
Lazy Release Consistency

for Software Distributed Shared Memory

Pete Keleher, Alan L. Cox, and Willy Zwaenepoel

Department of Computer Science

Rice University

March 9, 1992

Abstract

Relaxed memory consistency models, such as release

consistency, were introduced in order to reduce the im-

pact of remote memory access latency in both software

and hardware distributed shared memory (DSM). How-

ever, in a software DSM, it is also important to reduce

the number of messages and the amount of data ex-

changed for remote memory access. Lazy release con-

sistency is a new algorithm for implementing release

consistency that lazily pulls modi�cations across the

interconnect only when necessary. Trace-driven simula-

tion using the SPLASH benchmarks indicates that lazy

release consistency reduces both the number of mes-

sages and the amount of data transferred between pro-

cessors. These reductions are especially signi�cant for

programs that exhibit false sharing and make extensive

use of locks.

1 Introduction

Over the past few years, researchers in hardware dis-

tributed shared memory (DSM) have proposed relaxed

memory consistency models to reduce the latency as-

sociated with remote memory accesses [1, 7, 8, 9, 13].

For instance, in release consistency (RC) [8], writes to

shared memory by processor p1 need to be performed

(become visible) at another processor p2 only when a

subsequent release of p1 performs at p2. This relaxation

of the memory consistency model allows the DASH im-

plementation of RC [11] to combat memory latency by

pipelining writes to shared memory (see Figure 1). The

processor is stalled only when executing a release, at

which time it must wait for all its previous writes to

perform.

0This work is supported in part by NSF Grant No. CDA-8619893

and Texas ATP Grant No. 0036404013. Pete Keleher was sup-

ported by a NASA Fellowship.

w(x) w(y) w(z) rel

x y z

p1

p2

Figure 1 Pipelining Remote Memory

Accesses in DASH.

In software DSMs, it is also important to reduce the

number of messages exchanged. Sending a message in

a software DSM is more expensive than in a hardware

DSM, because it may involve traps into the operating

system kernel, interrupts, context switches, and the ex-

ecution of several layers of networking software. Ideally,

the number of messages exchanged in a software DSM

should equal the number of messages exchanged in a

message passing implementation of the same applica-

tion. Therefore, Munin's write-shared protocol [5], a

software implementation of RC, bu�ers writes until a

release, instead of pipelining them as in the DASH im-

plementation. At the release, all writes going to the

same destination are merged into a single message (see

Figure 2).

Even Munin's write-shared protocol may send more

messages than a message passing implementation of the

w(x) w(y) w(z) rel

x,y,z

p1

p2

Figure 2 Merging of Remote Memory

Updates in Munin.

1

same application. Consider the example of Figure 3,

where processors p1 through p4 repeatedly acquire the

lock l, write the shared variable x, and then release l.

If an update policy is used in conjunction with Munin's

write-shared protocol, and x is present in all caches,

then all of these cached copies are updated at every

release. Logically, however, it su�ces to update each

processor's copy only when it acquires l. This results in

a single message exchange per acquire, as in a message

passing implementation. This problem is not peculiar

to the use of an update policy. Similar examples can

be constructed for an invalidate policy.

Lazy release consistency (LRC) is a new algorithm

for implementing RC, aimed at reducing both the num-

ber of messages and the amount of data exchanged.

Unlike eager algorithms such as Munin's write-shared

protocol, lazy algorithms such as LRC do not make

modi�cations globally visible at the time of a release.

Instead, LRC guarantees only that a processor that ac-

quires a lock will see all modi�cations that \precede"

the lock acquire. The term \preceding" in this context

is to be interpreted in the transitive sense: informally,

a modi�cation precedes an acquire, if it occurs before

any release such that there is a chain of release-acquire

operations on the same lock, ending with the current

acquire (see Section 4 for a precise de�nition). For in-

stance, in Figure 3, all modi�cations that occur in pro-

gram order before any of the releases in p1 through p3
precede the lock acquisition in p4. With LRC, modi�-

cations are propagated at the time of an acquire. Only

the modi�cations that \precede" the acquire are sent to

the acquiring processor. The modi�cations can be pig-

gybacked on the message that grants the lock, further

reducing message tra�c. Figure 4 shows the message

tra�c in LRC for the same shared data accesses as in

Figure 3. l and x are sent in a single message at each

acquire.

By not propagating modi�cations globally at the time

of the release, and by piggybacking data movement on

lock transfer messages, LRC reduces both the num-

acq r(x)

acq w(x) rel

w(x) rel

acq w(x) rel

p1

p2

p3

p4

Figure 3 Repeated Updates of Cached

Copies in Eager RC.

ber of messages and the amount of data exchanged.

We present the results of a simulation study, using

the SPLASH benchmarks, that con�rms this intuition.

LRC is, however, more complex to implement than ea-

ger RC because it must keep track of the \precedes"

relation. We intend to implement LRC to evaluate its

runtime cost. The message and data reductions seen in

our simulations seem to indicate that LRC will outper-

form eager RC in a software DSM environment.

The outline of the rest of this paper is as follows. In

Section 2, we state the de�nition of RC. In Section 3,

we present an eager implementation of RC based on

Munin's write-shared protocol. In Section 4, we de�ne

LRC and outline its implementation. In Section 5, we

describe a comparison through simulation of eager RC

and LRC. We brie
y discuss related work in Section 6,

and we draw conclusions and explore avenues for further

work in Section 7.

2 Release Consistency

Release consistency (RC) [8] is a form of relaxed mem-

ory consistency that allows the e�ects of shared memory

accesses to be delayed until certain specially labeled ac-

cesses occur. RC requires shared memory accesses to

be labeled as either ordinary or special . Within the

special category, accesses are divided into those labeled

sync and nsync, and sync accesses are further subdi-

vided into acquires and releases.

De�nition 2.1 A system is release consistent if:

1. Before an ordinary access is allowed to perform

with respect to any other processor, all previous ac-

quires must be performed.

2. Before a release is allowed to perform with respect

to any other processor, all previous ordinary reads

and writes must be performed.

3. Special accesses are sequentially consistent with re-

spect to one another.

acq r(x)

acq w(x) rel

w(x) rel

acq w(x) rel

p1

p2

p3

p4

Figure 4 Message Tra�c in LRC.

2

A write is performed with respect to another processor

when reads by that processor return the new write's (or

a subsequent write's) value. Reads are performed with

respect to another processor when a write issued by that

processor can no longer a�ect the value returned by the

read. Accesses are performed when they are performed

with respect to all processors in the system.

Properly labeled programs [8] produce the same re-

sults on RC memory as they would on sequentially con-

sistent memory [10]. Informally, a program is properly

labeled if there are \enough" accesses labeled as ac-

quires or releases, such that, for all legal interleavings

of accesses, each pair of con
icting ordinary accesses is

separated by a release-acquire chain. Two accesses con-

ict if they reference the same memory location, and at

least one of them is a write.

RC implementations can delay the e�ects of shared

memory accesses as long as they meet the constraints

of De�nition 2.1.

3 Eager Release Consistency

We base our eager RC algorithm on Munin's write-

shared protocol [5]. A processor delays propagating

its modi�cations to shared data until it comes to a re-

lease. At that time, it propagates the modi�cations to

all other processors that cache the modi�ed pages. For

an invalidate protocol, this simply entails sending inval-

idations for all modi�ed pages to the other processors

that cache these pages. In order to limit the amount of

data exchanged, an update protocol sends a di� of each

modi�ed page to other cachers. A di� describes the

modi�cations made to the page, which are then merged

in the other cached copies. In either case, the release

blocks until acknowledgments have been received from

all other cachers.

No consistency-related operations occur on an ac-

quire. The protocol locates the processor that last exe-

cuted a release on the same variable, and the resulting

value is sent from the last releaser to the current ac-

quirer.

On an access miss, a message is sent to the directory

manager for the page. The directory manager forwards

the request to the current owner, and the current owner

sends the page to the processor that incurred the access

miss.

4 Lazy Release Consistency

In LRC, the propagation of modi�cations is further

postponed until the time of the acquire. At this time,

the acquiring processor determines which modi�cations

it needs to see according to the de�nition of RC. To do

so, LRC uses a representation of the happened-before-

1 partial order introduced by Adve and Hill [2]. The

happened-before-1 partial order is a formalization of the

\preceding" relation mentioned in Section 1.

4.1 The happened-before-1 Partial Order

We summarize here the relevant aspects of the de�ni-

tions of happened-before-1 [2].

De�nition 4.1 Shared memory accesses are partially

ordered by happened-before-1, denoted
hb1

!, de�ned as

follows:

� If a1 and a2 are accesses on the same processor,

and a1 occurs before a2 in program order, then

a1
hb1

! a2.

� If a1 is a release on processor p1, and a2 is an

acquire on the same memory location on processor

p2, and a2 returns the value written by a1, then

a1
hb1

! a2.

� If a1
hb1

! a2 and a2
hb1

! a3, then a1
hb1

! a3.

RC requires that before a processor may continue

past an acquire, all shared accesses that precede the

acquire according to
hb1

! must be performed at the ac-

quiring processor. LRC guarantees that this property

holds by propagating write-notices on the message that

e�ects a release-acquire pair. A write-notice is an in-

dication that a page has been modi�ed in a particular

interval, but it does not contain the actual modi�ca-

tions. Write-notices and actual values of modi�cations

may be sent t di�erent times in di�erent messages.

4.2 Write-Notice Propagation

We divide the execution of each processor into distinct

intervals, a new interval beginning with each special

access executed by the processor. We de�ne a happens-

before-1 partial order between intervals in the obvious

way: an interval i1 precedes an interval i2 according to
hb1

! , if all accesses in i1 precede all accesses in i2 ac-

cording to
hb1

! . An interval is said to be performed at a

processor if all modi�cations made during that interval

have been performed at that processor.

Let V p(i) be the vector timestamp [14] for interval i

of processor p. The number of elements in the vector

V p(i) is equal to the number of processors. The entry

for processor p in V p(i) is equal to i. The entry for pro-

cessor q 6= p in V p(i) denotes the most recent interval

of processor q that has performed at p.

On an acquire, the acquiring processor, p, sends its

current vector timestamp V p to the previous releaser,

3

q. Processor q uses this information to send p the write-

notices for all intervals of all processors that have per-

formed at q but have not yet performed at p. Releases

are purely local operations in LRC, no messages are

exchanged.

4.3 Data Movement Protocols

4.3.1 Multiple Writer Protocols

Both Munin and LRC allow multiple-writer protocols.

Multiple processors can write to di�erent parts of the

same page concurrently, without intervening synchro-

nization. This is in contrast to the exclusive-writer pro-

tocol used, for instance, in DASH [8], where a processor

must obtain exclusive access to a cache line before it

can be modi�ed. Experience with Munin [5] indicates

that multiple-writer protocols perform well in software

DSMs, because they can handle false sharing without

generating large amounts of message tra�c. Given the

large page sizes in software DSMs, false sharing is an im-

portant problem. Exclusive-writer protocols may cause

falsely shared pages to \ping-pong" back and forth be-

tween di�erent processors. Multiple-writer protocols al-

low each processor to write into a falsely shared page

without any message tra�c. The modi�cations of the

di�erent processors are later merged using the di�s de-

scribed in Section 3.

4.3.2 Invalidate vs. Update

In the case of an invalidate protocol, the acquiring pro-

cessor invalidates all pages in its cache for which it re-

ceived write-notices. In the case of an update proto-

col, the acquiring processor updates those pages. Let

i be the current interval. For each page in the cache,

di�s must be obtained from all concurrent last modi-

�ers. These are all intervals j, such that j
hb1

! i, the

page was modi�ed in interval j, and there is no interval

k, such that j
hb1

! k
hb1

! i, in which the modi�cation from

interval j was overwritten.

4.3.3 Access Misses

On an access miss, a copy of the page may have to be

retrieved, as well as a number of di�s. The modi�ca-

tions summarized by the di�s are then merged into the

page before it is accessed.

On an access miss during interval i, di�s must be

obtained for all intervals j, such that j
hb1

! i, the missing

page was modi�ed in interval j, and there is no interval

k, such that j
hb1

! k
hb1

! i, in which the modi�cation from

interval j was overwritten.

If the processor still holds an (invalidated) copy of

the page, LRC does not send the entire page over the

interconnect. The write-notices contain all the infor-

mation necessary to determine which di�s need to be

applied to this copy of the page in order to bring it up-

to-date. The happened-before-1 partial order speci�es

the order in which the di�s need to be applied. This

optimization reduces the amount of data sent.

5 Simulation

We present the results of a simulation study based on

multiprocessor traces of �ve shared-memory application

programs from the SPLASH suite [16]. We measured

the number of messages and the amount of data ex-

changed by each program for an execution using each of

four protocols: lazy update (LU), lazy invalidate (LI),

eager update (EU), and eager invalidate (EI). We then

relate the communication behavior to the shared mem-

ory access patterns of the application programs.

5.1 Methodology

A trace was generated from a 32-processor execution of

each program using the Tango multiprocessor simula-

tor [6]. These traces were then fed into our protocol

simulator. We simulated page sizes from 512 to 8192

bytes.

We assume in�nite caches and reliable FIFO commu-

nication channels. We do not assume any broadcast or

multicast capability of the network.

5.2 Message Counts

The SPLASH programs use barriers and exclusive locks

for synchronization. Communication occurs on barrier

arrival and departure, on lock and unlock, and on an

access miss. Table 1 shows the message count for each

of these events under each of the protocols.

A miss costs either two or three messages for the

eager protocols, depending on whether or not the di-

rectory manager has a valid copy of the page (see Sec-

tion 3). For the lazy protocols, a miss requires collecting

di�s from the concurrent last modi�ers of the page (see

Section 4.3.2).

For a lock operation, three messages are used by all

four protocols for �nding and transferring the lock. In

addition, in LU, the new lock holder collects all the di�s

necessary to bring its cached pages up-to-date, causing

2h additional messages. No extra messages are required

at this time for LI, because the invalidations are pig-

gybacked on the lock transfer message. Also, no addi-

tional messages are required for EU and EI.

On unlocks, the eager protocols send write-notices to

all cachers of locally modi�ed pages, using 2c messages.

The lazy protocols do not communicate on unlocks.

4

Access Miss Locks Unlocks Barriers

LI 2m 3 0 2(n-1)

LU 2m 3+2h 0 2(n-1)+2u

EI 2 or 3 3 2c 2(n-1) + v

EU 2 3 2c 2(n-1) + 2u

m = # concurrent last modi�ers for the missing page

h = # other concurrent last modi�ers for any local page

c = # other cachers of the page

n = # processors in system

p = # pages in system

u =
P

n

i=1
(# other cachers of pages modi�ed by i)

v =
P

p

i=1
(# excess invalidators of page i)

Table 1 Shared Memory Operation Message Costs

Barriers are implemented by sending an arrival mes-

sage to the barrier master and waiting for the return of

an exit message. Consequently, 2(n � 1) messages are

used to implement a barrier. In addition, both update

protocols require 2u messages to send updates to all

processors caching modi�ed pages. The LI protocol re-

quires no additional messages, because invalidations are

piggybacked on the messages used for implementing the

barrier. The EI protocol may require a small number of

additional messages v to resolve multiple invalidations

of a single page.

5.3 SPLASH Program Suite

5.3.1 LocusRoute

LocusRoute is a VLSI cell router. The major data

structure is a cost grid for the cell, a cell's cost being

the number of wires already running through it. Work

is allocated to processors a wire at a time. Synchro-

nization is accomplished almost entirely through locks

that protect access to a central task queue.

Data movement in LocusRoute is largely migra-

tory [17]: locks dominate the synchronization, and data

moves according to lock accesses. As page size in-

creases, false sharing also becomes important. Both

of these factors favor lazy protocols.

Figures 5 and 6 show LocusRoute's performance.

The lazy protocols reduce the number of messages and

the amount of data exchanged, for all page sizes.

5.3.2 Cholesky Factorization

Cholesky performs the symbolic and numeric portions

of a Cholesky factorization of a sparse positive de�nite

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

Figure 5 LocusRoute Messages.

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

Figure 6 LocusRoute Data.

5

matrix. Locks are used to control access to a global

task queue and to arbitrate access when simultaneous

supernodal modi�cations attempt to modify the same

column. No barriers are used.

Data motion in Cholesky is largely migratory, as in

LocusRoute. The resulting performance of Cholesky is

therefore also similar to that of LocusRoute: Figures 7

and 8 show that the lazy protocols reduce the number

of messages and the amount of data exchanged, for all

page sizes.

5.3.3 MP3D

MP3D simulates rare�ed hypersonic air
ow over an ob-

ject using a Monte Carlo algorithm. Each timestep in-

volves several barriers, with locks used to control access

to global event counters.

The message tra�c for MP3D is dominated by access

misses. Figures 9 and 10 show MP3D's performance. The

lazy protocols exchange less data than the eager ones,

because they only need to send di�s on an access miss

and not full pages, as do the eager protocols. The up-

date protocols exchange fewer messages, because they

incur fewer access misses.

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

Figure 7 Cholesky Messages.

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

Figure 8 Cholesky Data.

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Figure 9 MP3D Messages.

6

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Figure 10 MP3D Data.

5.3.4 Water

Water performs an N-body molecular dynamics simula-

tion, evaluating forces and potentials in a system of wa-

ter molecules in the liquid state. At each timestep, ev-

ery molecule's velocity and potential is computed from

the in
uences of other molecules within a spherical cut-

o� range. Several barriers are used to synchronize each

timestep, while locks are used to control access to a

global running sum and to each molecule's force sum.

Of the �ve benchmark programs, Water has the least

communication. Figures 11 and 12 show the message

and data tra�c for Water. While the lazy protocols

use only slightly fewer messages than eager protocols

for large page sizes, their data totals are signi�cantly

lower because they can often avoid bringing an entire

page across the network on an access miss.

5.3.5 Pthor

Pthor is a parallel logic simulator. The major data

structures represent logic elements, wires between ele-

ments, and per-processor work queues. Locks are used

to protect access to all three types of data structures.

Barriers are used only when deadlock occurs and all

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Figure 11 Water Messages.

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

Figure 12 Water Data.

7

task queues are empty.

In Pthor, each processor has a set of pages that it

modi�es. However, these pages are also frequently read

by the other processors. Under an invalidation protocol,

this causes a large number of invalidations and later

reloads.

Figures 13 and 14 show Pthor's performance. Data

totals for EI are particularly high, because frequent

reloads cause the entire page to be sent. The message

count for LI is higher than for LU, because LI has more

access misses.

5.4 Summary

The SPLASH programs can be divided into two cate-

gories based on their synchronization and sharing be-

havior. The �rst category is characterized by heavy

use of barrier synchronization. This category includes

the MP3D and Water programs. These programs per-

formed poorly with invalidate protocols and large page

sizes. Although barriers result in nearly the same num-

ber of messages under both eager and lazy protocols,

even these programs have enough lock synchronization

for the lazy protocols to reduce the number of messages

and the amount of data exchanged.

The second category is characterized by migratory

access to data that is controlled by locks. This cat-

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000

Figure 13 Pthor Messages.

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Figure 14 Pthor Data.

egory includes LocusRoute, Cholesky and Pthor. In

Cholesky and Pthor, the locks protect centralized work

queues, while the locks in LocusRoute protect access to

individual cost array elements. The use of locks tends

to cause the sharing patterns to closely follow synchro-

nization. Since the lazy protocols move data according

to synchronization, they handle this type of synchro-

nization much better than eager protocols.

LU performed well for both categories of programs.

In contrast, EU often performed worse than the inval-

idate protocols, because it does not handle migratory

data very well. LU sends fewer messages than EU for

migratory data because updates are only sent to the

next processor to acquire the lock that controls access

to the data.

In all of the programs, the number of processors shar-

ing a page is increased by false sharing. Multiple-writer

RC protocols reduce the impact of false sharing by per-

mitting ordinary accesses to a page by di�erent proces-

sors to be performed concurrently. However, the eager

protocols still perform communication at synchroniza-

tion points between processors sharing a page, but not

the data within the page. Lazy protocols eliminate this

communication, because processors that falsely share

data are unlikely to be causally related. This observa-

tion is consistent with the results of our simulations.

8

6 Related Work

Ivy [12] was the �rst page-based distributed shared

memory system. The shared memory implemented by

Ivy is sequentially consistent, and does not allow mul-

tiple writers.

Clouds [15] uses program-based segments rather than

pages as the granularity of consistency. In addition,

Clouds permits segments to be locked down at a single

processor to prevent \ping-ponging".

Release consistency was introduced by Gharachorloo

et al. [8]. It is a re�nement of weak consistency, de�ned

by Dubois and Scheurich [7]. The DASH multiproces-

sor takes advantage of release consistency by pipelining

remote memory accesses [11]. Pipelining reduces the

impact of remote memory access latency on the proces-

sor.

Munin [5] was the �rst software distributed shared

memory system to use release consistency. Munin's im-

plementation of release consistency merges updates at

release time, rather than pipelining them, in order to

reduce the number of messages transferred between pro-

cessors. Munin uses multiple consistency protocols to

further reduce the number of messages.

Ahamad et al. de�ned a relaxed memory model

called causal memory [3]. Causal memory di�ers from

RC because con
icting pairs of ordinary memory ac-

cesses establish causal relationships. In contrast, under

RC, only special memory accesses establish causal rela-

tionships.

Entry

consistency, de�ned by Bershad and Zekauskas [4], is

another related relaxed memorymodel. EC di�ers from

RC because it requires all shared data to be explic-

itly associated with some synchronization variable. As

a result, when a processor acquires a synchronization

variable, an EC implementation only needs to propa-

gate the shared data associated with the synchroniza-

tion variable. EC, however, requires the programmer

to insert additional synchronization in shared memory

programs, such as the SPLASH benchmarks, to exe-

cute correctly on an EC memory. Typically, RC does

not require additional synchronization.

7 Conclusions

The performance of software DSMs is very sensitive to

the number of messages and the amount of data ex-

changed to create the shared memory abstraction. We

have described a new algorithm for implementing re-

lease consistency, lazy release consistency, aimed at re-

ducing both the number of messages and the amount

of data exchanged. Lazy release consistency tracks the

causal dependencies between writes, acquires, and re-

leases, allowing it to propagate writes lazily, only when

they are needed.

We have used trace-driven simulation to compare

lazy release consistency to an eager algorithm for im-

plementing release consistency, based on Munin's write-

shared protocol. Traces were collected from the pro-

grams in the SPLASH benchmark suite, and both up-

date and invalidate protocols were simulated for lazy

and eager RC. The simulations con�rm that the num-

ber of messages and the amount of data exchanged are

generally smaller for the lazy algorithm, especially for

programs that exhibit false sharing and make extensive

use of locks. Further work will include an implemen-

tation of lazy release consistency to assess the runtime

cost of the algorithm.

References

[1] S. Adve and M. Hill. Weak ordering: A new

de�nition. In Proceedings of the 17th Annual In-

ternational Symposium on Computer Architecture,

pages 2{14, May 1990.

[2] S. V. Adve and M. D. Hill. A uni�ed formaliza-

tion of four shared-memory models. Technical Re-

port CS-1051, University of Wisconsin, Madison,

September 1991.

[3] Mustaque Ahamad, Phillip W. Hutto, and Ranjit

John. Implementing and programming causal dis-

tributed shared memory. In Proceedings of the 11th

International Conference on Distributed Comput-

ing Systems, pages 274{281, May 1991.

[4] B.N. Bershad and M.J. Zekauskas. Midway:

Shared memory parallel programming with entry

consistency for distributed memory multiproces-

sors. Technical Report CMU-CS-91-170, Carnegie-

Mellon University, September 1991.

[5] J.B. Carter, J.K. Bennett, and W. Zwaenepoel.

Implementation and performance of Munin. In

Proceedings of the 13th ACM Symposium on Oper-

ating Systems Principles, pages 152{164, October

1991.

[6] H. Davis, S. Goldschmidt, and J. L. Hennessy.

Tango: A multiprocessor simulation and tracing

system. Technical Report CSL-TR-90-439, Stan-

ford University, 1990.

[7] M. Dubois and C. Scheurich. Memory access

dependencies in shared-memory multiprocessors.

IEEE Transactions on Computers, 16(6):660{673,

June 1990.

9

[8] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gib-

bons, A. Gupta, and J. Hennessy. Memory con-

sistency and event ordering in scalable shared-

memory multiprocessors. In Proceedings of the

17th Annual International Symposium on Com-

puter Architecture, pages 15{26, Seattle, Washing-

ton, May 1990.

[9] J.R. Goodman. Cache consistency and sequential

consistency. Technical Report Technical report no.

61, SCI Committee, March 1989.

[10] L. Lamport. How to make a multiprocessor com-

puter that correctly executes multiprocess pro-

grams. IEEE Transactions on Computers, C-

28(9):690{691, September 1979.

[11] D. Lenoski, J. Laudon, K. Gharachorloo,

A. Gupta, and J. Hennessy. The directory-based

cache coherence protocol for the DASH multipro-

cessor. In Proceedings of the 17th Annual In-

ternational Symposium on Computer Architecture,

pages 148{159, May 1990.

[12] K. Li and P. Hudak. Memory coherence in shared

virtual memory systems. ACM Transactions on

Computer Systems, 7(4):321{359, November 1989.

[13] R.J. Lipton and J.S. Sandberg. Pram: A scalable

shared memory. Technical Report CS-TR-180-88,

Princeton University, September 1988.

[14] F. Mattern. Virtual time and global states of dis-

tributed systems. In Michel Cosnard, Yves Robert,

Patrice Quinton, and Michel Raynal, editors, Par-

allel & Distributed Algorithms, pages 215{226. El-

sevier Science Publishers, Amsterdam, 1989.

[15] U. Ramachandran, M. Ahamad, and Y.A. Kha-

lidi. Unifying synchronization and data transfer in

maintaining coherence of distributed shared mem-

ory. Technical Report GIT-CS-88/23, Georgia In-

stitute of Technology, June 1988.

[16] J.P. Singh, W.-D. Weber, and A. Gupta. Splash:

Stanford parallel applications for shared-memory.

Technical Report CSL-TR-91-469, Stanford Uni-

versity, April 1991.

[17] W.-D. Weber and A. Gupta. Analysis of cache in-

validation patterns in multiprocessors. In Proceed-

ings of the 3th Symposium on Architectural Sup-

port' for Programming Languages and Operating

Systems, pages 243{256, April 1989.

10

