point vectors in the �rst dimension. This means that only one transpose is needed

for each iteration of the 3-D FFT.

With N processes, every transpose requires each process to send 1/N of its data

to every other process and to receive 1/N of its data from each of the other processes.

Since the array is often several megabytes or larger, the time spent on the trans-

pose can be the limiting factor on overall performance. We ran the tests with array

dimensions of 64x64x32.

ILINK

ILINK [DSC+94] is a parallel version of FASTLINK 1.0 [CIS93], which is an improved

version of LINKAGE [LLJO84]. Genetic linkage analysis is a statistical technique that

uses family pedigree information to map human genes and locate disease genes in the

human genome. The fundamental goal in linkage analysis is to compute the recombi-

nation probability, which is the probability that a recombination occurs between two

genes.

ILINK searches for a maximum likelihood estimate of the multi-locus vector of

recombination probabilities of several genes. Given a �xed value of the recombination

vector, the outer loops of the likelihood evaluation iterate over all the pedigrees and
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each nuclear family (consisting of parents and child) within each pedigree to update

the probabilities of each genotype (see [DSC+94]) for each individual, which is stored

in an array genarray.

A straightforward method of parallelizing this program is to split the iteration

space among the processes and surround each addition with a lock to do it in place.

This approach was deemed far too expensive either on a shared memory multiproces-

sor or on a DSM, so the approach in Figure 3.1 was used instead. This version uses

a local copy of the genarray, called gene, to temporarily hold updates to the global

array. They are eventually merged into the �nal copy after synchronization.

ILINK's input consists of data on 12 families with autosomal dominant nonsyn-

dromic cleft lip and palate (CLP) [HWC+93].

Integer Sort (IS)

This application ranks an unsorted sequence of N keys. The rank of a key in a

sequence is the index value i that the key would have if the sequence of keys were

sorted. All the keys are integers in the range [0, Bmax] and the method used is

counting, or bucket sort. The program is parallelized by dividing the array among

the processes. The amount of computation required for this benchmark is relatively

small { linear in the size of the arrayN . The amount of communication is proportional

to the size of the key range, since an array of size Bmax has to be passed between

processes. Processes synchronize through barriers between rankings, and through

locks during rankings.

For each pedigree

For each nuclear family

Split up double loop over possible genotypes for each parent

For each process

Do updates to gene for assigned rows

Synchronize processes to sum updates together into genarray

using a barrier

Figure 3.1 Parallel Linkage Computation
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In the original benchmark speci�cation, values for N and Bmax are 223 and 219

respectively. Since this exceeds the amount of memory that we had available, we

reduced these parameters to 220 and 27 respectively.

MIP

Mixed integer programming (MIP) is a version of linear programming where some

or all of the variables are constrained to have integer values, or sometimes just the

values 0 and 1. A wide variety of real-life problems can be expressed as MIP models,

e.g., airline crew scheduling, network con�guration, and plant design. MIP is hard

not only in the standard technical sense, that is, \NP-hard," but it is also hard in

the practical sense: real models regularly produce problem instances that can not

currently be solved.

The MIP code uses a branch-and-cut approach. The integer problem is �rst re-

laxed to a linear programming problem, which will generally lead to a solution in

which some of the integer variables take on non-integer values. The next step is to

pick one variable and branch o� two new linear programming problems, one with the

added constraint that xi = bxic (the down branch) and another with the added con-

straint that xi = dxie (the up branch). Over time, the algorithm generates a tree of

such branches. As soon as a solution is found, this solution establishes a bound on the

solution. Nodes in the branch tree for which the solution of the LP problem generates

a result that is inferior to this bound need not be explored any further. In order to

expedite this process, the algorithm uses a technique called plunging, essentially a

depth-�rst search down the tree to �nd an integer solution and establish a bound as

quickly as possible. The input set used in our runs was misc05.mps.

SOR

Our Successive Over-Relaxation (SOR) uses a simple iterative relaxation algorithm.

The input is a two-dimensional grid. During each iteration, every matrix element is

updated to a function of the values of neighboring elements. In this case, the function

is an average of the four neighboring elements. To avoid overwriting an element before

neighbors use it for their computations, we use a \red-black" approach, wherein every

other element is updated during the �rst half-iteration, and the rest of the elements

are updated during the second half-iteration. The work is parallelized by assigning



43

a contiguous chunk of rows to each process. Exchange of data between processes is

therefore limited to those pages containing rows on the edge of the chunks.

Barriers are used to synchronize all processes at the end of each half-iteration.

Our input set is 2000 x 1000 
oating point numbers.

Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) �nds the minimum cost path that starts at

a designated city, passes through every other city exactly once, and returns to the

original city. Such a path is termed a tour . We assume a fully connected map of

cities, and passage from one city to another has an associated weight. The cost of a

tour is the sum of the weights of each leg of the tour.

We use a branch-and-bound algorithm. A global value known as best tour con-

tains the cost of the least expensive complete tour found at any given time. Searches

are pruned by abandoning any partial tour whose cost exceeds best tour. Each

process repeatedly acquires the queue lock, removes and resolves partial tours until

it has a partial tour that is complete enough to solve locally, releases the queue lock,

and solves the partial tour locally. The queue is a sorted heap, sorted in inverse

order of a lower bound on their total cost. The lower bound is calculated using a fast

greedy algorithm. Tours removed from the head of the queue are therefore the most

promising queues and therefore the chances that later tours will be pruned before

being solved is increased. When a partial tour is within a constant number of cities

from being complete, the searching of the tour is completed through local recursion.

The shared data structures include the priority queue, which contains pointers to the

actual tours, a stack of unused tours that may be re-used, and best tour. Individual

locks protect access to the work queue, the unused tour stack, and best tour.

Several factors make this program less than ideally suited for our benchmark.

First, access to the priority queue is centralized. Secondly, the use of indirect struc-

tures such as the priority queue means that multiple faults will occur in taking tours

out of the queue. Finally, read access to best tour is not synchronized, and there-

fore the program is not data-race-free (see Section 2.2.4). The reason for this is that

access to best tour would become a serious bottleneck if a lock had to be acquired

each time a read occurs. The program works as it is, but RC systems in general will

not generate correct results for programs that are not properly labeled (data-race-

free). Although processes may see out of date values of best tour, the results are
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always correct because best tour is monotonically increasing. Out of date values for

best tourmay result in pruning less work than if best tour were always consistent.

Since lazy protocols delay propagating consistency information, processes running on

a lazy system may do more work than processes running on eager systems because

they receive new best tour values later than their eager counterparts, and hence are

not able to prune local tours as quickly. We ran TSP on a nineteen city input set.

Water

Water is a slightly modi�ed version of the Water program from SPLASH [SWG91].

Our version di�ers from the standard by condensing multiple lock acquisitions into

single acquisitions, thereby greatly reducing synchronization overhead. Only nine

lines of code were a�ected by the change.

Water is a molecular dynamics simulation. Each time-step, the intra- and inter-

molecular forces incident on a molecule are computed. In order to avoid an n2

2
be-

havior, only molecules within half the box length of a given molecule are assumed to

a�ect the molecule.

The main shared data structure in Water is a large, one-dimensional array of

molecules called VAR. Equal contiguous chunks of the array are partitioned to each

process. Each molecule is represented by a 600-byte record that includes data de-

scribing the molecule's displacement, the �rst six derivatives, and computed forces.

Approximately seven molecules �t on each virtual memory page.

Each time-step of Water uses several barriers. However, synchronization behavior

is dominated by the phase that calculates inter-molecular forces. Ignoring the cuto�

radius for the time being, each process needs to compute N2

2p
interactions, where

N is the number of molecules and p is the number of processes. Each interaction

includes reading the particle positions of the interacting molecules and updating force

equations for each molecule.

In the original Water program, a lock has to be acquired for each participating

molecule in an interaction.

We simulated 343 molecules for 5 steps.
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Application Diversity

Our applications di�er greatly in the type and frequency of synchronization, the

degree of sharing, the degree to which the data domain of a particular process changes

over the length of a program execution, and the granularity of shared accesses.

Table 3.2 summarizes the applications and their input sets. Syncs per second

is the total synchronization rate for an eight processor run under LI.

SOR is a simple, barrier-based, numeric application that distributes data evenly

among the processes, and accesses the data in predictable patterns. Another barrier

application, ILINK, synchronizes infrequently but has a complex and dynamic shar-

ing pattern. Barnes and FFT are also barrier based programs, but Barnes' major

data structures are trees, and FFT periodically undergoes a phase change in which

processes exchange data and begin to work on entirely di�erent sections of the main

array.

IS and Water use both locks and barriers. However, Water sends messages at a

rate more than four times IS's rate (See Table 3.3) because it shares data more �nely

and synchronizes more often.

Finally, TSP and MIP both use branch and bound algorithms and synchronize ex-

clusively through locks. However, MIP synchronizes more than 30 times as frequently

as TSP.

In total, the programs of our application suite represent a wide variety of algo-

rithms, parallel programming styles, and data access granularities. The diversity of

Program Input
Sync. Syncs.

Type Per Second

Barnes 4096 bodies barriers 2

FFT 64 x 64 x 64 barriers 13

ILINK CLP locks 3

IS N = 220; Bmax = 27 locks, barriers 228

MIP misc05.mps locks 531

SOR 2000 x 1000 
oats barriers 51

TSP 19 cities locks 16

Water 343 molecules locks, barriers 661

Table 3.2 Application Suite
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our application suite ensures that the results of this study are representative of a

large class of programs, rather than being speci�c to a single type.

3.3 Comparative Evaluation

This section evaluates the performance of LI, LH, and EI. We trace di�erences in

performance to application and protocol characteristics that make speci�c protocols

more or less suited to particular types of applications.

3.3.1 Results

Figures 3.7 to 3.9 present speedups for the applications for all three protocols using

up to 8 processors. Table 3.3 shows rate statistics for the three protocols. We use

rate statistics rather than totals in order to make meaningful comparisons between

applications that vary widely in running times. Total Msgs is the overall rate at

which messages are sent. Data is the amount of data sent per second, in kilobytes.

Access Faults is the number of access faults per second that required remote com-
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Figure 3.2 Speedups for Barnes Hut
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Figure 3.4 Speedup for ILINK
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Figure 3.6 Speedups for MIP
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Figure 3.9 Speedups for Water

munication. Finally, Diffs Created is the rate at which di�s were created in the

system.

Barnes

The speedup for Barnes is 2.5 for EI, 3.0 for LI, and 3.4 for LH. The poor performance

is largely due to false sharing. Nearly 98% of the messages under LI are di� messages.

Not only does the high rate of access misses create overhead directly, but it contributes

to load imbalance at barriers. From one barrier to the next, access misses and di�

requests served vary signi�cantly by process, and the number of access misses taken

and di� requests served by a process correlates highly with the amount of time other

processes have to wait at barriers. Overall, an average barrier takes almost 400

milliseconds for this application, while a null eight processor barrier takes slightly

more than two milliseconds.

LH is able to reduce the overall number of di�s requested by more than half.

However, Table 3.3 shows that LH reduces access misses by only 22% from LI. Many

of Barnes' access misses require more than a single di� in order to bring the page up
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Run Time
Total Data Access Di�s

Program Prot
(secs)

Msgs (Kbytes Faults Created

(per sec) per sec) (per sec) (per sec)

EI 27.91 1063.1 295.9 435.4 212.0

Barnes LI 22.56 2481.1 167.2 304.5 50.5

LH 20.54 1051.1 187.0 237.5 54.4

EI 10.10 1011.7 3429.9 422.9 0.0

FFT LI 11.95 844.7 3375.7 355.4 528.7

LH 11.86 876.7 4660.2 320.6 960.2

EI 1030.8 472.4 571.7 118.3 16.9

ILINK LI 1021.4 308.4 180.9 115.0 35.6

LH 1027.5 134.6 201.4 79.5 38.2

EI 2.19 837.9 280.8 283.1 0.0

IS LI 1.75 674.9 213.1 85.1 46.3

LH 1.73 853.8 215.6 8.1 51.4

EI 26.10 1781.0 1118.2 267.4 7.5

MIP LI 23.91 989.1 92.4 168.5 100.6

LH 19.09 988.8 107.0 109.7 139.3

EI 6.45 966.0 1419.2 66.9 0.0

SOR LI 6.24 790.9 1130.2 66.4 67.3

LH 6.19 773.7 1170.7 0.0 93.1

EI 49.12 689.6 947.0 238.5 0.5

TSP LI 44.09 436.5 127.7 185.3 100.5

LH 42.61 413.1 135.0 167.9 104.4

EI 12.84 3822.0 1491.3 273.4 6.5

Water LI 10.63 3127.4 836.0 313.2 224.1

LH 10.86 2843.6 837.2 162.3 244.4

Table 3.3 Lazy and Eager Rate Statistics

to date. LH often eliminates some, but not all, of the di� requests for a given miss.

Since misses requiring a single di� cost only marginally less than misses requiring

multiple di�s, LH's impact on overall performance is minimal.

EI su�ers almost 50% more access faults than LI, and under EI, each of these

faults requires an entire page to be retrieved across the network.
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FFT

The speedup for FFT is 3.7 for LH, 3.8 for LI, and 4.2 for EI. FFT is trivially paral-

lelizable, but gets relatively poor speedup because of the low (O(log n)) computation

to communication ratio. Processes running FFT communicate more than twice as

much data per second than any other application.

This application illustrates a weakness of the lazy protocols. LI and LH create

di�s describing each modi�cation because every page of data is replicated over the

course of the execution. However, in FFT a page is completely overwritten almost

every time it is touched. Therefore, creating and applying a di� describing a changed

page is less e�cient for this application than merely sending the new page.

A more serious problem is that in some cases several of these full-page di�s are

applied consecutively to the same page. This occurs because data in FFT ismigratory.

During each iteration, a complete transpose is done on the FFT data, and processes

are assigned new portions of the array to compute. Before accessing a newly assigned

portion of the array after a transpose, processes must �rst apply di�s describing all

previous modi�cations to that portion. If \ownership" of page p has cycled through

three di�erent processes prior to p being assigned to process P4, P4 must �rst apply

di�s describing the modi�cations to p performed by P1, P2, and P3, even if each di�

completely overwrites the previous di�s.

Under EI, access misses are handled by merely retrieving a copy of the page

from another process, adding no additional di� creation/application overhead and

not sending any extra data.

Table 3.3 show that LH sends more messages per second than LI. The extra LH

messages are barrier 
ush messages, most of which are useless because the transposes

make past behavior a poor predictor of future accesses.

ILINK

The speedup for ILINK for all three protocols is 5.9. Overall, ILINK achieves less

than linear speedup because several sections of code are executed sequentially rather

than in parallel, and the algorithm has an inherent load balancing problem [DSC+94].

It is not possible without signi�cant computation and communication to predict in

advance whether the set of iterations distributed to the processes will result in each

process having an equal amount of work. Consequently, speedups are somewhat lower

than one would expect based on the communication and synchronization rates. The
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load balancing problem is made worse by the cost of the DSM's network communi-

cation.

ILINK is another barrier-only program, so LI has few opportunities to improve

performance. LH reduces the miss rate and overall communication rate substantially,

but again is unable to a�ect overall performance.

Table 3.3 shows that EI sends more than four times as much data as LI. The

extra data is the result of sending entire pages rather than the di�s used for the lazy

protocols. Performance remains virtually identical across all of the protocols because

there is very little communication even under EI.

IS

The speedup for IS is 4.6 for EI and 5.7 for the lazy protocols. During a ranking,

processes use a lock to acquire write permission to shared data. However, some of the

shared memory is also read outside the locks. These reads often cause access misses

for EI because each time a lock is released, invalidations are performed globally, even

to those processes that only falsely share the modi�ed pages. These extra access

misses do not occur under the lazy protocols because invalidations are only carried

by synchronization messages, and the processes that are reading the shared data are

doing so outside of any synchronization.

Table 3.3 shows that LH sends signi�cantly more messages than LI. The extra

messages are barrier 
ushes that, like in FFT, are often useless. The messages may

be useless because many of the di�s communicated by the barrier 
ushes have already

been received via lock grant messages.

MIP

The speedup for MIP is 4.3 for EI, 4.6 for LI, and 5.3 for LH. MIP is a work-

queue based program implemented using locks. Hence, the lazy protocols are able to

signi�cantly reduce the number of messages and the amount of data communicated.

MIP has a large amount of false sharing, and the individual modi�cations are much

less than a page in size. Since EI responds to access misses by sending entire pages,

it sends more than ten times as much data as the lazy protocols.

LH performs slightly better than LI because it eliminates more than 40% of the

access misses without sending much more data.
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SOR

The speedup for SOR is 7.3 for EI and LI, and 7.5 for LH. SOR's computation

to communication ratio is an order of magnitude larger than that of Water. Since

most of the communication is one-to-one between neighbors exchanging boundary

row elements, the ATM network is able to accomplish much of the communication in

parallel. Parallel communication, in combination with a large computation grain size

results in near-linear speedup.

The steady state data movement in SOR consists of neighbors exchanging pages

containing boundary rows. Assume pi computes rows a � k to a, and pj computes

a + 1 to a + k + 1. At the barrier release, pi's copy of row a + 1 is invalidated, as

is pj's copy of row a. Under LI and EI, then, each will miss on the other's row and

require two messages (request, response) to obtain the di� needed to re-validate the

page.

The lazy di�ng mechanism only creates di�s for approximately three-quarters

of the modi�ed pages because of the way data is arranged in memory. Under LH,

however, neighboring processes exchange di�s via 
ushes before arriving at a barrier.

The primary bene�t from the 
ushes is that they are unreliable, and so require only

a single message. The access misses that occur without the 
ushes always require

at least two messages to handle. However, this gain is partially o�set by the cost of

creating extra di�s. The extra di�s are created because LH's 
ushes interfere with

the lazy di�ng mechanism and do not allow di�s to be combined.

EI has more communication than LI because under EI each process sends inval-

idate messages to each neighbor upon arriving at a barrier. LI uses fewer messages

by passing the invalidations between neighbors via the barrier messages.

TSP

The speedup for TSP is 6.1 for EI and 7.0 for the lazy protocols. TSP is an application

that exclusively uses locks for synchronization. Like SOR, TSP has a very high

computation to communication ratio, resulting in near-linear speedup. Therefore the

lazy protocol's reduction in message tra�c does not greatly a�ect overall performance.

The vast majority of messages in TSP under the lazy protocols are di� request

and response messages, some of which are unnecessary given su�cient semantic in-

formation. The data accessed is the set of tour records used to hold path information

while recursing. Tour records are often reused for di�erent computations. Hence, the
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previous contents are often not needed when a tour record is retrieved from the tour

heap. The DSM system, however, reconstructs the last contents of each accessed tour

record even though application semantics do not require it.

A second source of overhead in TSP is contention for the centralized tour queue.

Each thread performs a fairly extensive computation before releasing the tour queue,

resulting in an average tour lock acquisition latency of over 22 milliseconds (Table 3.3).

EI does a much better job of handling unsynchronized accesses to the tour bound

than the lazy protocols, because it invalidates other copies of the page containing the

bound, forcing them to retrieve the most recent version. Recall that knowledge of a

new bound does not reach a process under the lazy protocol until that process syn-

chronizes, at least indirectly, with the process that created the new bound. However,

EI sends more data because misses require entire pages to be retrieved over the net-

work.

TSP performs marginally worse with LH than with LI. Part of the reason is TSP's

poor data locality, past behavior is not a good indicator of future access patterns.

Nevertheless, LH requires 9% fewer messages than LI for the 19 city problem.

Water

The speedup for Water is 3.7 for EI, 4.2 for LH, and 4.6 for LI. Water sends far more

messages than the other applications, and almost 70% of these messages for the lazy

protocols are lock requests and responses.

The hybrid protocol performs 5% worse than the invalidate protocol because it

increases the average lock latency and the total number of di�s created.

The number of di�s goes up because of false sharing between processes accessing

adjacent molecules. Almost seven molecules �t on a single page. Lazy di�ng often

allows LI to delay creating a di� of a page until multiplemolecules have been modi�ed,

while LH creates di�s more frequently

3.3.2 Execution Time Breakdown

We used qpt [BL92] to break down the applications' execution times. Figure 3.10

shows the breakdown for each of our applications running on 8 processors, under

each of the protocols. \Computation" is the time spent executing application code;

\Unix" is the time spent executing Unix system calls and library code (most of this

time is spent in Unix communication primitives); and \TreadMarks" is the time spent
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3.3.3 Evaluation of the hybrid heuristic

The e�ectiveness of the run-time di� selection heuristic is crucial to LH's performance.

This section presents a comparison between LH and LP, a hybrid variant that replaces

the run-time heuristic with program annotations. The intent of this comparison is to

provide a basis for gauging the e�ectiveness of the heuristic in lock-based programs.

We are not concerned in this section about the e�ectiveness of the heuristic at barrier


ushes; LP uses the same barrier 
ush heuristic as LH. We also do not address the

issue of using programmer annotations to prefetch data.

LP's annotations consist of an extra parameter to Tmk lock acquire calls that

speci�es the address of data guarded by the lock. All di�s corresponding to this

lock pg are either appended to the lock grant message, or sent in additional, unreli-

able messages.

LP's annotations only allow a single virtual memory page to be speci�ed. However,

we found that nearly all access misses either occur on the single lock pg, or can not

be predicted ahead of time because they result from linked list traversals through

shared data structures. Therefore, LP's single page limitation does not seriously

a�ect performance.

Four of the �ve applications used in this comparison are from the application suite

of Chapter 3: IS, MIP, TSP, and Water. The applications were run with the same

parameters as before. We also evaluated QuickSort (QS), a parallel integer sorting

application that resorts to bubblesort when less than 1000 elements remain. Our

input size was 262144 integers. Two of the programs, IS and Water, use barriers in

addition to locks.

Performance

Table 3.4 lists running times, message counts, data counts, and access misses

for eight-processor executions of the �ve applications under LH and LP, and LI.

Diffs Requested is a three-part statistic that provides a breakdown of the di�s that

are requested in a run of the application. Lock pg indicates the number of di�s

requested for the current lock pg. Not pg is the number of di�s requested for pages

other than lock pg, and Other is the number of di�s requested while no locks are

held. The total number of di�s requested is higher than the number of access misses

because multiple di�s are often required to satisfy a single miss.
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Prog Prot
Time

Msgs
Data Access Di�s Requested

(secs) (KBytes) Misses Lock Pg Not Pg Other

LI 1.75 1099 380 150 343 0 280

IS LH 1.73 1401 523 14 28 0 21

LP 1.74 1387 564 13 0 0 21

LI 23.91 21348 2115 3619 4532 9218 4641

MIP LH 19.09 20024 2375 723 279 795 1543

LP 20.59 22552 2490 3257 22 9327 3586

LI 14.24 11545 14670 2573 6334 0 3170

QS LH 13.96 10055 15319 1454 45 0 2939

LP 12.88 9134 10820 1232 0 0 3091

LI 44.09 19171 5766 8107 159 30497 10

TSP LH 42.61 10732 5932 3077 33 6315 5

LP 44.21 19121 5848 8050 0 30605 8

LI 10.63 26065 8887 3325 3162 200 4917

Water LH 10.86 23920 9121 1740 283 34 2781

LP 10.80 23521 9832 1565 3 203 2705

Table 3.4 Protocol Tradeo�s

LP performs better than LH for only two applications: QS and Water. In the

latter case the di�erence is minor, and both of the hybrid protocols perform worse

than LI.

QS's access misses can be divided into two categories: control and data. Control

misses are either misses on data specifying a portion of array on which to compute, or

on data that is part of the implementation of the pause 
ags used for synchronization.

Data misses are misses on pages containing array data. We conclude that both LP and

LH eliminate nearly all of the control misses, because of the low lock pg and not pg

totals. However, the other category indicates that neither is able to signi�cantly

reduce the number of data misses. The di�erence in performance between the two

protocols is caused by the di�erences in the amount of hybrid di� data sent. Overall,

LH sends almost 50% more data than LP, and almost none of this data is useful

in eliminating data misses because the accesses to array data have little temporal

locality.

Only MIP and TSP request a large number of Not Pg di�s. In both cases, the di�s

are requested because of linked list traversals of shared data, and could not have been



61

predicted in advance by a programmer. Therefore, LP's performance would probably

not improve even if more than a single lock pg were speci�ed. LH eliminates the

majority of these di� requests.

Three of the applications request a large number of Other di�s. Although the

cause of these requests is not totally clear, many of them are certainly caused by

traversals of complicated shared data structures that could not have been predicted

in advance. The exception is Water, in which computation during certain phases is

protected by barriers.

Overall, the results suggest that LH's heuristic is very e�ective in reducing misses,

but occasionally at the expense of sending far more data than necessary.

3.4 Performance Prediction

Both networking hardware and operating system software a�ect the performance of

application programs. A limitation of our empirical comparison of the three di�erent

consistency protocols is that the hardware and operating system software are �xed.

This section explores the relationship between the di�erent consistency algorithms

and protocols as the processor, network and operating system vary in speed.

3.4.1 Simulation Methodology

Our primary concern in selecting a simulation methodology was the ability to accu-

rately model the software costs incurred by the di�erent protocols. Therefore, we

chose a method that allowed the execution of the actual protocol code on the simu-

lator.

To meet our objectives, we use vt [BL92], a pro�ling tool that rewrites an ex-

ecutable program to incorporate instrumentation code that produces an estimated

processor cycle count. To account for the time spent in the operating system han-

dling page faults and passing messages, for example, we link the program to a library

that intercepts system calls and adds a speci�ed number of cycles to the process's

counter. For message passing system calls, the library additionally computes the wire

time for the message, based on the network speed and the message size. To arrive

at the execution time on multiple processes, the library piggybacks a process's cy-

cle count on its synchronization messages, and adjusts the synchronizing processes'

clocks according to the following rules. Processes acquiring locks must have a cycle

count greater than when the lock was released by the lock's last owner. Processes
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departing from a barrier must have cycle counts greater than the highest cycle count

among the processes arriving at the barrier.

We simulate a switched network similar to an ATM LAN. We account for con-

tention for each point-to-point link by simulating the serialization of messages requir-

ing access to the same link, but we do not model contention for switch resources.

To validate the simulator, we compared our model's simulated speedups to actual

speedups on the di�erent applications. In all cases, simulated speedup, the number

of messages, and the total amount of data communicated came to within 10% of the

measured counts.

All results in this section are for eight-processor executions.

3.4.2 E�ect of Communication Software Speed

The results of Section 3.3.2 suggest that reducing the cost of the communication

software should improve performance. This cost has two components: a �xed per

message cost, regardless of message size, and a per byte cost that re
ects message

copying in the communication software. Figures 3.13 to 3.20 show the simulated

performance of an ATM network while varying the �xed cost software overhead in

the 8 processor case. All the applications that do not already achieve near-linear

speedup dramatically improve as the �xed per message cost drops to zero. The large

speedups indicate the performance potential for the protocols, and the potential gains

to be had from hardware support for message passing.

With a low �xed cost per message, there is no longer a signi�cant communication

penalty on a switched network, reducing the impact of access misses on performance.

The eager protocol gains the most by the reduction in �xed cost overhead because

it uniformly su�ers more access faults than the lazy protocols and therefore usually

uses more messages. However, in no case did reducing the per message cost allow EI's

performance to overtake the performance of the lazy protocols. LH loses ground to

both of the invalidate protocols as the per message cost drops because the hybrid's

advantage in the number of access misses becomes less important.

Figures 3.21 to 3.28 present the e�ect on speedup of varying the per byte software

cost. Seven cycles per byte is the cost that we derived from our current implemen-

tation. Two cycles per byte represents a single kernel copy of the message, and zero

represents no copies. The most dramatic trend in these �gures is again the increased

relative performance of EI. EI usually sends far more data than the lazy protocols,
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and therefore is much more dependent on the per byte cost. EI's performance over-

takes the performance of the lazy protocols for Barnes, ILINK, and TSP when the

per byte penalty drops to zero.

3.4.3 E�ect of Network Speed

Access to the communication medium is a prime candidate for a bottleneck in any

distributed system. This section examines the e�ects of bandwidth variation on

protocol performance.

Figures 3.29 to 3.36 summarize changes in speedup for the programs when we

vary bandwidth per link from 10 Mbits/sec to 1 Gigabit/sec. The performance

di�erence between the programs from 10 to 100 Mbits/sec per link is much larger

than the di�erence between 100 Mbits/secs and 1 Gigabit/sec. This is because, at

100 Mbits/sec, the wire time is comparable to the per byte software cost. Increasing

the network bandwidth e�ectively shifts the bottleneck to the software. At a band-

width of 10 Mbits/sec, LI outperforms the other protocols for nearly all of the ap-

plications. This is because it sends the lowest amount of data as compared to the

other two protocols. EI's performance su�ers signi�cantly in comparison to the lazy

protocols because it sends much more data.

At other network speeds the results are less uniform. At a higher bandwidth, LH

usually performs the best because there is no longer a high penalty for any extra data

communicated.

An exception to these generalized results is FFT (Figure 3.30). EI shows the best

performance for FFT regardless of bandwidth or software costs because it does not

create either di�s or twins to communicate the full page modi�cations.

3.5 Summary

This chapter had three basic �ndings. First, our results show that seven of the

eight programs in our suite perform better on lazy protocols than on EI. Four of the

programs performed at least 18% better. The performance of FFT illustrates one

pitfall of LRC. FFT performs worse under LRC than under EI because LRC always

ships modi�ed data as di�s, even when entire pages are modi�ed. When pages are

entirely re-written and shared in a migratory manner, such as in FFT, EI wins by

simply shipping entire pages.
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Figure 3.13 Barnes: Varying Fixed Message Cost
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Figure 3.14 FFT: Varying Fixed Message Cost
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Figure 3.15 ILINK: Varying Fixed Message Cost
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Figure 3.16 IS: Varying Fixed Message Cost
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Figure 3.17 MIP: Varying Fixed Message Cost
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Figure 3.18 SOR: Varying Fixed Message Cost
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Figure 3.19 TSP: Varying Fixed Message Cost
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Figure 3.20 Water: Varying Fixed Message Cost
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Barnes: Varying Per Byte Cost
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Figure 3.22 FFT: Varying Per Byte Cost

Second, we showed that the cost of executing our protocol code was dwarfed by

the cost of network communication, and especially the software overhead involved in

sending and receiving messages. Directly or indirectly, software overhead accounts

for almost 25% of application execution times. By comparison, the cost of executing

the DSM protocols averaged only 1.2%.

Finally, we modi�ed our implementation to simulate the e�ects of changing hard-

ware and operating system overheads on the tradeo�s between the protocols. We
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Figure 3.23 ILINK: Varying Per Byte Cost
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Figure 3.24 IS: Varying Per Byte Cost

found that EI's performance improves relative to the lazy protocols for all programs

as hardware and operating system overheads drop. Four of the eight programs per-

form better under EI than either LI or LH when the per byte cost is eliminated.
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Figure 3.25 MIP: Varying Per Byte Cost
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Figure 3.26 SOR: Varying Per Byte Cost
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Figure 3.27 TSP: Varying Per Byte Cost
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Figure 3.28 Water: Varying Per Byte Cost
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Figure 3.29 Barnes Hut: Varying Bandwidth
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Figure 3.30 FFT: Varying Bandwidth
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Figure 3.31 ILINK: Varying Bandwidth
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Figure 3.32 IS: Varying Bandwidth
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Figure 3.33 MIP: Varying Bandwidth
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Figure 3.34 SOR: Varying Bandwidth
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Figure 3.35 TSP: Varying Bandwidth
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Chapter 4

Software versus Hardware

This chapter presents a detailed comparison of software and hardware approaches for

supporting the abstraction of shared memory.

We �rst compare the performance of TreadMarks to that of an SGI 4D/480, a

machine that uses the same processors and primary caches as the workstations that

run TreadMarks. We show that for some classes of applications, the software approach

can produce comparable or even slightly better performance than a hardware-based

shared memory system. However, applications that synchronize at a �ne granularity

degrade more rapidly on a software system.

We then used a validated simulator to extend the comparison to larger numbers

of processors, and to investigate a compromise between the hardware and software

approaches. Our simulations show that for all but one application, the hardware-

software approach closely tracks the hardware-only model. Again, however, appli-

cations that synchronize at too �ne a granularity will only be able to achieve high

performance on a hardware-based system.

4.1 Performance

4.1.1 Experimental Platforms

The system used to evaluate TreadMarks is the same as in Chapter 3. It consists

of 8 DECstation-5000/240 workstations, each with a 40MHz MIPS R3000 proces-

sor, a 64 Kbyte primary instruction cache, a 64 Kbyte primary data cache, and

16 MBytes of memory. The data cache is write-through with a write bu�er con-

necting it to main memory. The workstations are connected to a high-speed ATM

network using a Fore Systems TCA-100 network adapter card supporting communi-

cation at 100 Mbits/second. In practice, however, user-to-user bandwidth is limited

to 30 Mbits/second. The ATM interface connects point-to-point to a Fore Systems

ASX-100 ATM switch, providing a high aggregate bandwidth because of the capabil-

ity for simultaneous, full-speed communication between disjoint workstation pairs.
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The shared-memory multiprocessor used in the comparison is a Silicon Graphics

4D/480 with 8 40MHz MIPS R3000 processors. Each processor has a 64 Kbyte

primary instruction cache and a 64 Kbyte primary data cache. The primary data

cache implements a write-through policy to a write bu�er. In addition, each processor

has a 1 MByte secondary cache implementing a write back policy. The secondary

caches and the main memory (128 MBytes) are connected via a 16 MHz 64-bit wide

shared bus. Cache coherence between the secondary caches is maintained using the

Illinois protocol. The presence of the write bu�er between the primary and the

secondary cache makes the memory processor consistent. The SGI runs the IRIX

Release 4.0.1 System V operating system.

An important aspect of our evaluation is that the DECstation-5000/240 and the

SGI 4D/480 have the same type of processor running at the same clock speed, the

same size primary instruction and data caches, and a write bu�er from the primary

cache to the next level in the memory hierarchy (main memory on the DECstation, the

secondary cache on the SGI). For both machines, we use the same compiler, gcc 2.3.3

with -O optimization, and the program sources are identical (using the PARMACS

macros). The only signi�cant di�erence between the two parallel computers is the

method used to implement shared memory: dedicated hardware versus software on

message-passing hardware.

Single processor performance on the two machines depends on the size of the

program's working set. Both machines are the same speed when executing entirely

in the primary cache. If the working set �ts in the secondary cache on the 4D/480,

a single 4D/480 processor is 2% to 3% slower than a DECstation-5000/240 because

the main memory of the DECstation-5000/240 is slightly faster than the secondary

cache of the 4D/480 processor. (The 4D/480's secondary cache is clocked at the same

speed as the backplane bus, 16 MHz.) If the working set is larger than the secondary

cache size, the 4D/480 slows down signi�cantly.

4.1.2 Application Suite

The application suite used for our hardware versus software comparisons di�ers from

that of Chapter 3 because we no longer have access to the SGI, and several of the ap-

plications in our current suite were not yet available when we lost access. Nonetheless,

the applications provide a reasonably broad spectrum of parallel programs.
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We present results from our modi�ed version of Water, the original Water (here-

after referred to as O-Water), SOR, TSP, and ILINK.

We ran O-Water and Water on 288 molecules for 5 time steps.

We ran SOR on a 2000 � 1000 and a 1000 � 1000 matrix. We chose the 2000 �

1000 problem size because it does not cause paging on a single DECstation, and it

�ts within the secondary cache of the 4D/480 when running on 8 processors. The

1000 � 1000 run is included to assess the e�ect of changing the communication to

computation ratio.

Both 18- and 19-city problems were used as input to TSP.

We ran ILINK with two di�erent inputs, CLP [HWC+93] and BAD [LRC+92],

both corresponding to real data sets used in disease gene location.

4.1.3 Results

Table 4.1 presents the single processor execution times on both systems, as well as

the single processor DECstation time without TreadMarks. As can be seen from this

table, the presence of TreadMarks has almost no e�ect on single processor execution

times. However, the SGI can be signi�cantly slower for programs that do not �t into

the secondary cache.

Figures 4.1 presents the speedups achieved for ILINK, SOR, TSP, O-Water and

Water, both on TreadMarks and the 4D/480. The TreadMarks speedups are relative

to the single processor DECstation run times without TreadMarks.

Program DEC TreadMarks SGI

ILINK-CLP 6352.4 6388.0 6208.0

ILINK-BAD 858.1 860.4 936.1

SOR 2000 � 1000 416.9 419.6 581.6

SOR 1000 � 1000 229.5 230.3 315.1

TSP-19 308.6 310.3 318.8

TSP-18 25.4 25.5 26.3

O-Water-288-5 43.1 44.4 44.4

Water-288-5 43.1 43.7 44.1

Table 4.1 TreadMarks vs. SGI 4D/480
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ILINK achieves less than linear speedup on both the 4D/480 and TreadMarks

because of a combination of load balancing problems and the cost of several sections

of code that are implemented sequentially rather than in parallel [DSC+94].

The 4D/480 outperforms TreadMarks because of the large amount of communi-

cation. The communication rate for the CLP input set is 157 Kbytes/second and

449 messages/second on 8 processors, compared to 526 Kbytes/second and 1,800

messages/second for the BAD input set, hence the better speedups achieved for CLP.

SOR

We ran our Red-Black SOR with two di�erent problem sizes: 2000�1000 and 1000�

1000. Of the four applications used, SOR is the only one for which there is a sizable

di�erence in single processor execution time between TreadMarks and the 4D/480.

TreadMarks is approximately 25% faster on a single processor, because both problem

sizes exceed the size of the secondary cache on the SGI.

In addition to lower single processor execution times, better speedups are achieved

on TreadMarks. The di�erence is partly due to the way in which TreadMarks com-

municates updates to shared memory. Points at the edge of the matrix are initialized

to values that remain �xed throughout the computation. Points in the interior of the

matrix default to 0. During the early iterations, the points at the interior of the array

are recomputed (and stored to memory) but their value remains the same. Only the

points near the edge change value. On the 4D/480, the hardware cache coherence

protocol updates the memory regardless of the fact that the values remain the same.

TreadMarks, however, only communicates the points that have changed value because

di� s (see Chapter 2) are computed from the contents of a page. Consequently, the

amount of data movement by TreadMarks is signi�cantly less than the amount of

data movement by the 4D/480. The estimated data movement by the 4D/480 after

the initial data migration between processors is 5567 Kbytes, whereas the actual data

movement by TreadMarks is 1045 Kbytes.

To eliminate this e�ect, we initialized the matrix such that every point changes

value at every iteration, equalizing the data movement by the 4D/480 and TreadMarks.

Even in this modi�ed version, the speedup is still better on TreadMarks than on the

4D/480. We attribute this result to the fact that most communication in SOR occurs

at the barriers and between neighbors. This communication occurs in parallel on the
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ATM network. On the 4D/480, the bus interferes with the primary cache's access to

the secondary cache because the secondary cache does not have dual tags.

TSP

We solved both 18-city and 19-city Traveling Salesman Problems. Branch-and-bound

algorithms can achieve super-linear speedup if the parallel version �nds a good ap-

proximation early on, allowing it to prune more of the search tree than the sequential

version. An example of such super-linear speedup can be seen on the 4D/480 for

the 19-city problem. More important than the absolute values of the speedups is the

comparison between the speedups achieved on the two systems. We see better per-

formance on the 4D/480 than on TreadMarks (8.35 vs. 7.02 for the 19-city problem

and 6.67 vs. 4.71 for the 18-city problem). The di�erence is slightly larger for the

18-city problem because of the increased synchronization and communication rates.

Again, the performance of TSP on TreadMarks su�ers from the fact that TSP is

not data-race-free (see Section 3.2). Although updates to the current minimum tour

length are synchronized, read accesses are not. Since TreadMarks updates cached

values only on an acquire, a processor may read an old value of the current minimum.

The execution remains correct, but the work performed by the processor may be

redundant because a better tour has already been found elsewhere. On the 4D/480,

this is unlikely to occur since the cache consistency mechanism invalidates cached

copies of the minimum when it is updated. By propagating the bound earlier, the

4D/480 reduces the amount of work each processor performs, leading to a better

speedup. Adding synchronization around the read accesses would hurt performance,

given the large number of such accesses.

To eliminate this e�ect, we modi�ed TSP to perform an eager lock release in-

stead of a lazy lock release after updating the lower bound value. With an eager

release, the modi�ed values are updated at the release, rather than at a subsequent

acquire. The speedup of TSP improved from 7.02 to 7.41 on 8 processors, vs. 8.35

on the 4D/480. The remaining di�erences between the DSM and the SGI perfor-

mance can be explained by faster lock acquisition on the SGI, compounded with

the non-deterministic e�ect of picking up redundant work due to the slight delay in

propagating the bound.
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Water

TreadMarks gets no speedup on O-Water, except on 2 processors, because of the

extremely large number of messages caused by the high synchronization rate (1,540

remote lock acquires/second).

There is a marked improvement with Water. On the 4D/480, Water's speedup is

virtually identical to O-Water. On TreadMarks, however, the speedup improves to

4.61 on 8 processors.

Part of the high cost of message transmission is due to the user-level implementa-

tion of TreadMarks, in particular, the need to trap into the kernel to send and receive

messages. We have implemented TreadMarks inside the Ultrix kernel in order to

assess the trade-tradeo�s between a user-level and a kernel-level implementation. In

comparison, the minimum time to acquire a lock drops from 0.78 to 0.43 milliseconds,

and the time for an 8-processor barrier drops from 2.20 to 0.74 milliseconds. For

ILINK, SOR and TSP, the di�erences between the kernel and user level implementa-

tions are minimal, re
ecting the low communication rates in these applications. For

Water, however, the di�erences are substantial. Speedup on 8 processors increases

from 3.96 for the user-level implementation to 5.60 for the kernel-level implementa-

tion, compared to 7.17 for the 4D/480.

4.2 Simulation

In this section, we compare the performance of our all-software DSM (AS) to an all-

hardware shared memory architecture (AH), and to one that uses both hardware and

software at di�erent levels (HS). While the DSM scales to a larger number of pro-

cessors without modi�cation, hardware architectures quickly become more complex

once the number of processors exceeds the capacity of a single bus. In the case of our

hardware architecture, the processor interconnect is a crossbar with one at each node,

and the cache controllers implement a directory-based cache coherence protocol.

Our HS architecture consists of a number of bus-based multiprocessors, each with

su�cient bus bandwidth to support the processors without contention causing a bot-

tleneck. Conventional bus snooping hardware enforces coherence between the pro-

cessors within a node. These hardware shared-memory multiprocessors then become

nodes on a general-purpose network, with coherence between di�erent nodes imple-

mented in software. We will refer to these three architectures as the All Software

(AS), All Hardware (AH), and Hardware-Software (HS) approaches.
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The HS approach is promising both in terms of cost and in complexity. Compared

to the AS approach, bus-based multiprocessors with a small number of processors (N)

are cheaper than N comparable uniprocessor workstations. Furthermore, the cost of

the interconnection hardware is reduced by roughly a factor of N . Compared to the

AH approach, commodity parts can be used, reducing the cost and complexity of the

design. In this section, we assess the performance of the HS approach compared to

AS and AH.

4.2.1 Simulation Models

We modeled the architectures and simulated the programs using an execution-driven

simulator [CDJ+91]. Instead of the DECstation-5000/240 and SGI 4D/480, we base

our models on leading-edge technology. All of the architectural models use RISC

processors with a 150 MHz clock, 64 Kbyte direct-mapped caches with a block size of

32 bytes, and main memory su�cient to hold the simulated problem without paging.

We simulate up to 64 processors for each architecture.

In both the AH and the AS models, each node has one processor and a local

memorymodule. A cache miss satis�ed by local memory takes 12 processor cycles. In

the HS model, each node has 8 processors connected by a 256-bit wide split transaction

bus operating at 50 MHz. A cache miss satis�ed by local memory takes 16 to 18

processor cycles, which is slightly longer than the AH and the AS models because of

bus overhead.

In the AH model, the nodes are connected by a crossbar network with point-

to-point bandwidth of 200 MBytes/second and a latency of 160 nanoseconds. We

used a crossbar in order to minimize the e�ect of network contention on our results.

The point-to-point bandwidth is the same as the Intel Paragon's network. Cache

coherence is maintained using a directory-based protocol. A cache miss satis�ed by

remotememory takes 92 to 130 processor cycles, depending on the block's location and

whether it is modi�ed. These cycle counts are similar to the Stanford DASH [LLG+92]

and FLASH [Kea94] multiprocessors.

In both the AS and the HS models, the general-purpose network is an ATM

switch with a point-to-point bandwidth of 622 MBit/second and a switching latency

of 1 �sec. Memory consistency between the nodes is maintained using the TreadMarks

LRC invalidate protocol (See Chapter 2.3.1). In addition, the simulations account for

the wire time, contention for the network links, and the software overhead of entering
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the kernel to send or receivemessages, including data copying (5000+28�message size

in words processor cycles), calling a user-level handler for page faults and incoming

messages (4000 processor cycles), and creating a di� (8�words per page processor

cycles). The values are based on measurements of the TreadMarks implementation

on the DECstation-5000/240 (See Chapter 2).

For the HS approach, all of the processors within a node are treated as one by

the DSM system. We assume that cache and TLB coherency mechanisms will ensure

that processors within a node see up-to-date values. Multiple faults to the same page

are merged by the DSM system. In other words, if one processor faults on a page and

later another processor faults on the same page, the second and subsequent proces-

sors simply wait until the �rst processor has retrieved the page. Synchronization is

implemented through a combination of shared memory and message passing, re
ect-

ing the hierarchical structure of the machine. For barriers, each processor updates a

local counter until the last processor on the node has reached the barrier. The last

processor sends the arrival message to the manager. When the last arrival message

arrives at the manager, it issues a departure message to each node. Similarly, locks

are implemented using a token. The token is held at one node at a time. In order to

acquire a lock, a processor must �rst bring the token to its node. If the token already

resides at the node, no messages are required.

4.2.2 Validation

We compared our model's simulated speedups to actual speedups for 4 and 8 pro-

cessors on the applications O-Water, SOR, and TSP. The results are summarized in

Table 4.2. In all cases, simulated speedup, the number of messages, and the total

Program Type 4 8 16

Water Sim 3.06 4.84 5.88

343 Molecules Real 2.76 4.54

SOR Sim 3.89 7.46 13.69

Red-Black Real 3.71 7.33

TSP Sim 3.97 7.30 12.50

19 Cities Real 3.90 7.08

Table 4.2 Real and Simulated Speedups
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amount of data communicated came to within 10% of the actual numbers.

4.2.3 Results

We simulated SOR, TSP, and Water. Excessively long simulation times prevented us

from including simulation results for ILINK. Water was run with 288 molecules, TSP

for 19 cities, and SOR for a 4000 by 2000 element array. Figures 4.2 to 4.4 report

the speedups achieved on the three di�erent architectures. Since the uniprocessor

execution times are roughly identical for all three architectures, the execution times

are omitted. Figures 4.5 and 4.6 present the message and data movement totals for

AS and AH relative to the AS numbers. Finally, the rest of the section discusses the

observed performance of the individual applications.

SOR

Figure 4.2 presents speedups for the SOR program for a 2000 � 1000 matrix. Since

we only simulate a small number of iterations, we begin the simulation with the

second iteration in order to prevent cold start misses from dominating our statistics.

Linear speedup is achieved on AH and HS, while the performance of AS is sub-

linear due to the high communication cost. SOR performs mainly nearest neighbor

communication. Hence this program can take advantage of the hierarchical nature

of the HS architecture. The only processors to incur a high penalty for misses are

the edge processors that share data with processors that are o�-node, and hence this

program incurs little extra overhead on HS in comparison to AH. This conclusion

is supported by the observation that the number of messages for the 64-processor

execution on HS is 1/9 of the number of messages for the 64-processor AS execution

(See Figure 4.5).

TSP

Figure 4.3 presents speedups for the TSP program with a 19 city input. This program

has a very high computation to communication ratio. However, as the number of

processors increases, this ratio decreases enough for the high latency of communication

in the AS architecture to become a bottleneck. Figure 4.5 shows that the number of

messages for the HS architecture is less than 1/2 that for the AS architecture. The

reduction is not 8-fold because the next processor to access the queue is more likely

to be from another node. Figure 4.6 shows that the amount of data movement by HS
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Figure 4.2 Speedups for SOR: 2000 � 1000

is about 1/8 that for AS. The 8-fold reduction in data movement is a result of HS

coalescing changes from di�erent processors on a node into a single di�.

Water

Figure 4.4 presents speedups for Water running 2 time steps on 288 molecules. Beyond

32 processors, AH is the only architecture whose speedup improves. AS obtains a peak

speedup of X at 16 processors, and HS reaches its peak speedup of Y at 32 processors.

The performance is poor for the AS architecture because of the large number of syn-

chronization operations as well as the large amount of data communicated. Although

HS gets a 5-fold decrease in the number of overall messages and a 13-fold decrease
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Figure 4.3 Speedups for TSP: 19 Cities

in the amount of data movement compared to the AS architecture, its performance

does not match AH because the number of synchronization messages (and the wait

time to acquire the locks) remains high (See Figure 4.5).

4.2.4 Reduced Software Overhead

Message-passing systems with lower software overhead than Unix sockets are possible,

either through optimizing the software structure, e.g., Peregrine [JZ93], or a user-level

hardware interface, e.g., SHRIMP [BLA+93]. In this section, we examine the e�ect of

reducing both the �xed and per word overheads. Speci�cally, we examine the e�ect

of reducing the �xed cost from 5000 processor cycles to 500, roughly Peregrine, and
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Figure 4.4 Speedups for Water: 288 Molecules and 2 Steps

50, roughly SHRIMP, and the per word cost from 28 processor cycles to 8, one bcopy

to the interface.

Figures 4.7 and 4.8 present the speedups for SOR and Water on the AS archi-

tecture. These show the smallest and the largest e�ects for reducing the software

overhead. For SOR, the �xed cost has the largest e�ect on performance; while, for

Water, both the �xed and per word cost have equal e�ects on performance.

Figure 4.9 presents the speedups for Water on the HS architecture. Because HS

reduces the amount of data movement more than the number of messages (compared

to AS), the �xed cost has a more signi�cant e�ect than it did for AS.
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4.3 Summary

The relative magnitude of the di�erences in speedup between TreadMarks and the

4D/480 for ILINK, TSP, O-Water and Water roughly correlate to the di�erences in the

synchronization rates. For TSP, O-Water and Water, which are primarily lock based,

the di�erence in speedup is closely related to the frequency with which o�-node locks

are acquired. On 8 processors, the di�erence in speedup is 6.7 for O-Water (with 1540

remote lock accesses per second), 3.2 for Water (680), 1.4 for the 18-city TSP (32),

and 1.3 for the 19-city TSP (14). In addition, for TSP, the 4D/480 performs better

because the eager nature of the cache consistency protocol reduces the amount of

redundant work performed by individual processors. For ILINK, which uses barriers,
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the di�erence in speedup can be explained by the barrier synchronization frequency,

a di�erence of 2.2 for the BAD data set with 10 barriers per second, vs. a di�erence

of 0.4 for CLP with 0.36 barriers per second. For SOR, the larger memory bandwidth

available in TreadMarks results in better speedups. Dual cache tags and a faster

bus, relative to the speed of the processors, are necessary to overcome the bandwidth

limitation on the SGI.

The ATM LAN's longer latency makes synchronization much more expensive on

TreadMarks than on the 4D/480. Moving the implementation inside the kernel, as

we did, is only one of several mechanisms that can be used to reduce message latency.

Our simulation results show that the AS approach does not scale well for the appli-

cations and problem sizes that we simulated. The HS approach, which uses hardware
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Figure 4.7 AS Speedups for SOR: 2000 � 1000

for coherence at the node level and software for inter-node coherence, scales very well

for SOR and TSP. For example, SOR performs nearest-neighbor sharing which takes

advantage of the HS architecture, and TSP takes advantage of the coalescing of di�s.

For SOR and TSP, the HS performance is almost identical to the AH approach. For

Water, the frequent synchronization results in inferior performance for HS compared

to AH.
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Figure 4.8 AS Speedups for Water: 288 Molecules and 2 Steps
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Figure 4.9 HS Speedups for Water: 288 Molecules and 2 Steps
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Chapter 5

Related Work

This section compares lazy release consistency and the TreadMarks system with a

number of other software and hardware shared memory system, paying particular

attention to di�erences in memory and programming models.

5.1 Software-Supported Shared Memory

Sequentially Consistent Systems

Ivy [LH89] was the �rst software-only implementation of distributed shared memory.

Ivy implemented a single-writer, sequentially consistent, invalidate protocol that used

virtual memory pages as the base unit of consistency. Ivy used a dynamic, distributed

page management and location scheme. Chains of \probable owners" are followed

until arriving at the owner. At each intermediate site, the local \probable owner" is

updated to point to the processor performing the search.

Mirage [FP89] di�ers from Ivy in that newly mapped pages are \pinned" to a

processor for an interval of time (�) before they can be invalidated or migrated to

other processors. The duration of the pin is set at application startup and remains

constant through the duration of the execution. The purpose of the pin is to prevent

the \ping-pong" e�ect that can plague systems like Ivy.

Clouds [DCM+90] is another early sequentially consistent DSM. Clouds di�ers

from Ivy in that it uses program-de�ned segments as the unit of memory granularity

rather than pages, and in that it allows memory to be pinned as in Mirage. However,

segments are pinned via explicit \pin" and \unpin" operations. This method creates

opportunities for savvy programmers to improve application performance, but also

requires them to understand more of the details of the underlying DSM system.

Mether [MF89, MF90] is another Ivy-like system that runs on top of SunOS.

Mether's primary innovation is allowing both intra- and inter-program sharing. None

of the other systems discussed in this chapter explicitly address inter-program sharing,
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but this sharing is one of the main rationales behind recent research in single address

space systems [CLBHL93, SLM90].

Mether also divides shared space into regions that have di�erent consistency mech-

anisms. \Demand-driven" space behaves as in a conventional system, while \data-

driven" space has semantics somewhat like unix-pipes. Data must be written before

it can be read and can be used to support e�cient synchronization. TreadMarks

handles synchronization separately from the memory system.

Bryant et al. [BCCR91] implemented Structured Shared Virtual Memory (SSVM)

on a star network of IBM RS-6000s running Mach 2.5. Two di�erent implementa-

tion strategies were followed: one using the Mach external pager interface [YTR+87],

and one using the Mach exception interface [BGR+88]. They report that the lat-

ter implementation|which is very similar to ours|is more e�cient, because of the

inability of Mach's external pager interface to asynchronously update a page in the

user's address space.

Emerald, Amber, and Orca are distributed object systems that share many similar-

ities with DSM systems. Distributed object systems distribute computations among

threads executing in objects on di�erent machines. Processes interact by invoking

methods of shared objects.

Emerald [BHJL86, BHJ+87] implements local communication among threads and

objects through shared memory, and remote communication through RPC. The sys-

tem marshals RPC arguments into the message, accommodating pointer values by

copying data pointed to by any pointer parameters. Objects are not automatically

migrated, and Emerald does not support object replication. Emerald does support

programmer-directed object migration across machine boundaries.

Amber [CAL+89] eliminated Emerald's complicated RPC handling by implement-

ing a single address space across all machines. Amber did not automatically move

or replicate data, but provided special RPC variations that told the system whether

to use RPC or to move the calling object to the destination site. Subsidiary objects

could also be \attached" to other objects. All attached objects moved between nodes

when any one of the objects moved.

Orca [BKT92, Kaa92] is an object-based system that supports transparent repli-

cation by a fast, hardware-supported, multicast mechanism. Replication is not au-

tomatic, but initiated by heuristics. Since all accesses to shared data occur through

speci�c methods provided by the object encapsulating the data, the system easily

detects modi�ed data and does not need a mechanism like TreadMarks' di�s. While
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Orca's update mechanisms are indeed e�cient, they require both language and hard-

ware support. The language support is necessary to implement and enforce the object

model, while the transparent replication relies on hardware multicast support.

Munin [CBZ91] was the �rst DSMs to implement a relaxed consistency model.

Munin was the �rst software release consistent system built, the �rst system to employ

\di�"ing to detect modi�cations to shared data, and the �rst system to allow the user

to employ multiple protocols to handle data with di�erent access characteristics.

The �nal version of Munin distinguished between �ve di�erent types of data:

conventional, read-only, synchronization, migratory, and write-shared.

The conventional protocol is modeled after Ivy's distributed scheme, with the

addition of Mirage's � timeout. Read-only and synchronization data are handled

as in TreadMarks. The Migratory protocol is a simple, non-replicated protocol that

works well for data that is repeatedly accessed by a single processor, and then repeat-

edly accessed by other processors, such as data in producer-consumer applications.

Neither the conventional nor the migratory protocols need twins or di�s.

The write-shared protocol supports multiple writers by creating page twins at

the �rst write access by a processor, and creating and 
ushing di�s at the next release

operation. The eager release consistent protocols used for comparison in this thesis

were modeled after this protocol. However, our protocols use a static, distributed

ownership scheme, while Munin's write-shared protocol uses dynamic page ownership.

E�ectively, TreadMarks treats data as either write-shared (the default), syn-

chronization (all synchronization goes through TreadMarks routines), or read-only

(TreadMarks dynamically detects when pages are only accessed by a single processor

and does not perform consistency action on these pages).

TreadMarks does not explicitly support migratory data, but the hybrid protocol

e�ectively duplicates some of it's e�ects. Messages are only exchanged between the

producer and the consumer, overlapped on the synchronization message if possible.

However, all data in the TreadMarks system goes through the di�ng mechanism,

while in Munin migratory and conventional data does not.

TreadMarks has no need of Munin's timeout mechanism because the protocols are

all invalidate-based.

As with many of the systems discussed in this chapter, direct comparison between

Munin and TreadMarks performance is di�cult because of di�erences in the underly-

ing systems (Munin was implemented on top of 16 Sun 3/60s connected by a 10MBit

ethernet and running the V [Che88] operating system).
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Midway [ZSB94] and Concord are software DSMs based on entry consistency (EC).

Entry consistency requires each shared data object to be attached to a synchronization

object. On a lock acquisition, EC only propagates modi�ed data associated with that

lock, rather than attempting to use runtime information to dynamically predict which

data will be useful, as in our hybrid (LH) protocol. The associations allow Midway

to avoid moving more data than necessary, and to avoid access misses entirely.

The downside of this potential performance gain is that the memory model has

substantially changed from the simple SC model, and the programmer is required to

insert additional synchronization and data associations into shared memory programs.

The explicit associations also force objects to be decomposed di�erently. On an SC

or RC system, for instance, SOR's primary data structure is a single two-dimensional

array. In order to run SOR on an EC system, border rows must be in di�erent objects

than rows in the interior of the set of rows assigned to a given process. Moreover, this

example shows that the decomposition is even a�ected by the number or processes

running the program.

Another novel idea in the Midway project was the use of software dirty bits to

detect modi�cations to shared pages. A software dirty bit is associated with each

cache line in the system. The compiler generates code to 
ip the associated dirty

bit on each shared write. The bit-
ipping adds approximately 10 cycles of overhead

to each shared write. If this approach were used in our version of Water, the total

overhead of detecting modi�cations might be less than 1% instead of 2.7%.

However, the use of software dirty bits has disadvantages as well. First, overhead

is proportional to the number of shared writes, and not the total amount of modi�ed

data. Therefore, applications that modify pages repeatedly between synchronization

transfers tend to perform worse with dirty bits than with di�ng. Second, when a page

is declared shared, but is e�ectively used as private storage, systems that use dirty bits

still incur overhead on every write. With a lazy di�ng mechanism, di�s are never

created for these pages. Third, the current implementation by the Midway group

relies heavily on several non-standard features of the DECStation's cache structure,

and hence is not highly portable. Finally, the dirty bit approach requires signi�cant

compiler involvement, while the di� approach is language and compiler independent.

Concord [Lee94] extends entry consistency by allowing handlers to be associated

with synchronization operations, as well as data. A handler is a procedure that is run

at synchronization time, and speci�es exactly what data should be updated. Since

the handler is provided by the application, it allows update behaviors to be tailored
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very closely to speci�c applications. However, the use of handlers complicates the

programming model even further.

Finally, the Carlos system [KFJ94] integrates message passing into an LRC sys-

tem by providing a message interface and requiring messages to be annotated as

to their signi�cance to memory consistency. The message passing interface can be

used to build e�cient high level synchronization constructs such as queues or heaps.

Early performance results of Carlos are encouraging, showing substantial gains over

TreadMarks's performance for such lock-based programs as TSP, QS, and Water.

5.2 Hardware-Supported Shared Memory

DASH [LLG+90] is a cluster-based machine that uses a directory-based cache co-

herency protocol. DASH was the �rst system of any type to support release con-

sistency. However, DASH uses a write invalidate protocol to maintain consistency.

DASH does allow updates to be pipelined.

Sesame [WHL92] is a hardware network interface that implements eager sharing

by selectively sending updates before they are requested. This approach is almost

exactly opposite of LRC Their results indicate that eager sharing can perform an

order of magnitude better than demand-driven systems under ideal conditions.

The SHRIMP [BLA+93] parallel machine consists of commodity workstations con-

nected to a commodity backplanes via a custom network interface. The SHRIMP in-

terface snoops the workstation buses and allows pages to be shared between pairs of

machines via either automatic (any writes to shared data are immediately forwarded

to the network) or deliberate (writes are only forwarded after an explicit command)

updates. The sharing allows SHRIMP to emulate both low latency message passing

and a form of shared memory. One of the primary innovations of SHRIMP is the

separation of page bindings from data transfer. Binding together pages on two ma-

chines requires operating system intervention, but occurs only rarely. Once a binding

has been established, the two machines can communicate entirely through user level

messages. While SHRIMP is clumsy at best as a shared memory machine, the high

performance communication mechanism would greatly facilitate the implementation

of a high-performance software DSM.
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5.3 Combined Hardware/Software Approaches

One of the most dominant trends in recently developed parallel architectures is the

combination of software and hardware support for distributed shared memory.

Alewife [ALKK90, CA94] is a sequentially consistent system that uses directory-

based cache coherence. Alewife uses a LimitLESS [CKA91] directory structure that

supports a small number of directory pointers directly in hardware, and traps to

a software handler when the pointers are exhausted. Simulations show that the

LimitLESS directories achieve between 71% and 100% of the performance of full-map

directory structures on a 256 node system. Another of Alewife's innovations is the

use of very fast context switching of threads to hide access latency.

Architectures such as LimitLESS can bene�t from the Check-In/Check-Out

(CICO) [HLRW92] programming model. CICO allows programmers to pass per-

formance directives directly to the memory system. In a CICO system, all accesses

to shared memory are bracketed by check in and check out instructions. The �rst

access to a piece of shared data is preceded by a check out directive, while the last

access to the data is followed by a check in directive. The CICO directives let the

system coordinate access to shared data with less communication than conventional

systems, because at all times the system has exact knowledge of the set of processors

accessing a given piece of shared data. The annotations can also be used to increase

cache reuse and to reduce data sharing. CICO was developed with a shared memory

system implementing a conventional memory model in mind. However, information

from the directives could bene�t an LRC system as well.

Typhoon [RLW94] supports shared memory over a message-passing network by

using a communication co-processor to connect each primary processor to the network.

All communication and protocol code is handled by the communication co-processor,

freeing the main processor to continue executing application code.

Finally, Flash [Kea94] is an even more ambitious project that uses a custom de-

signed node controller (MAGIC) to handle all communication both within and be-

tween nodes. MAGIC uses hardwired data paths to e�ciently transfer most data

without software intervention, but can be programmed to handle a variety of sophis-

ticated protocols.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The goal of this dissertation was to develop high-performance software DSM protocols

that support a broad range of applications and achieve performance that approaches

that of hardware. We have achieved this goal. This thesis presents two new DSM

protocols: lazy invalidate (LI) and lazy hybrid (LH). Both of these protocols support

an abstraction of shared memory that is indistinguishable from hardware supported

shared memory for a broad class of applications. LH di�ers from LI in that it spec-

ulatively moves data with synchronization. We have shown that the performance of

these software protocols is comparable to hardware supported performance in many

cases, and substantially better than the best previous software protocols in most of

the other cases. The following paragraphs summarize our main �ndings.

We �rst compared the performance of LI and LH with EI, a protocol representative

of the previous state of the art. We found that seven of the eight applications in

our suite perform better on the lazy protocols than on the eager, and four of those

eight applications performed at least 18% better. Through a detailed breakdown of

execution time we showed that the cost of executing our slightly more complicated

protocol code was far outweighed by the cost of network communication in our system,

and especially the software overhead involved in sending and receiving messages.

We then used a simulator to assess the e�ects of changing hardware and operating

system overheads on the tradeo�s between the protocols. Both LH and EI improve

relative to LI as software overhead is reduced. When per byte overhead is reduced

to zero, EI outperforms both of the lazy protocols for four of the eight applications.

Neither a reduction in the per message overhead nor an increase in network bandwidth

allowed EI to outperform the lazy protocols on any application but FFT, but both

changes decreased the gap in performance.

We then compared the performance of LH to LP, a variant of the hybrid protocol

that uses user annotations instead of a run time heuristic to decide which data to
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speculatively move. LH outperformed LP for six of the eight applications. Our results

show that the heuristic is usually much more e�ective than program annotations at

identifying potentially useful data.

Finally, we compared the performance of our software protocols with that of a

hardware shared memory system, and found that the di�erence in performance be-

tween the two systems correlates roughly with synchronization rate. The lazy system

was able to approach, and in one case surpass, the hardware system's performance

for coarse-grained applications. Fine-grained applications, however, performed much

better on the hardware system. We extended these results with simulations that

contrasted hardware and software implementations of shared memory with an inter-

mediate approach that uses hardware and software techniques at di�erent levels of

the system. We found that the intermediate approach was able to scale with the hard-

ware approach for most applications, degrading only for applications with �ne-grained

synchronization.

Overall, the results in this work show that lazy protocols generally require less

communication than the previous state of the art, protocols implementing eager re-

lease consistency. LI and LH consistently outperformed EI across a wide variety of

application types. The results show that software DSMs using protocols such as LI

and LH have matured to the extent that they are now a truly viable alternative for

high performance parallel computing.

6.2 Future Work

A key factor in determining both this work's long-term relevance and avenues for

future research is the question of what types of parallel applications are expected

to predominate in the future. Currently, static, data-parallel scienti�c code is far

more common than any other type. Many of these applications exclusively use global

synchronization such as barriers, and hence can not bene�t from many of LRC's

optimizations. Applications that use local synchronization are more amenable to

optimization, but are less common. Of the �ve lock-based applications evaluated

in this work, for example, four were written explicitly to test parallel programming

systems. However, we expect applications with dynamic sharing patterns to become

more common as parallel systems enter mainstream business.

We therefore expect the following two avenues for future research to be productive:

(i) integrated parallel programming environments, and (ii) fault-tolerant DSMs.
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6.2.1 Integrated Parallel Programming Environments

This research has shown that high performance can be achieved by protocols that are

oblivious to application semantics. However, work with the hybrid protocol, as well

as work by other researchers [KFJ94, ACDZ94], has shown that the protocols can

greatly bene�t from being more closely integrated with the application. We expect

this direction of research to include two key components:

1. De-constructing LRC - By making more of the system visible to users at the

application level, we expect to achieve a better match of system mechanisms to

application semantics.

2. Compiler Integration - Compiler analysis can be useful in detecting speci�c

access patterns and supplementing user annotations.

Other researchers [KFJ94] have shown that lazy release consistency can be de-

constructed into building blocks that can be used to create custom synchronization

mechanisms. We envision extending this de-construction to expose data movement,

consistency management, as well as synchronization 
ow. These new mechanisms

can provide users with a way to provide high level descriptions of applications to the

system.

Compiler analysis can also be useful in describing data movement. Compiler

analysis is often thought to be con�ned to the domain of applications where exact

analysis is possible, such as Fortran applications. However, even inexact analysis can

be very useful to DSM systems because it can be used to optimize data movement

without a�ecting correctness. Input from the compiler can be limited to hints that

improve e�ciency when the hints are correct, and do not a�ect consistency even when

they are not.

6.2.2 Fault Tolerance

As research prototypes become real tools that move into the realm of mainstream

business use, fault tolerance becomes an important part of the services that the tools

are expected to provide. Lazy release consistency provides new opportunities for

closer integration of fault tolerant substrates into the DSM system because much of

the information needed by fault tolerant systems is already available. Systems such as

Manetho [EZ92a, EZ92b] rely on detailedmessage ordering information that can be re-

constructed by systems that maintain happened-before-1 information. Checkpointing
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overhead can be reduced by maintaining invariants assuring that portions of shared

memory can be reconstructed on failure. Finally, the fact that all communication in

a DSM system is produced by the system itself provides extensive opportunities to

tune the fault tolerant mechanisms.

Combining both of these approaches into a single system will provide powerful

opportunities to bring high performance and high usability to a wide spectrum of

users.
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