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ABSTRACT 

We describe a new replicated-object protocol designed for use in 
mobile and weakly-connected environments. The protocol differs 
from previous protocols in combining epidemic information 
propagation with voting, and in using fixed per-object currencies 
for voting. The advantage of epidemic protocols is that data 
movement only requires pairwise communication. Hence, there is 
no need for a majority quorum to be available and simultaneously 
connected at any single time. The protocols increase availability 
by using voting, rather than primary copy or primary commit 
schemes. Finally, the use of per-object voting currencies allows 
votes to take place in an entirely decentralized fashion, without 
any server having complete knowledge of group membership.  
We show that currency allocation can be used to implement 
diverse policies. For example, uniform currency distributions 
emulate traditional dynamic voting schemes, while allocating all 
currency to a single server emulates a primary-copy scheme. We 
present simulation results showing both schemes, as well as the 
performance advantages of using currency proxies to temporarily 
reallocate currency during planned disconnections. 
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1. INTRODUCTION 
We describe the use of currency-based epidemic algorithms in 
improving the performance of replication protocols in weakly-
connected and mobile environments. Our algorithm description 
will be presented in the context of Deno, a replicated-object 
system intended for use with mobile and or weakly-connected 
hosts. We assume a system that consists of a series of peer shared-
object servers, each capable of caching replicas of any object in 
the system. The protocols discussed in this work assume peer 
servers with no designated primary copy [16] for any object. By 
default, all replicas of a given object are equally able to create 
new updates for the object, and to have them committed.  

Replicas are useful for many reasons, including efficiency, 
availability, and fault tolerance. Replicas increase efficiency by 
allowing a local rather than a remote copy to be accessed, much in 
the same way that accessing a processor’s memory cache is much 
faster than accessing memory over the computer’s I/O bus. 
Replicas improve availability by making it possible for 
applications to make progress even when one or more replicas 
become temporarily unavailable. Fault tolerance is achieved by 
ensuring that object data is kept consistent. Loss of any one 
replica does not result in committed updates being lost if other 
replicas have copies of the same updates. 

The problem with replicas is that they must be kept consistent. 
Consistency is problematic in distributed systems because updates 
of multiple sites are generally non-atomic operations. Different 

sites usually take differing amounts of time to access, meaning 
that competing tentative updates may be seen in different orders at 
different updates sites. However, consistency requires that any 
competing updates to the same shared object be committed in the 
same serial order at every replica.  

A canonical primary-copy scheme orders updates by when they 
arrive at the primary copy’s server. This is designated as the only 
correct order, and updates are required to be applied in this order 
at every replica. This approach has two drawbacks. First, the 
primary copy can become a performance bottleneck for updates to 
the object. More importantly in the context of a distributed 
environment, no updates can be committed, and no application 
progress made, without contacting the primary copy. 
Unavailability of the primary copy brings the entire system to a 
halt. Administrators often try to minimize the possibility of this 
occurrence by ensuring that the primary copy resides on a trusted 
server, protected by a firewall and safeguarded by elaborate 
battery-backup systems. Any other copy connected to the 
corporate intranet can communicate with the primary copy.  

Unfortunately, progress often needs to be made outside of the 
corporate boundaries. For example, IBM sales staff have 
traditionally been expected to be on the road so much that they 
did not even have offices. If salespeople Frank, Joe, and Nancy 
collectively cover the state of Texas, they might expect to be able 
to consolidate their sales data when they meet in Austin. Off-the-
shelf hardware like WaveLAN would allow them to open their 
laptops in a conference room and instantly establish a local 
network between their machines. Unfortunately, even though all 
interested parties are present, no updates to shared data can be 
committed if the primary copy resides in a mainframe in New 
York. Consider the other alternative: locating the primary copy on 
one of their machines, such as Nancy’s. Problems arise if Nancy 
then heads to California for a regional sales meeting. Even if 
Frank and Joe immediately proceed back to New York to update 
the corporate database, they can not commit any new data until 
Nancy returns from California. 

This area has been the subject of a great deal of recent interest [1, 
7, 11, 14, 20]. Protocols with widely varying properties have been 
proposed and implemented in a variety of systems. Many of these 
systems use a primary copy or commit scheme, also called a 
monarchy [2]. This approach relies on a single distinguished 
replica to serialize all commits of object updates, effectively 
holding forward progress in the system hostage to the availability 
of a single server. One can make the claim that progress is still 
possible while the primary copy is disconnected because new 
updates can be generated, just not committed. Various session 
control guarantees [19] allow such tentative updates to be seen by 
the application or user even before commitment. However, no 
“progress” can be made in such cases for applications that wish 
only to see committed data, which is probably the common case.  
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Dynamic voting schemes [1, 9, 12] eliminate the single point of 
failure by allowing a quorum of all replicas to commit an update. 
Quorums are distinct sets that can each commit an update, 
provided that all replicas of the quorum agree. Serialization of 
updates is accomplished by requiring that any two potential 
quorums must share at least one replica. Hence, competing 
updates can not both be committed without first being serialized 
by the replicas in the intersection of the quorums that commit 
them. Dynamic linear voting [8] extends the canonical majority 
voting schemes with an a priori linear ordering on quorums that 
can be used to break ties between equal-sized groups of servers. 
Voting has been shown to provide optimal availability when all 
processors have the same independent failure probability of less 
than ½ [13].  

This paper has two central contributions. First, we describe how 
to extend voting schemes through the use of fixed per-object 
currencies [17, 21, 22]. We say that the currency is fixed because 
there is a fixed amount of currency that is divided among all 
replicas of a single object. The amount of currency held by a 
given replica is used as that replica’s weight during voting rounds. 
Replicas do not necessarily have complete information on the 
amount of currency allocated to other replicas, and currency 
allocation is not static. Nonetheless, updates can be committed 
without complete knowledge of the votes of all replicas because 
the amount of currency remains fixed during failure-free 
operations. Currencies therefore allow votes to take place in a 
decentralized fashion, without any server having complete 
knowledge of group membership. Furthermore, currencies allow 
the behavior of the protocol to be fine-tuned to match expected 
system and application behavior. For example, appropriate 
currency allocation can cause the protocol’s behavior to 
approximate that of a primary-copy or monarchy system. 

Second, we use these currencies to allow voting to take place 
through a pairwise epidemic protocol. Currency-based epidemic 
protocols can make progress and eventually commit object 
updates even if there is never a majority of replicas connected to 
each other simultaneously. Epidemic protocols [4, 15] are 
appropriate for situations in which all replicas need to eventually 
be made consistent, and where disconnections are frequent.  

In addition to the description of the new protocol, we provide 
simulation results showing that currency allocation can be used to 
implement diverse policies. For example, uniform currency 
distributions emulate traditional dynamic voting schemes, while 
allocating all currency to a single server emulates a primary-copy 
scheme. We present results showing the rate at which both 
schemes commit updates, as well as the performance advantages 
of using currency proxies to temporarily reallocate currency 
during planned disconnections. 

We note that recent work [23] has investigated why quorum 
systems have yet to become widespread in real-world 
applications. One of the conclusions is that quorums do not 
enhance availability because either failures are positively 
correlated (when servers are on a single LAN) or network 
partitions occur (when servers are distributed across multiple 
LANs). In the latter case, a quorum constructed on a single LAN 
has higher availability than quorums constructed across multiple 
LANs. However, the weakly-connected environments discussed in 
this work fit neither category. Failures (disconnections) are likely 

to be independent, and partitions, while possible, are not the 
dominant cause of unavailability. 

2. THEORY 
We assume a model in which the shared state consists of a set of 
objects that are replicated across multiple servers. Objects do not 
need to be replicated at all servers, and servers may replicate 
multiple objects. For simplicity of presentation, however, we limit 
our discussion to single objects that are cached at all servers. Our 
discussion is easily extended to include the more general case.  

Objects are modified by updates, which are issued by servers. An 
update consists of either a code fragment or a run-length encoding 
of binary changes. Updates can be transmitted to other servers and 
are assumed to execute atomically at remote sites. Given a 
consistent initial state, application of the same updates in the same 
order on multiple replicas of the same object result in the same 
final object state.  

Updates do not commit globally in one atomic phase because we 
assume an epidemic style of updates and poor connectivity. 
Instead, each server commits updates based on local information. 
However, we show below that any update that commits at any 
server eventually commits everywhere, and in the same order with 
respect to other committed updates. 

2.1 Elections 
A clean way of thinking about update commitment is as a series of 
elections. A server is analogous to a voter, creating an update is 
analogous to a voter deciding to run for office, and a committed 
update is analogous to a candidate winning the election. Voters 
(and hence candidates) have indexes 0 through n-1, where n is the 
total number of voters. We use vi to refer to the voter with index i, 
and ci to refer to the candidate with index i. Candidates win 
elections by cornering a plurality of the votes. Each election 
begins with an underlying agreement of the winners of all 
previous elections. Once an election is over, a new election 
commences. Any given election may have multiple candidates 
(logically concurrent tentative updates), and candidates from 
different elections might be alive in the system at the same time. 
In the latter case, however, uncommitted candidates for any but 
the most recent election have already lost, but this information has 
not yet made it to all voters.  

Because of the style of information flow, there is no centralized 
vote-counting. Instead, each voter independently collects votes 
from other voters and deduces outcomes. This creates situations in 
which the “current” election of distinct servers is temporarily out 
of sync. Voter vi’s current election is the election for which vi is 
collecting votes. In order to implement this protocol, each voter 
maintains three pieces of state:  

1. vi.completed – the number of elections completed locally, 
and 

2. k
iv .[j] – is either the index of the candidate voted for by 

vj in vi’s in election k, or ⊥ , which means that vi has not 
yet seen a vote from vj. The election is understood to be 
vi’s current election if the superscript k is omitted. The 
size of the array is bounded by the total number of 
voters.  



3. vi.curr [j] – The amount of currency voted by vj in vi’s 
current election. Currency allocation may change with 
each election.  

The total amount of currency in any election is 1.0. 
Definition 1: Define uncommitted(vi) as:  

=

n

j
i jcurrv

1
][. , s.t. vi[j] is equal to ⊥ . 

Definition 2: Define votes(vi, k) as: 

 
=

n

j
i jcurrv

1
][. , s.t. vi[j] is equal to k. 

Definition 3: A candidate cj wins vi’s current election when: 

1. votes(vi, j) > 0.5, or 

2. ∀  k ≠ j: 
       votes(vi, k) + uncommitted(vi) < votes(vi, j),   or    
       ((votes(vi, k) + uncommitted(vi)) = votes(vi, j))   and  (j < k)) 
Definition 3 essentially says that a candidate wins with a voter if it 
has a majority or plurality of the vote. Ties are broken with a 
simple deterministic comparison between the indexes of the 
servers that created thee competing updates. The winner of the jth 
vote at vi is denoted vi.commit(j). When an election is won at vi, 
all votes vi[j] are reset to ⊥ . 

It follows naturally from the above definitions that candidates can 
win without all the votes being known. Similarly, updates can be 
committed by a server without complete knowledge of which 
servers have seen the update, or even complete knowledge of 
which servers cache the object. 

2.2 Anti-entropy 
Election information flows from voter to voter through anti-
entropy sessions. In terms of elections, an anti-entropy session is a 
uni-directional flow of information specifying elections that have 
been won, and votes in the current election. More specifically, an 
anti-entropy session from vi to vj causes the following events to 
occur as a single atomic unit: 

1. If vi.completed > vj.completed, then vj.completed ← 
vi.completed and ∀  k, vj[k] ← ⊥ , and: 

       )(.)(.
.

1.
kcommitivkcommitjv
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2. If vj.completed = vi.completed, then  

∀  k  s.t. vj[k] = ⊥ ,   vj[k] ← vi[k]. 

3. If vj[j] = ⊥ , then vj[j] ← vi[i]. 

The first rule states that if vi is aware of the outcome of more 
elections than vj, vj accepts these results as a given, without 
waiting to find out the specific votes that caused these outcomes 
to occur. The second rule says that if both voters are holding the 

same election, then vj will copy all of the votes known to vi that it 
does not yet know itself. The final rule says that if vj has not yet 
voted, it will vote the same as vi. In both of these last two rules, 
the “vote” being copied may be ⊥ . However, as this value only 
overwrites ⊥ , no consistency problems occur.  

2.3 Becoming a candidate 
Voters may become candidates (new updates may be created) in 
any election at any time, provided that: 

1. the election has not been decided for that voter yet, and 

2. the voter has not yet voted in the election. 

Becoming a candidate merely consists of setting vi[i] to i. 

2.4 Correctness 
Given the above definitions, we can show that distinct voters 
arrive at the same election results. 
Theorem 1: After all elections have been completed by all voters: 

∀  i,j,k: vi.commit(k) = vj.commit(k). 

Sketch of Proof: The proof proceeds along the following lines. 
Restrict the discussion to a single election. If vi.[j] = k, for any 
i,j,and k, then vl.[j] will be either k or ⊥  for all other voters l. 
Assume vi commits update k. Let S be the set of servers that vi 
records voting for k. For all servers l, vl.[j] must be either k or ⊥ , 
for all j in S. Therefore, the currency represented by these servers 
either has to be recorded as voting for x or as uncommitted. In 
either case, this amount of currency prevents Definition 3 from 
allowing any other update to be committed. Therefore, all servers 
must eventually deduce the same outcome, or be told of the 
common outcome by other voters ((1) in Section 2.2), and will 
come to the same conclusions. 

3. PRACTICE 
This session discusses our approach to issues that will arise when 
implementing this protocol in a real system. The first issue is 
whether or not to let applications see uncommitted updates. 
Newly created updates are tentative, and may be rolled back 
without ever being committed. Tentative updates may or may not 
be visible to the application, depending on the type of session 
guarantees needed by the application. Updates are committed 
when servers holding a plurality of the object’s currency agree 
that they are acceptable.  

Consider Figure 1 (a). Objects x and y are replicated at sites v1 
through v4. Each site has currency of 0.25 for both objects. Server 
v1 creates a tentative update to x at time t0. At time t1, v1 sends 
information to v2, and at time t2, v2 sends to v3. At this point, three 
of the four replicas know of the tentative update and have ordered 
it before any other tentative updates to x. These replicas can 
commit u1,1 because they control 75% of the object x’s currency. 
However, only v3 knows this. Not knowing of the first election’s 
outcome, v4 naively creates a new update, u4,1 at time t3. This 
update will be aborted at t4 when v4 learns that a majority has 
already determined that u1,1 should be committed.  



Figure 1 (b) shows an example of two competing updates being 
started at time t5. Each synchronizes with one other replica at t6, 
leading to a potential stalemate in which each competing update 
has 50% of the currency. While currency allocation schemes 
could be rigged to prevent this from occurring in the case of two 
competing updates, three or more competing updates could still 
lead to the same problem. The lexicographic tie-breaker will favor 
u1,2 over u4,2. 

3.1 Voting 
Deno’s replication protocol makes few assumptions on the 
completeness of available replica information. For example, Deno 
propagates updates to shared objects in the absence of knowledge 
of the complete set of replicas, or even of a primary copy that has 
pointers to all extent replicas. This problem, and many others, is 
greatly complicated by the peer-to-peer communication. This 
communication pattern results in data moving slowly through the 
system, one step at a time.  

Objects are initially created with a total currency of 1.0, which is 
held by the creating server. New replicas are created by sending 
requests to servers that have existing replicas. The response to 
such requests contains both the object's data and some amount of 
currency. This amount is subtracted from the currency held by the 
existing replica. The total amount of currency in the system 
remains constant during failure-free operation. 

Going back to the example discussed in Section 1, assume that 
each replica has an equal amount of currency. Any three replicas 
control 75% of the currency, and can conclude that no other set of 
replicas is concurrently committing updates to the same object. 

Hence, they can commit updates and application progress can be 
achieved.  

Progress is achieved in the above examples because one set of 
replicas had more than half of the currency. What happens if two 
disjoint sets of replicas each have exactly half of the currency? 
More generally, consider the case where multiple tentative 
updates each gain currency support of less than 50%, but all 
currency is consumed.  

We handle conflicts by generalizing the majority-voting scheme to 
commit updates that fail to achieve a majority. An update can be 
committed if no other update can garner more currency, and the 
update is chosen by the tie-breaking procedure. Deno breaks ties 
through a lexicographic comparison between the server ID’s of 
the servers that created the updates. This procedure does not 
require the participation of all replicas, but it does require that the 
amount of unaccounted-for currency not be enough to change the 
update chosen to be committed. Conflicting updates can therefore 
slow the process of committing updates because more complete 
information is needed. 

It is also worth noting that the primary copy and voting 
approaches to update commitment are not necessarily mutually 
exclusive. Currencies can be allocated in ways that prefer 
majorities containing specific replicas, or more than half of the 
currency can be retained by a given replica. The latter situation 
reduces to a primary copy scheme. 

3.2 Currency allocation 
Timely update commitment depends on being able to assemble a 
majority to vote on updates. The cost of assembling a majority is 

v1 v2 v3 v4

u1,1(x)t0

t1

u1,2(y) u4,2(y)

t2

??

t3

t4

t5

(a)

(b) t6

x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25 x=0.25, y=0.25

u4,1(x)

t7

 
Figure 1: Four replicas each of objects x and y. ui,j is the update created by vi in election j. 
Currency is divided evenly for both replicas. (a) shows the progress of update u1,1 from v1. The 
update is committed because a majority of the object’s currency “sees” it before any competing 
update. (b) shows two competing updates to y. At time t6, both u1,2 and u4,2 have been seen by 
replicas with a combined currency of 0.50. 



highly dependent on the availability and currency distribution of 
the object replicas. There are a number of different strategies that 
could be pursued in currency allocation. The best choice can 
depend on application semantics, expected availability of 
individual servers, and network topology. A peer-to-peer 
application might work best with currency evenly distributed 
among the replicas, while a client-server application might work 
better if any one client and the server together constitute a 
majority. Note that a uniform distribution of currency is not 
necessarily easy to achieve unless the number of replicas is 
known. Even if the number of replicas is known a priori, poor 
distributions can result when replicas are created by other than the 
first replica. The problem is that currency is split between any 
new replica and the replica that created it. Unless the existing 
replica has twice the eventually desired average currency, both 
will have only half the desired values. 

Deno applications can direct currency allocation by providing a 
hint at object creation as to how many replicas are expected to be 
created. This hint allows Deno to allocate currency to replica 
requests in a way that provides a uniform level of currency for the 
expected number of replicas. For this to work, new replicas must 
be created from the original replica. 

Deno also allows servers to exchange currency in peer-to-peer 
changes. Peer-to-peer exchanges can be used to converge 
currencies to desired levels from any starting point. 

3.3 Proxies 
Proxies are often used to represent unavailable devices in 
distributed systems. A primary can engage a proxy to vote in its 
place in commit majorities. The use of proxies can prevent 
degradation in the overall commit rate when devices have 
expected, planned-for disconnections. In fact, proxies can even 
improve commit latency because currency is concentrated in 
fewer servers, and fewer rounds of communication are required to 
establish a majority. An example where proxies would be useful is 
when a laptop is taken on a trip where no other servers will be 
available. The laptop’s currency can be transferred to a desktop 
machine for the trip’s duration.  

There are two obvious approaches to including proxies in 
currency-based replication protocols. The first is to explicitly 
transfer currency to the proxy. The proxy’s weight in subsequent 
votes temporarily increases to encompass both its own currency 
and that of the proxy’s primary. One drawback is that proxies 
become visible to all servers. Problems can arise from race 
conditions between the information about a proxy being engaged 
or disengaged, and tentative updates. 

A less intrusive approach is to have the proxy tell other servers 
that the primary’s vote is the same as it’s own while the proxy is 
engaged. A proxy vote is then indistinguishable to other servers 
from the situation where a server votes and then disconnects. 
When a primary reconnects, it updates its own information to 
match that of the proxy, including votes on prior and current 
tentative updates. The primary treats any votes cast in its behalf as 
if they had been cast directly. In particular, any votes cast for 
tentative updates remain cast. The result is that there are no race 
conditions, and the entire proxy engagement is transparent to the 
rest of the system. 

Proxies whose primaries fail can permanently vote the primary’s 
currency. The advantage of this approach is that even the failure is 
transparent to the other servers. The orphaned data structures will 
continue to collect in long-running computations as more servers 
fail. A garbage-collection mechanism could periodically reclaim 
data structures pertaining to failed servers. 

The default behavior can be used to deal with proxies that fail. 
Consider a primary that reconnects, only to find that its proxy has 
failed. If a failure update for the proxy has been committed, but no 
such update has been committed for primary, the primary can 
immediately resume voting without further mechanism. If failure 
updates have been committed for both, the normal mechanism for 
reconstituting failed servers is used. 

3.4 Failure detection and handling 
Failure detection in the domain of mobile applications is a 
difficult process. Servers may be out of contact either temporarily 
or permanently. No action should be taken in the former case, but 
action must be taken in the latter case because the currency held 
by the server can prevent updates from committing. 

Detecting permanent disconnections is the first problem. Simple 
timeouts are not workable because disconnection is the rule rather 
than the exception. Disconnections are not only potentially 
frequently, but might be quite lengthy. A second approach is to 
count the updates that commit without a vote from the server in 
question. The advantage of this approach is that servers planning 
disconnections will designate proxies to vote their currency. 
Hence, votes are only not cast by servers that are unexpectedly out 
of touch with the rest of the system.  

Once a permanent disconnection is detected, action must be taken 
to recoup the currency held by the disconnected server. Loss of 
this currency can either slow or completely prevent updates from 
being committed. The protocol can compensate for failed replicas 
by revaluating the currency.  

The purpose of revaluation is to redistribute the currency of the 
failed server to other servers in the same proportions as the 
current currency distribution. A server proposes to revaluate the 
currency of an object by issuing a revaluation update. 
Revaluation updates compete on an equal basis with other 
updates. If committed, each server increments its local currency 
by a percentage equal to the failed server’s currency in the last 
election. Additionally, any server that exchanged currency with 
the failed server subsequently to the last election resets its 
currency to the level prior to the exchange.  

A “failed” server that rejoins the computation can not have voted 
on any election except the one won by the revaluation. Hence, no 
votes can be cast by failed server until it learns of the revaluation. 
Upon learning of the revaluation, the server resets its current 
currency to zero. The server may obtain currency from other 
servers through peer-to-peer exchanges (Section 3.2). 

As with other changes to objects, a currency revaluation is a 
special type of update operation on an object. Revaluations must 
be committed before they can take effect. One implication is that 
revaluation can only occur if a plurality of the current currency 
can be obtained. This is necessary to prevent parallel currency 
revaluations in multiple partitions after a network failure. 



3.5 Commutativity tables 
Most databases, Deno included, expect a single ordering of all 
updates to a single object. However, Deno will also allow 
application-specific functions to modify the system’s consistency 
requirements. The first way in which Deno will allow consistency 
to be relaxed is through commutativity tables. Operations in 
typical database systems are not commutable, but many operations 
in collaborative and groupware applications are. We can take 
advantage of this by allowing applications to define operation 
templates, lacking only the instantiation of the template 
parameters. Applications can then record information on which 
operations are commutative through two-dimensional grids called 
commutativity tables, which indicate commutability for each 
possible pair of operation types.  

As an example, consider a scalar object representing the balance 
of a checking account, shown in Table 1. Simple credits and 
debits can be executed in any order without changing the final 
balance. However, calculating and crediting the account for 
earned interest based on the current balance does not commute 
with respect to credits and debits.  

Operation templates must be defined in advance in order to be 
included in the tables. However, the data used by these operations 
need not be static. For example, the specific amounts credited or 
debited to an account in Table 1 are irrelevant1. Moreover, all 
operations do not need to be defined in advance. By default, Deno 
assumes that operations not defined in advance are not 
commutative with respect to any other operation. 

More specifically, we can think of each update being generated in 
a given context, where a context is the current election number of 
a given object. Without commutativity tables, all except the 
winning update created during in a given context are aborted. 
With commutativity tables, all losing updates are compared 
against the winning update to check for commutativity, and the 
commutative updates are reborn in the next election. As 
commutativity tables are created at object creation time, this 
process can be repeated deterministically at each server.  

We can generalize the commutativity table into general-purpose 
commutativity procedures in order to exploit more sophisticated 
inter-relationships. An update-specific commutativity procedure 
can be supplied with each update. Analogously to the above, each 
losing update with a commutativity procedure has the procedure 
run against the contents of all local data objects after the winning 
update has been applied. Allowing all objects to be inspected 
opens the possibility of the procedures returning different results 
at different sites. This does not affect correctness, but can be 
                                                                 
1 Ignoring error conditions for the moment. It is certainly possible 

that processing all debits before credits might result in a bank 
shutting down an account unnecessarily. 

difficult to reason with. As an optimization, procedures can be 
limited to inspecting only the current object.  

3.6 Anti-entropy 
The pairwise communication between servers in epidemic 
protocols is called anti-entropy because each such session reduces 
differences between servers, thereby decreasing total entropy. A 
Deno anti-entropy session consists of one server, s1, picking a 
second server, s2 to pull information from. The selections of s2 
will initially be made at random among other servers known to s1. 
However, this choice could be skewed according to some scheme 
that eliminates redundancy in highly-available environments. A 
server votes for the first update for an object that it “sees” after 
the last was committed.  

The initiating server pulls information from the responding server. 
This is in contrast to a server pushing information to another 
server. Pushing information is inexpensive, and allows a number 
of non-traditional transmission mediums, such as floppies, email, 
or satellite transmission.  

However, pulling information allows the initiating server to 
summarize its state to the responding server. This summary allows 
the responding server to respond with only new information. By 
contrast, push transmissions have to be conservative about 
underlying assumptions of the data that has been seen by the 
destination. Without any knowledge of the destination, the 
initiator of a push would have to send all updates in order to 
ensure that any of the information can be used. Consider the 
alternative. If the initiator of a push transfer knows of 20 updates 
to object x and assumes that the destination must know of at least 
10 of the updates, it will only transmit updates 11 through 20. 
However, if the destination had only seen the first 9 updates, it 
can not use any of the later updates because updates must be 
applied in order. The result is that push transfers tend to be 
conservative, and result in wasted resources.  

Another advantage of pull transfers is that tend to commit updates 
more quickly than push transfers [4]. Let pi be the probability that 
a server has not seen a new update after the ith interval after the 
creation. Then the probability that the server has not seen the 
update after the i+1th iteration is just: 

2
1 ii pp =+  

which converges rapidly. The corresponding recurrence for 
pushes is: 
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This second recurrence converges (commits updates) more slowly 
than the first. Deno supports push transfers as well as pull, but 
uses pulls by default. 

Note also that servers can transparently gift other servers with 
currency, allowing the system to stabilize in a state with uniform 
currency distribution regardless of the initial configuration. 
However, care must be taken to ensure that knowledge about the 
currency transaction moves with at least as fast as knowledge of 
any vote. In other words, changing currency requires each “vote” 
to be accompanied by the amount of currency held by the server 
when the vote was made. Additionally, care needs to be taken to 

 Credits Debits Interest 

Credits x x  

Debits x x  

Interest   x 
Table 1: Commutativity Table 



avoid transferring currency from a server that has voted on a given 
update to one that has not.  

4. SIMULATION 
The primary goal of our protocols will be to improve the ability of 
the system to make progress during times of low connectivity. 
This includes improving read availability, and the ability to 
commit updates. However, poor performance and speed at 
committing could make a system unusable during periods of good 
connectivity. We built a simple simulator in order to gain an 
intuitive into the protocol’s behavior in our expected 
environments. We simulate a system in which time is broken into 
uniform intervals. Each server initiates a randomly-directed anti-
entropy session during each interval. The initial metric of interest 
is commit speed versus the number of servers.  

Figure 2 (a) shows a plot of the average number of intervals 
needed to commit an update versus the number of servers. We 
assume uniform distribution of currency and a completely 
available, fully-connected system. We show three protocols: 
“primary” is a simple primary copy scheme with a randomly 
chosen primary copy, “voting” is Deno’s default voting scheme, 
and “voting-2” is this same scheme assuming a reliable underlying 
communication protocol. Reliable communication allows the 
responding server to accurately predict when the initiating server 
will vote for an update based on the responding server’s 
information. This results in slightly faster information 
propagation, but the resulting performance is still short of the 
primary copy scheme. This is to be expected, as a primary-copy 
scheme can potentially commit updates with much less 
communication. 

However, the time at which the first server commits an update is 
not necessarily the quantity that best predicts application 
performance. Since all servers have an equal chance of being read, 
a second interesting metric would be the time at which the last 
server commits an update. Figure 2 (b) shows that the rate at 
which the Deno’s protocol commits updates everywhere in the 
system is virtually identical to that of the primary copy. The 
metric of most use to applications probably lies somewhere 
between the two. 

Deno’s currency mechanism allows currency allocation to be used 
in tuning protocol performance. Figure 3 shows commit costs 
(first commit) versus the degree to which object currency is 
skewed towards a single replica. A skew of 0% results in the 
default uniform distribution of currency. A skew of 100% 
emulates a primary-copy scheme. The plot suggests that a 
sophisticated replication protocol might benefit from skewing 
currency towards a single copy in times of high connectivity, and 
from smoothing out the distribution during times of low 
connectivity. 

Measuring the availability of an epidemic protocol is not 
necessarily well defined. The availability of a typical quorum 
protocol is the percentage of time that a quorum is simultaneously 
connected and able to communicate. However, epidemic protocols 
do not require any server to be able to talk to more than one other 
server in order to make progress. While this implies that 
availability might be a poor metric, we can capture the affects of 
disconnections by looking at its effect on commit rates. 

Figure 4 shows plots of commit rates versus the probability that a 
server will disconnect in any given interval. The commit rates are 
from 2000-interval runs, with new updates created every 20 
intervals if previous updates have been committed. Disconnection 
probabilities are assumed to be uniform. We show curves for two 
different disconnection durations, and both with and without 
proxies. Section 3.3 alluded to the fact that the use of proxies can 
actually improve performance by effectively concentrating the 
currency in fewer replicas. This can be seen in the line for 
duration 10 with proxies. Proxies dramatically improve commit 
rates for both durations.  

Note that these availability curves assume independent failures, 
i.e. no network partitions. One of the main advantages of voting 
schemes is that a single network partition can not prevent updates 
from being committed. Multiple partitions can be tolerated if they 
do not result in a single partition of less than half of the original 
replicas, or if the revaluation protocol is run between partitions. 

5. Related Work 
We discuss related systems below. Related work on voting and 
transaction semantics is referenced in the text where appropriate. 
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Figure 2: Commit rates: (a) shows the average number of intervals needed for the first replica to commit an 
update versus the number of replicas for the default voting scheme, voting assuming reliable communication, 
and a primary-copy scheme. (b) shows the number of intervals for last replica to commit updates. 



Bayou [20] also uses epidemic information flow via anti-entropy 
sessions. However, Bayou objects are committed through a 
primary copy rather than a voting scheme. Rather than making 
guarantees that an update commits only in the context in which it 
was created, Bayou allows all updates to compete and be 
committed. Conflicts are detected through dependency-check 
procedures (similar to our commutativity procedures) that are 
supplied with each update. These procedures are run at each 
server in order to decide whether an update can be committed 
there. Note that these procedures need to be deterministic with 
respect to the sites that they execute on, while non-determinism of 
commutativity procedures only affects the rate at which updates 
commit, not correctness. 

Coda [10] and Ficus [18] share many of the goals of our work in 
the more limited domain of distributed file systems. This choice in 
domain allows the use of strong assumptions on the relative 
scarcity of contention. Additionally, reconciliation can be 
automated for many types of files. Hence, these systems both use 
replication that is optimistic in the sense of allowing conflicting 
transactions to commit. Our work makes stronger consistency 
guarantees at the expense of committing fewer updates. 

Dan [3] points out several shortcomings of the traditional ACID 
transactional model [6] when applied to Internet environments. 
Primarily, entities are less concerned with the consistency of local 
databases with respect to partner databases than they are about 
ensuring that transactions, including legal obligations, are durably 
recorded. Coyote applications can describe compensating 
transactions that can be used to recover from transactions that 
need to be retracted. This approach assumes more optimism than 
ours. However, a similar approach could be used to extend Deno’s 
mechanisms in order to allow more updates to commit, at the cost 
of  the corresponding compensating transactions. 

Gray [5] categorizes replication systems along two axis: group 
versus master and eager versus lazy. Our system seems to fit into 
the lazy group category because updates move slowly, and no 
single server ever needs to sign off on any update in order to have 
it commit. However, Gray also assumes that lazy systems commit 

updates optimistically, relying on subsequent reconciliation 
sessions to ensure data consistency. Deno’s protocol does not 
commit updates optimistically, so it would have to be classified as 
an eager group protocol. However, it does not suffer the problems 
with such protocols defined by Gray because information is 
allowed to propagate slowly. Moreover, our approach could be 
viewed as a generalization of Gray’s two-tier solution because 
weights could be rigged to provide the same functionality with 
our protocol. 

6. CONCLUSIONS AND FUTURE WORK 
Weakly-connected environments pose special problems to object 
replication systems. We have described a protocol that uses a 
combination of voting with fixed currencies and epidemic 
information flow to allow updates to commit in such 
environments. This approach is well-suited to weakly-connected 
environments specifically because it is highly decentralized. 
However, this decentralization could make the protocol unwieldy 
in times of high connectivity. For example, users of interactive 
groupware applications are likely to tolerate slow response times 
when intermittently connected, but will expect low response times 
when connected to the corporate backbone. This type of behavior 
can be built on top of the protocol described above by increasing 
the frequency of and directing the destinations of the anti-entropy 
sessions, somewhat similarly to rumor-mongering [16].  

We are currently building the Deno prototype to investigate these 
and other issues. 
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