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Abstract

Current parallelizing compilersfor message-passing machines
only support a limited class of data-parallel applications. One
method for eliminating this restriction is to combine powerful
shared-memory parallelizing compilerswith software distributed-
shared-memory (DSM) systems. We demonstrate such a system
by combining the SUIF parallelizing compiler and the CVM soft-
ware DSM. Innovations of the system include compiler-directed
techniques that: 1) combine synchronization and parallelism in-
formation communication on parallel task invocation, 2) employ
customized routines for evaluating reduction operations, and 3)
select a hybrid update protocol that pre-sends data by flushing
updates at barriers. For applications with sufficient granularity
of parallelism, these optimizationsyield very good eight processor
speedupsonan|BM SP-2 and DEC Alpha cluster, usually matching
or exceeding the speedup of equivalent HPF and message-passing
versions of each program. Flushing updates, in particular, elim-
inates almost all nonlocal memory misses and improves perfor-
mance by 13% on average.

1. Introduction

Increasingly powerful processor and network architectures make
so-called “meta-computers’ (loosely-coupled computers commu-
nicating via messages) a tempting platform on which to run large
parallel and distributed applications. Unfortunately, writing effi-
cient message-passing programs is difficult, error-prone, and te-
dious, and data-parallel languages such as High Performance For-
tran (HPF) [18] may prove overly restrictive. We believe that
the combination of shared-memory parallelizing compilers and so-
phisticated runtime systems presents one of the most promising
approachestowards addressing this key problem.

This paper presents our experience using the CVM [14] soft-
ware distributed-shared-memory (DSM) system as a compilation
target for the SUIF [11] shared-memory compiler. SUIF auto-
matically parallelizes sequential applications and allows users to
benefit from sophisticated program analysis. The use of CVM as
a compilation target hides the details of the underlying message-
passing architecture and allows the compiler-generated code to
assume shared memory semantics.

By combining thesetwo technologies, we create aprogramming
environment that is flexible and easy to use, since scientistsare no
longer required to write message passing programs or use data-
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parallel languagessuch as HPF. Instead, they can write sequential
programs, rewriting a few computation-intensive procedures and
adding parallelism directives where necessary. This combination
has the advantage of producing programsthat can run on the large-
scale parallel machinesaswell asthe low-end, but more pervasive
multiprocessor workstations. This portability isimportant for sci-
entists and engineers who want to develop applications that run
well on their multiprocessor workstations, but who desire the abil-
ity to scale their applications up for larger parallel machines as
needed. The combination of easeof useand scalability of software
isakey appeal of shared-memory compilers.

By studying the performance of compiler-parallelized programs
on CVM, we are also helping to validate the efficiency of soft-
ware DSMsin general. Previous studies have relied on carefully
hand-tuned parallel programs such as the Splash Benchmarks.
By achieving good performance for compiler-parallelized appli-
cations, which are much less tuned for the underlying memory
system, we show that software DSMs are efficient enough to sup-
port awider class of applications than previously demonstrated.

1.1. Contributions

Shared-memory parallelizing compilers are easy to use, flexible,
and can accept a wide range of applications. The important ques-
tioniswhether shared-memory compilerstargeting software DSMs
can approach the performance of current message-passing compil-
ersor explicitly-parallel message-passingprograms on distributed-
memory machines. This paper makes a number of contributions
towards answering this question:

e experimental evaluation of an actual compiler/DSM system
on two machine architectures

¢ DSM enhancementsto

1. combine synchronization and application data mes-
sages with parallel task invocation

2. eliminate synchronizationand piggyback messagesfor
reduction operations

3. selectively use an update flush protocol for dynami-
cally shared data

e comparison with data-parallel (HPF) and message-passing
(MPI) versions of programs

We begin by considering the parallelization and run-time model
of the compiler, the coherence and communication model of the
software DSM, and their interactions. We describe three tech-
niques for improving the compiler/software DSM interface. We
present our prototype system, followed by experimental results.
We concludewith a discussion of related work.



2. Background
2.1. Shared-Memory Compiler Model

The goal of parallelizing compilersisto identify parallel loops or
tasksin sequential programs, using data-flow and data dependence
analysis combined with program transformations. Once a parallel
portion of the program is identified, it is made into the body of a
procedure which can be invoked by all the processorsin parallel.

Shared-memory parallelizing compilers typically employ a
fork-join programming model, where a single master thread ex-
ecutes the sequential portions of the program, assigning (forking)
computation to additional worker threads when a parallel 1oop or
task is encountered. After completing its portion of the parallel
loop, the master waits for all workers to complete (join) before
continuing execution. During the parallel computation, the master
thread participates by performing a share of the computation just
like aworker. After each parallel computationworker threads spin
or go to sleep, waiting for additional work from the master thread.

Thefork-join model isflexibleand can easily handle sequential
portions of the computation; however, it imposestwo synchroniza-
tion events per parallel loop. First, abroadcast barrier is inserted
before the loop body to wake up available worker threads and pro-
vide workers with the address of the computation to be performed
and parametersif needed. A barrier is then inserted after the loop
body to ensure all worker threads have completed before the mas-
ter can continue. Between the broadcast and the barrier threads
execute computation in parallel.

Shared-memory parallelizing compilers usually rely on asmall
run-time system to manage parallelism operations. Typical func-
tions supported in the run-time system include routines for: 1)
thread creation at the beginning of the program, 2) assigning par-
allel computation to workers, 3) performing barrier and lock op-
erations, 4) accumulating the results of global reductions. The
run-time system may also support a variety of scheduling policies
(e.g., block, round-robin, dynamic) for scheduling iterations of
parallel loopsto processors.

Shared-memory compilers enjoy a significant advantage over
HPF compilers becausethey do not need preciseinformation on all
interprocessor communication. Becauseof this generality, current
shared-memory compilers can efficiently support a much larger
set of applications than current HPF compilers. In this paper we
show that for many applications, slightly extending analysisin a
shared-memory compiler (for data likely to be communicated to
other processors) can yield comparable performance to full-blown
communication analysisin HPF compilers, with much greater flex-
ibility and less effort.

2.2.CVM

The DSM target used in this work is CVM, a software DSM that
supports multiple protocols and consistency models. Like com-
mercially available systems such as TreadMarks [16], CVM is
written entirely asauser-level library and runson most UNIX-like
systems. Unlike TreadMarks, CVM was created specifically as a
platform for protocol experimentation.

The systemiswritten in C++, and opaqueinterfacesare strictly
enforced between different functional unitsof the systemwhenever
possible. Thebase system providesa set of classesthat implement
a generic protocol, lightweight threads, and network communi-
cation. The latter functionality consists of efficient, end-to-end
protocols built on top of UDP.

New shared memory protocols are created by deriving classes
from the base Page and Pr ot ocol classes. Only those methods
that differ from the base class's methods need to be defined in the
derived class. The underlying system calls protocol hooks before
and after page faults, synchronization, and I/O events take place.
Since many of the methodsare inlined, theresulting systemis able

to perform within a few percent of TreadMarks, a severely opti-
mized system, running a similar protocol. However, CVM was
designed to take advantage of generalized synchronization inter-
faces, as well as to use multi-threading for latency toleration. We
therefore expect the performance of the fully functional systemto
improve over the existing base. In order to simplify the compari-
son process, however, we do not use either of these techniquesin
this study.

Memory Consistency - CVM'’s primary protocol implements a
multiple-writer version of lazy release consistency [15], which is
aderivation of release consistency (RC) [8]. Release consistency
a processor to delay making modifications to shared data visible
to other processors until special acquire or release synchroniza-
tion accesses occur. The propagation of modifications can thus
be postponed until the next synchronization operation takes effect.
Programs producethe sameresultsfor the two memory models pro-
vided that (i) all synchronization operations use system-supplied
primitives, and (ii) there is arelease-acquire pair between conflict-
ing ordinary accessesto the same memory location on different
processors[8]. In practice, most shared-memory programsrequire
little or no modifications to meet these requirements.

Lazyreleaseconsistency (L RC) allowsthe propagation of mod-
ifications to be further postponed until the time of the next subse-
quent acquire of areleased synchronization variable. At thistime,
the acquiring processor determines which modifications it needs
to see according to the definition of LRC. To do so, the execution
of each processisdivided into intervals, each denoted by an inter-
val index. Every time a process executes a release or an acquire,
a new interval begins and the interval index is incremented. In-
tervals of different processes are partially ordered by assigning a
vector timestamp to intervals for each processor. At an acquire,
processor p sends its current vector timestamp to the previous re-
leaser of the same synchronization variable, g. Processor ¢ then
piggybacks on the release-acquire message to p write notices for
al intervals named in ¢’s current vector timestamp but not in the
vector timestamp it received from p. Experiments show alterna-
tive implementations of release consistency generally cause more
communication than LRC [7].

False Sharing - False sharing occurs when two or more pro-
cessors access different variables within a page, with at least one
of the accesses being a write. False sharing is problematic for
software DSMs because of the large page-size coherence units.
Multiple-writer coherence protocols [2] such as that implemented
by CVM avoid false sharing by allowing two or more processors
to simultaneously modify local copies of the same shared page.

These concurrent modifications are merged using diffs to sum-
marize the updates. A diff is created by performing a page-length
comparison between the current contents of the page and atwin of
the page that was created at the first write access. If each concur-
rent writer summarizes its modifications as a diff, the system can
create a copy that reflects all modifications by applying the con-
current diffs to the same copy. Concurrent diffs only overlapif the
samelocationiswritten by multiple processorswithout intervening
synchronization, which is probably a data race.

Access misses- CVM uses the UNIX npr ot ect system call
to control access to shared pages. Any attempt to perform are-
stricted accesson ashared pagegeneratesa Sl GSEGV signal. The
S| GSEGV signal handler examines local information determine
the page's state. If the local copy is read-only, the handler alo-
cates a page from the pool of free pagesand performs abcopy to
create atwin. Finally, the handler upgradesthe accessrights to the
original page and returns. If the local pageisinvalid, the handler
requests a copy from the page'sowner. If write notices are present
for the page, the faulting processor obtainsthe list of missing diffs



maintained by the system and sends out requestsin parallel to all
the processors that may have modified the page. When all nec-
essary diffs have been received, they are applied to the page in
increasing timestamp order.

3. Compiler/Software DSM Interface

Our system consists of the Stanford SUIF parallelizing compiler
[11] and the CVM software DSM system [14]. A simpleinterface
was produced by porting the SUIF run-time system to the CVM
API. Because shared datain CVM must be global, we also imple-
mented passesin the compiler to promoteall shared local variables
to globals, and to pack all shared global variables into a single
contiguous global structure [17].

3.1. Optimizations

The simple interface presented for SUIF and CVM produces a
working system, but contains many inefficiencies, some of which
may be eliminated with enhancements to the software DSM that
rely on lightweight compiler analysis. One of the properties of
software DSMs that can lead to poor performanceis the use of an
invalidation protocol for maintaining coherence. Invalidation pro-
tocolsare preferred becausethey reduce excessivecommunication.
However, they are inefficient for producer-consumer communica-
tion patterns, particularly if there are multiple consumers.

To see why this problem exists, consider what happens when
processor p produces data X consumed by processor ¢. By defin-
ing X, p invalidates the copy of X held by ¢. Using release
consistency, the invalidation message is piggybacked on the bar-
rier synchronization message, so there is little overhead for the
invalidation. However, when ¢ attempts to consume X, it hasto
take a page fault and wait for the fault handler to initiate a round-
trip communicationto p to fetch the pagecontaining X . If multiple
processorsneedto consume X, producer p receivesalarge number
of requests, addingaserial bottleneck. Further, if X overlapsmore
than one page, the pagesareretrieved serially asthey are accessed.

3.1.1. Parallelism Startup

To eliminate these effects, we considered places where producer-
consumer relationships occur in compiler-parallelized programs.
We consider three opportunitiesfor customizing the software DSM
toimprove performance. Thefirstisinthe parallelism startup code,
the portion of the compiler run-time system responsible for awak-
ening worker threads and assigning them work. This operationis
a prime example of a producer-consumer relationship, since the
master thread produces data (the location of parallel computation
to be performed and parameters for the computation) which is
consumed by multiple worker threads.

To improve performance for parallelism startup, we enhanced
the software DSM to automatically piggyback certain marked lo-
cations along with barrier messages. Since the master processor
also ownsthe broadcast barrier preceding each parallel loop, it can
combinethe broadcast messageto the workers acknowledging bar-
rier completion with theinformation needed for parallelism startup.
All that isrequired isto insert codein the compiler run-time system
to mark the section of the global shared memory reserved for the
compiler run-time system. Those variables are then automatically
updated with new values with the synchronization messages for
the barrier.

3.1.2. Customized Reductions

Another opportunity for improving the compiler/software DSM
interface is in customized support for reductions. Reductions are
commutative actions (e.g., sum, max) identified by the compiler
that can be performed on local data and then accumulated into
global locations using routines from the compiler run-time library.
A straightforward implementation would use ordinary accesses

to shared memory, guarded by lock variables in order to guaran-
tee mutual exclusion. In addition to the usual inefficiencies with
produce-consumer communication under an invalidation protocol,
the need for mutual exclusion in reductions impose a serial bot-
tleneck as well as synchronization traffic for lock acquires and
releases.

Fortunately, customized support for reductions can be easily
added to a software DSM. The compiler has already identified the
operation as a reduction to the run-time system, and the software
DSM can take advantage of this information by eliminating lock
operations, instead combining the results directly based on each
processor’s contribution to the accumulated result. The process
is simplified because the current SUIF compiler only performs
reductions at the end of a parallel region.

CVM supports reductions by copying the reduction operator
and local reduction data into a local reduction record. All such
records are appended to the next outgoing barrier arrival message.
The master thread then performs all reductionsfrom the last barrier
interval, updating the value of the global shared data. The advan-
tage of centralizing the reduction process at the master thread is
two-fold. First, synchronizationto ensuremutual exclusioniselim-
inated because the master performs all reductions. Second, since
reductions are performed on shared memory, the page containing
the reduction data must be valid locally, and a diff describing the
reduction is created later. Centralizing the process at the barrier
master therefore saves on diff creations, remote misses, and total
messages.

3.1.3. Flush protocol

Finally, we consider the application data communicated between
threads during parallel program execution. Good parallelizing
compilers such as SUIF typically choose computation partition
and loop scheduling policies that promote co-location of dataand
computation. In loop-intensive numeric codes, the assignment
of computation to threads is thus usually fairly stable, yielding
consistent sharing patterns for many iterations. By relying on a
consistent computation partition, we may be able to obtain agood
estimate of communication without doing compile-time analysis
by using copysetinformation collected by the underlying software
DSM system.

CVM track copiesof shared pagesby using copysets, which are
bitmaps that specify which processors cache a given page. This
information can be used to improve performance by selectively
employing a hybrid invalidate/update coherence protocol. Coher-
ence for pages which are consistently communicated between the
same set of processors can be flushed rather than invalidated after
writes, eliminating access misses. Coherence for the remaining
pages is maintained using an invalidate protocol to avoid exces-
sive communication. On the first iteration of the time-step loop,
the copysets of each page are empty and access misses occur. By
the second iteration, however, copyset information indicates the
processors that need each page, accurately reflecting stable shar-
ing patterns. Under the flush protocol, access misses can be then
be eliminated by updating processorson the copyset for each page,
sending the data before it is accessed.

We modified the compiler to automatically insert callsto DSM
routines to mark pagesto be flushed at barriers. For a given page,
local modifications are then flushed to all other processorsin the
page’'slocal copyset at each barrier. A processor p isinserted into
processor ¢'s copyset for apageif p requestsadiff for the page, or
if ¢ seesawrite notice for the page that was created by gq.

Compiler analysis needed to use such a protocol is much sim-
pler than communication analysis needed in HPF compilers. The
identities of the sending/receiving processors do not need to be
computed at compile time, and the compiler does not need to be
100% correct sincethe only effect is on efficiency, not correctness.



. Problem Sizes | Granularity (secs)

Name Description Small Large | Smal Large
adi ADI Fragment (Livermore 8) 32K 64K 0.31 0.63
dot Dot Product (Livermore 3) 256K 512K 0.10 0.28
expl Explicit Hydrodynamics (Livermore 18) | 2562 5122 0.06 0.34
irreg Irregular Solve Over Mesh 500K  1000K 0.06 0.12
jacobi Jacobi Iteration w/Convergence Test 5122  1024* | 0.06 0.91
mult Matrix Multiply 300° 400° 1.83 433
rb Red-Black Successive-Over-Relax. 5122  1024* | 0.01 0.14
swm Shallow Water Model (SPEC) 5122 7502 0.10 0.20
tomcatv Vector Mesh Generation (SPEC) 2562 5122 0.04 0.15

Table 1. Applications

Instead, the compiler only needs to locate data that will likely be
communicatedin astable pattern, then insert callsto DSM routines
to apply the flush protocol for those pagesat the appropriate time.
More precise compiler analysis can be used to explicitly clear or
set the copysets of data to be communicated.

Aspreviously discussed, barrier flushesof updates (essentially
a restricted update model) have both advantages and disadvan-
tages. On the plus side, flushes ideally move data before it is
needed, allowing computation and communication to be wholly
overlapped. The result can be fewer page invaidations and page
faults. A second advantageisthat lost flush messagesdo not affect
correctness, only performance. Flush messages can be unreliable,
and therefore do not need to be acknowledged. A “flush” therefore
consists of only a single message, whereas a miss to shared data
incurs at least one request and response message pair.

All consistency information in lazy-release-consistency sys-
tems is piggybacked on synchronization messages (barrier mes-
sagesin the case of compiler-parallelized applications). By con-
trast, diff requests are inherently two-way, and so cost two mes-
sages. On the minus size, if sharing patterns are not stable, out-of-
date copysets will cause data to be sent to processors that do not
needit. Correctnessis not affected, but the unneeded flushes cause
unnecessary overhead.

The basic flush protocol as described above was modified in
two ways for this study. First, we flush updatesfor data at barrier
synchronization points to enable data to be piggybacked on syn-
chronization messages (where possible) and multiple updates to
be aggregated in a single message. Second, we provide aflexible
user-level (i.e., non-kernel) interface for specifying the coherence
for a page or range of pages. This flexibility is important because
applicationstypically have phase shifts when data access patterns
change. CVM allows 1) dynamically changing the coherencetype
of a pageto either invalidate or update, 2) clearing the copyset of
a page, 3) adding or removing processors from the copyset of a
page.

4. Experimental Results

This section presents our experimental results. We discuss our
experimental environment, present our overall results, discussthe
effect of two compiler-directed optimizations, and then summarize
our results.

4.1. Experimental Environment

We evaluated our optimizations on a cluster of DEC Alphawork-
stationsandan IBM SP-2. Our DEC Alphacluster consistsof eight
DEC Sables multiprocessors with four 275MHz Alpha 20064 pro-
cessorsand 256 megabytes of memory each, operated under DEC
Unix version 3.2D. The nodes are connected by a 155-MBit/sec
ATM switch. Results use only a single processor per node; evalu-
ating the effect of clustersis beyond the scope of this paper.

On the DEC cluster, CVM processes communicate via unreli-

able UDP sockets over the ATM switch. Simple RPCs take 160
uSec, and eight-processor barriers take aminimum of 1836 psecs.
Misses on shared data take a minimum of 1388 psecs, including
both systemtime and the cost of retrieving a8192-byte page across
the switch. Misses are detected by changing page protections and
specifying handlers to be called on an inappropriate access. The
operating system overhead of such a handler call is 128 psecs.
Operating system overhead for calling handlersfor incoming mes-
sagesis similar.

Wealso present resultsfroman IBM SP-2with 66MHz RS/6000
Power2 processorsoperating Al X 4.1 connected by a120 Mbit/sec
bi-directional Omega switch. Simple RPCs on the SP-2 require
160 psecs. A one-hop page miss, where the page manager is
also the owner, requires two messages and 939 psecs. Two-hop
page misses require three messages and 1376 psecs. In the best
case, AlX requires 128 usecsto call user-level handlers for page
faults, and npr ot ect system calls require 12 psecs. However,
virtual memory primitive costsin the current system are location-
dependent, occasionally increasing these costs to a millisecond or
more.

4.2. Applications

We evaluated the performance of our compiler/software DSM in-
terface with the nine programs shown in Table 1. adi , expl,
and r b are dense stencil kernels typically found in iterative PDE
solvers. j acobi isastencil kernel combined with a convergence
test that checks the residual value using a max reduction. dot
calculatesthe inner product of two vectors using a sumreduction.
i rreg models an iterative PDE solver on a randomly generated
irregular mesh. rul t performs matrix multiplication. swmand
t ontat v are programs from the SPEC benchmark suite contain-
ing a mixture of stencils and reductions. We used the version
of tontat v from APR whose arrays have been transposed to
improve datalocality.

InTable 1, the“Granularity” columnreferstotheaveragelength
in secondsof aparallelized loop. Except whereindicated, numbers
below refer to the larger data set for each application. All appli-
cations were originally written in Fortran, and typically contain
aninitialization section followed by iterations of atime-step loop.
Statistics and timings are collected after the initialization section.

4.3. Programming M odels

In our experiments, CVM applications written in Fortran 77 were
automatically parallelized by the Stanford SUIF parallelizing com-
piler version 1.0, with close to 100% of the computationin parallel
regions. A simple block scheduling policy assigns contiguous it-
erations of equal or near-equal size to each processor, resulting in
a consistent computation partition that encourages good locality.
The resulting C output code was compiled by g++ version 2.6.3
with the -O2 flag, then linked with the SUIF run-time system and
the CVM libraries to produce executable code on the DEC Alphas
and IBM SP-2.
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We also evaluated the efficiency of our CVM shared-memory
interface by comparing its performanceagainst data-parallel (HPF)
and message-passing (MPI) versions of each program. High Per-
formance Fortran (HPF) applications were created by manually
translating from Fortran to Fortran 90, with HPF data decompo-
sitions added for each array. On the IBM SP-2 we used the IBM
HPF compiler [10] with the -O2 flag. On the DEC cluster we used
the DEC HPF compiler f 90 version 2.0-1 with the -O2 -wsf -fast
flags.

Message-passing versions of each program were created using
callsto communication routines specified under Message Passing
Interface (MPI). On the IBM SP-2 we used the MPL version 2
implementation of MPI; on the DEC Alpha cluster we used the
MPICH version 1.0.12 implementation of MPI. MPI versions of
adi ,dot, expl , andj acobi weregenerated usingtheFortranD
compiler [12]. Previous experiments show the resulting programs
achieve performance close to optimized hand-written message-
passingprograms[13]. MPI versionsof nul t andr b werecreated
by hand. These programs represent message-passing programs
written with a reasonable amount of effort, not programs highly
customized for performance.

Figures 1 and 2 show CVM, HPF, and MPI speedupsfor both
large and small data sets for each of our applications on the IBM
SP-2 and DEC Alpha cluster, respectively. Speedup is calculated
relative to the sequential versions of each program, without any
calls to the parallel run-time system. Although we were careful
to ensure that paging does not occur in the single-processor runs
of any applications, cache effects are enough to cause superlinear
speedup in some cases. Sequential execution times for CVM
and HPF programs differ slightly, since HPF programs have been
rewritten in Fortran 90, but are generally comparable.

The performance of our applications cover a broad range. As
expected, both systems perform better with larger data sets. CVM
speedupsare quite good. For thelarger data setsover eight proces-
sors, CVM hasanaverage speedupof 7.2 onthe DEC Alphacluster
and 5.0 onthe IBM SP-2. Theseresults show that shared-memory
compilerstargeting an enhanced software DSM can achieveexcel-
lent results on message-passing systemsfor amoderate number of
processors, at least for applications with sufficient granularity of
parallelism.

4.4. Comparing CVM Performance against HPF and MPI

Figure 1 showsthat onthelBM SP-2, HPF speedupsweregenerally
slightly higher than CVM and even MPI speedups. Thisindicates
the IBM HPF compiler is quite powerful and is able to efficiently
exploit low-level communication primitives. CVM speedupswere
nevertheless quite close to HPF speedups, with the major excep-
tions of swmand t ontat v which experience excessive paging
during parallel execution. We plan onfixing this problem by tuning
the page allocation policy in AlX.

Figure 2 showsthat on the DEC Alpha cluster, CVM speedups
match or exceed the HPF speedupsin every caseexcept dot with
the large data set. The dot kernel has the highest incidence of
reduction operations, which are somewhat more efficient on the
HPF system. Otherwise, CVM amost always outperformed the
corresponding HPF programs on the DEC cluster.

Examining the DEC Alpharesults in more detail, we see that
with the DEC HPF compiler programs execute slower than se-
quential Fortran 90 programs due to the overhead from invok-
ing message passing routines. This overhead is significant, in
many cases doubling the execution time of a one-processor HPF
program. As a result overall speedups and execution times are
reduced for HPF programs. However, because datais communi-
cated efficiently (and only data actually used is transferred), we
expect HPF programs to achieve good scalability in performance
for larger numbers of processors. In comparison, CVM programs
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Figure 3. Breakdown of Execution Time

have virtually no overhead for one-processor execution.

One program that stands out isi r r eg, since CVM was able
to achieve speedups significantly better than HPF on both archi-
tectures. CVM was able to capture the pattern of irregular remote
accessesat runtime and handleit almost as efficiently asfor regular
densematrix accesses. |n comparison, HPF compilerswere unable
to analyze the nonlocal accessesat compile time, resulting in in-
efficient execution. This example emphasizesthe advantages of a
combined compile/runtime approach for lessregular computations.

Our experiments show that speedups of message passing pro-
grams using MPI were generally comparable to those of HPF and
CVM programs on both parallel architectures. For the dense-
matrix applications evaluated, it appears that both HPF and CVM
are sufficiently efficient that it would require afair amount of effort
to customize message-passing programsfor better performanceun-
der MPI.

Overall, the performance of CVM programs is comparable to
that of the HPF programs for applications with sufficient com-
putation. This result is encouraging, since most of the applica-
tions we examined have very regular access patterns, and hence
represent the best case for HPF compilers. These results show
that with enhanced software DSMs, the same performance can be
achieved with much less compiler analysis for many applications
on moderate-size parallel systems.

4.5, Detailed Evaluations

Figure 3 breaks CVM execution time down into five categories:
application processing time, time spent waiting at barriers, miss
handling time, time spent presending datain our “flush” protocol,
and time spent in communication routines. Barrier wait time is
amost entirely load imbalance. While the compiler-generated
codeis perfectly balanced, time spent handling faults, diff requests,
and flush messages delays processors unequally between barriers
under CVM.

“Miss’ time includes system time spent calling the fault han-
dler and changing page protections, as well as all remote requests
needed to validate shared pages. This category is deceptively
small, since variation in miss handling time among processors
appears to be the primary cause of load imbalance. Hence, any
reduction of misshandlingtimeislikely to reducebarrier wait time
aswell.

Recall that when enabled, our compiler automatically inserts
callsto DSM routinesthat mark addressrangesto be kept coherent
using a flush protocol; updates are flushed at barriers to eliminate
nonlocal misses. For agiven page, local modifications are flushed
to processors named by the local copyset prior to each barrier.



Invalidates Misses Diffs Messages Useful || Speedup
w/o w/ A w/o w/ A w/o w/ A w/o w/ A Diffs With
adi 655 270 -59% 655 0 -100% 649 649 0% | 1828 626 -66% 97% 19.6%
dot 105 105 0% 105 0 -100% 99 100 1% | 6811 2968 -56% || 100% 0.9%
expl 2538 241 -91% 2545 0 -100% 2215 2378 % 6616 2174 -67% 93% 7.8%
irr 1926 108 -94% | 1933 107 -95% 559 560 0% | 8596 4098 -52% 99% 36.0%
jacobi 756 44 -94% 763 0 -100% 541 541 0% | 2548 1238 -51% 99% 6.8%
mult 135 2 -98% 135 0 -100% 129 130 1% 508 334 -34% || 100% 1.3%
rb 1008 64 -94% 1015 0 -100% 577 1081 87% 4060 2462 -39% 99% 11.4%
swm 18444 1013 -95% | 18514 498 -97% | 13977 16518 18% | 48622 17784 -64% 99% 7.0%
tomcatv 5834 74 -99% 5848 2 -100% 4024 7814 94% | 15454 5565 -64% 2% 30.8%
[ Average | -80% | -99% | 23% | 55% [ 95% [ 135% |
Table 2. Flush Protocol (IBM SP-2, 8 processors, large data sizes)
Invalidates Misses Diffs Messages Sync Speedup
w/o wi/ A wio w/ A w/io w/ A w/o w/ A Overhead With
dot 950 105 -88% | 950 105 -89% | 944 99 -90% | 6811 2968 -56% 23.7% 44.3%
irreg 2019 1926 -5% | 2026 1933 5% | 922 559 -39% | 10364 8596 -17% 6.3% 15.1%
jacobi 15336 15176  -1% | 995 840 -16% 87 104 -20% | 3738 2870 -23% 9.4% 12.5%
tomcatv 5850 5834 -0.3% | 5864 5848 -0.3% | 4040 4024 -0.4% | 15882 15454 3.4% 5.4%
[ Average || 23% | 27% | 27% | 25% | 10.7% [ 19.3% ||

Table 3. Reduction Support (IBM SP-2, 8 processors, large data sizes)

Improvement vs. Messages Bandwidth
Programs || gingle Writer Barrier | Flush |  Diff | Total (kbytes)
adi 3610% 630 240 258 1128 532
dot % 2884 0 56 2940 297
expl 18% 1754 722 308 2784 7408
irreg 4% 1015 | 1851 214 3080 7572
jacobi 12% 1190 468 80 1738 4906
mult 0% 352 120 2332 2804 9747
rb 33% 2310 960 54 3324 5563
swm 1226% 1976 | 4132 | 24196 | 30304 100608
tomcatv 444% 3542 | 1797 4 5343 20597

[Average || 505% || 1739 | 1143 | 3056 | 5938 || 17470 |

Table 4. Multiple Writer Communication Requirements (IBM SP-2, 8 processors)

For applications with non-adaptive reference patterns, such as
thosein our test suite, copyset information accurately reflectsstable
sharing patterns by the second iteration. Unfortunately, the current
algorithm used to select data is fairly imprecise, and marks all
arrays accessedin parallel as datarequiring updates.

Table 2 contains statistics on diffs created, pages invalidated,
remote misses, and messages both with and without compiler-
generated barrier flushes. Because of the interference with lazy
diffing, described below, barrier flushes uniformly create more
diffs. However, the difference is minor for most of the programs,
indicating that they have stable sharing patterns. In all cases,
barrier flushesreduce the number of pageinvalidations and remote
misses.

If sharing patterns are not stabl e, out-of-date copysetswill cause
data to be sent to processors that do not need it. Correctness is
not affected, but the unneeded flushescauseunnecessary overhead.
The “Useful Diffs’ column shows that this is significant only for
t ontat v. The problem appearsto be due to a less obvious dis-
advantage of barrier flushes, which occurs when datais consumed
less frequently than it is modified. For example, consider athree-
barrier application executing on processors p and ¢. Processor p
modifies page ¢ during each of the first two barrier epochs, and ¢
reads page ¢ in the third. Multi-writer DSMs such as CVM typi-

cally usealazy diffing diffing scheme, which meansthat they delay
actually creating adiff until it isrequested. Inthe abovecase, with-
out barrier flushes, the lazy scheme would not create a diff until ¢
requests the modified data from p in the third epoch. Hence, only
one diff for page : is created during each iteration. With barrier
flushing enabled, diffs are created and flushed in each of the first
two epochs, resulting in twice as many diffs being created over-
all. We intend to improve our compiler analysisto eliminate these
unnecessary flushes. Despite the relatively large percentage of
unused diffs, performancefor t ontat v issignificantly improved
because the large number of page misses eliminated.

Table 3 contains statistics describing executionswith and with-
out customized reduction support for the applicationsthat perform
reductions. Without customized reductions, accumulations occur
through mutually exclusive updates to shared memory, incurring
lock synchronization overhead. The percentage of overall exe-
cution time spent waiting for lock access is listed in the “Sync
Overhead” column. For applications with many reductions such
asdot , the time lost becomes a large fraction of total execution
time. With customized reduction support, reduction records are
created and piggybacked on barrier synchronization messages. No
locksare needed to enforcemutual exclusion, eliminating synchro-
nization overhead altogether. The results show that customizing



reductions is quite effective for reducing access misses in those
applicationsthat have frequent reductions.

Table 4 shows the improvement in bandwidth requirements of
the multiple-writer coherence protocol versus a single-writer pro-
tocol, aswell as message and bandwidth totals for the applications
with both optimizationsturned on. Timings show that performance
for some programs degrade significantly when using asingle-writer
coherenceprotocol. “Diff” requests are used to bring a page up to
date. The message total reflects the fact that all messages except
barrier flushesrequire aresponse. These numbers show CVM can
handle communicating large amounts of data.

4.6. Discussion

Our experimental results demonstrate that compiler-generated code
can perform well on DSM systems, provided that they have suf-
ficient granularity of parallelism and are able to provide hints to
DSM system as to how data is being used. The programs in our
study average a speedup of approximately 5 to 7 out of eight for
large problem sizes. However, the super-linear speedup of two
applications indicates that at least some of this speedup is due to
caching effects.

Our applicationsgain an average benefit of 14% from our com-
piler/DSM interface improvementsfor the large datasizeson eight
processors. The optimizations have greater impact for more pro-
cessors and smaller data sizes, and significantly improve perfor-
mance for afew programs.

An important factor that we have yet to discuss is why bar-
rier wait times are so large for some programs. The problem is
essentially that load imbalance is introduced because by uneven
numbersof DSM or OS-related activities. For example, swmwith
large data sets gets essentially no speedup at eight processors on
the SP2. In looking for the reason, we increased the default page
sizefrom 4k to 16k. In doing so, message counts remained essen-
tially the same (our flush protocol successfully aggregated all data
that could be communicated together), the amount of data actually
increased by a factor of three, and yet execution time went from
27.0 secondsto 13.6 seconds, a speedup by a factor of two.

The sole overhead statistic that turns out to scale down with
execution time as page size increasesis the number of times read-
able pagesare"promoted” to writable pages. Each such promotion
requires a SI GSEGV fault and an npr ot ect . In addition to the
direct cost of performing each promotion, slightly uneven numbers
of promotions between processes contribute to load imbalance at
barriers. Increasing the page size reduces the number of read
promotions by a like amount, thus reducing the opportunity for
imbalance. The effect is exacerbated by the fact that swmhas a
large input set and arelatively small granularity of parallelism.

5. Additional Improvements

We believe that significant improvements are possiblein both the
compiler and the software DSM. Compiler improvementsinclude
better update classification for shared data, improving memory
layout to take advantage of spatial locdlity, and packing nonlocal
data. Run-time improvements include customizing the message
library, retargeting CVM to support compiler-parallelized appli-
cations, and improved reduction support. These suggestions are
described in greater detail in an earlier SUIF/CVM study [17].

6. Related Work

Whilethere hasbeen alarge amount of research on software DSMs
[2,7,22], weareawareof only afew projectscombining compilers
and software DSMs. Bershad et al. maintain coherenceby using a
compiler to update a software dirty bit on shared-memory accesses
[1]. Scaleset al. designed Shasta, a software-only approach that
supports fine-grain coherence through binary rewriting [24]. Us-
ing a number of optimizations, Shasta limits software overhead to

within 5-35% for the Splash benchmarks on a DEC Alpha clus-
ter. In comparison, CVM, like most software DSMs, relies on the
virtual memory systemto detect shared memory updates. Resullts,
however, show that this is not a problem since the software com-
munication overhead usually dominates the memory management
overhead.

Mukherjee et al. compared the performance of explicit
message-passing programs with shared-memory programs[21] on
Typhoon, aFlexible-Shared-Memory machineimplemented ontop
of a CM-5 [23]. Results show that with suitable extensionsto the
coherenceprotocol, the shared-memory programwas ableto match
the performance of the optimized message-passing program utiliz-
ing Chaos[5]. The authors point out that a compiler like SUIF can
take advantage of the extensible coherence protocol to improve
performance. Compared with their approach, we useasingle gen-
eral coherenceprotocol inthe CVM for all applications, exploiting
compile-time analysis to provide hints to the software DSM. The
large number of customized coherence protocols they used for
each application does not appear to be necessary for compiler-
parallelized applications.

The SUIF compiler draws on a large body of work on tech-
niquesfor identifying parallelism [11]. Previousresearchers have
examined shared-memory compilation issues such as improving
locality [19] and reducing false sharing [25], but their techniques
were mostly needed for single-writer hardware coherence proto-
cols. Granston and Wishoff suggest a number of compiler opti-
mizations for software DSMs [9]. Theseincludetiling loop itera-
tions so computation is on partitioned matching page boundaries,
aligning arrays to pages, and inserting hints to use weak coher-
ence. No implementation or experimentsare provided. CVM uses
amulti-writer release consistency protocol, so these optimizations
are not asvital asfor asequentially-consistent single-writer proto-
col.

Mirchandaney et al. described the design of a compiler for
TreadMarks, a software DSM [20]. They propose section locks
and broadcast barriersto guide eager updates of data, integrating
send, recv and broadcast operations with the software DSM, and
reductions based on multiple-writer protocols. Their proposal is
similar to portions of our SUIF/CVM interface; we differ in re-
quiring less analysis and by providing a more fine-grained API to
control the behavior of individual pages.

Dwarkadas et al. applied compiler analysis to explicitly paral-
lel programs to improve their performance using a software DSM
[6]. By combining analysisin the ParaScope programming envi-
ronment with TreadMarks, they were able to compute data access
patterns at compile time and use it to help the runtime system
aggregate communication and synchronization. Results for five
programswere within 9% of equivalent HPF programson the IBM
SP-2. Compared to their system, we target compiler-parallelized
programs which are less tuned for software DSMs, and require
much less precise compile-time communication analysis.

Viswanathan and L arus developed a two-part predictive proto-
col for iterative computationsfor use in the data-parallel language
C** [26]. Experiments on a 32 processor CM-5 show 50% im-
provement for an adaptive grid code and little impact for Water
and Barnes. The flush protocol in CVM also relies on repetitive
communication patterns to improve performance, but handles it
naturally as an extension of its multi-writer protocol.

Chandraand L arus evaluated combining the PGl HPF compiler
and the Tempest software DSM system [3]. The PGI HPF com-
piler can generate either message-passing code or shared-memory
code relying on Tempest. Preliminary results on a network of
workstations connected by Myrinet indicates shared-memory ver-
sions of dense matrix programs achieve performance close to the
message-passing codes generated. Tempest is significantly more



efficient than message-passing for programs with irregular access
patterns not analyzed at compile time. Unlike CVM, Tempest
provides fine-grain access control for units smaller than a page
[23]. However, since CVM supports multiple writers, the main
performance advantage is in avoiding page faults traps for shared
data. Large units of coherence can exploit spatial locality, so the
PGl compiler can actually improve performance by using larger
coherenceunits[3]. In comparisonto PGI/Tempest, weimplement
and evaluate enhancementsto the software DSM to improve per-
formance. We are also able to demonstrate good performance on
architectures with much longer communication latencies than the
Myrinet interconnect, a more difficult task.

Concurrent with our work, Cox et al. conducted an experimen-
tal study to evaluatethe performance of TreadMarksas atarget for
the Forge SPF shared-memory compiler from APR[4]. They com-
pared its performance against the message-passing code generated
by the ForgexHPF compiler, aswell ashand-coded shared-memory
and message-passing versions of the program. Results show that
SPF/TreadMarks is slightly less efficient for dense-matrix pro-
grams, but outperforms compiler-generated message-passing code
for irregular programs. They also identify opportunities in the
compiler to eliminate unneeded barrier synchronizationand aggre-
gating messagesin the shared-memory programs. In comparison,
our paper evaluates the benefits of the flush protocol and custom
support for reductions.

7. Conclusions

Current parallelizing compilersfor message-passing machinesonly
support a limited class of data-parallel applications. In this paper
we investigate whether we can eliminate this restriction by com-
bining a powerful shared-memory parallelizing compiler with an
advanced software DSM system. Our results show that a few
simple enhancements to the compiler/system interface can allow
our system to approach the performance of commercialy avail-
able HPF compilers and MPI message-passing programs.  Our
improvements: 1) combine synchronizationand parallelism infor-
mation communication on parallel task invocations, 2) employ cus-
tomized routines for evaluating reduction operations, and 3) select
aem flush protocol to pre-send data by flushing updatesat barriers.
Though these optimizations yield good speedupsfor program ker-
nelswith coarse-grain parallelism, performance for programs with
smaller granularity of parallelism still hasroom for improvement.
Nonetheless, our experienceslead us to believe that even a small
amount of additional compiler analysis may allow our system to
approach our long-term goal: effectively running applicationsthat
are too complex to be compiled directly to message-passing code.
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