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Abstract 
We present the design of an interface to allow applications to 
export tuning alternatives to a higher-level system. By exposing 
different parameters that can be changed at runtime, applica-
tions can be made to adapt to changes in their execution envi-
ronment due to other programs, or the addition or deletion of 
nodes, communication links etc. An integral part of this inter-
face is that an application not only expose its options, but also 
the resource utilization of each option and the effect that the 
option will have on the application’s performance. We discuss 
how these options can be evaluated to tune the overall per-
formance of a collection of applications in the system. Finally, 
we show preliminary results from a database application that 
is automatically reconfigured by the system from query ship-
ping to data shipping based on the number of active clients. 

1. Introduction 
Meta-computing, the simultaneous and coordinated use 
of semi-autonomous computing resources in physically 
separate locations, is increasingly being used to solve 
large-scale scientific problems. By using a collection of 
specialized computational and data resources located at 
different facilities around the world, work can be done 
more efficiently than if only local resources were used. 
However, the infrastructure to support this type of 
global-scale computation is not yet available. 

Both meta-computer environments and the applica-
tions that run on them can be characterized by distribu-
tion, heterogeneity, and changing resource requirements 
and capacities. These attributes make static approaches 
to resource allocation unsuitable. Systems need to dy-
namically adapt to changing resource capacities and ap-
plication requirements in order to achieve high perform-
ance in such environments.  

Active Harmony is a software architecture that man-
ages distributed execution of computational objects in 
dynamic environments. Most previous approaches to 
adapting applications to dynamic environments required 
applications to be solely responsible for reconfiguration 
to make better use of existing resources. While the actual 
means that applications use to reconfigure themselves is 
certainly application-specific, we argue that the decisions 
about when and how such reconfigurations occur are 
more properly made in a centralized resource manager. 

Moving policy into a central manager serves two 
purposes. First, it accumulates detailed performance and 
resource information into a single place. Better informa-

tion often allows better decisions to be made. This in-
formation could conceivably be provided directly to each 
application. Problems with this approach include dupli-
cated effort and possible contention from the conflicting 
goals of different applications. More importantly, how-
ever, a centralized manager equipped with both compre-
hensive information on the system’s current state, and 
knobs with which to reconfigure running applications, 
can adapt any and all applications in order to improve 
resource utilization.  

For example, consider a parallel application whose 
speedup improves rapidly up to six nodes, but improves 
only marginally after that. A resource allocator might 
give this application eight nodes in the absence of any 
other applications since the last two nodes were not be-
ing used for any other purpose. However, when a new 
job enters the system, it could probably make more effi-
cient use of those two nodes. If decisions about applica-
tion reconfiguration are made by the applications, no 
reconfiguration will occur. However, a centralized deci-
sion-maker could infer that reconfiguring the first appli-
cation to only six nodes will improve overall efficiency 
and throughput, and could make this happen. 

This paper describes the application interface to the 
Harmony resource allocator. Harmony’s application in-
terface allows applications to export tuning options. Tun-
ing options are sets of mutually exclusive application 
configuration alternatives. For example, a parallel appli-
cation might be able to exploit either four or eight nodes. 
A database system might be able to execute queries at 
either the client or the server. Options include informa-
tion about both resource requirements, and resulting per-
formance. Making choices explicitly available to the 
system allows the resource manager more freedom in 
matching applications to resources. Applications written 
to Harmony’s interface also allow reconfigurations to 
occur during application execution, and thus enable 
changing existing resource allocations in order to ac-
commodate new applications. 

The Active Harmony system is targeted at long-
lived and persistent applications. Examples of long-lived 
applications include scientific code and data mining ap-
plications. Persistent applications include file servers, 
information servers, and database management systems. 
We these applications because they persist long enough 
for the global environment to change, and hence have 
higher potential for improvement. Our emphasis on long-
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lived applications allows us to use on relatively expen-
sive operations such as object migration since these op-
erations can be amortized across the life of the object.  

The focus of this paper is on the interface between 
Harmony and applications. Specifically, we ask the fol-
lowing questions: 
1)   Can we build an API that is expressive enough to 

define real-world alternatives? 
2) How can we specify the relationships between the 

requirements? 
3) Can the Harmony system use this API to improve the 

behavior of applications during execution? 

2. Harmony structure 
Harmony’s architecture is shown in Figure 1. The major 
components are the following:  
Adaptation controller: The adaptation controller is the 
heart of the system. The controller must gather relevant 
information about both the applications and the envi-
ronment, project the effects of proposed changes (such as 
migrating an object) on the system, and weigh competing 
costs and expected benefits of making various changes.  

Active Harmony provides mechanisms for applica-
tions to export tuning options, together with information 
about the resource requirements of each option, to the 
adaptation controller. The adaptation controller then 
chooses among the exported options based on more 
complete information than is available to individual ob-
jects. A key advantage of this technique is that the sys-
tem can tune not just individual objects, but also entire 
collections of objects. Possible tuning criteria include 
network latency and bandwidth, memory utilization, and 
processor time. Since changing implementations or data 
layout could require significant time, Harmony’s inter-
face includes a frictional cost function that can be used 
by the tuning system to evaluate if a tuning option is 
worth the effort required.  
Metric interface: The metric interface provides a uni-
fied way to gather data about the performance of applica-
tions and their execution environment. Data about sys-
tem conditions and application resource requirements 
flow into the metric interface, and on to both the adapta-
tion controller and individual applications.  
Tuning interface: The tuning interface provides a 
method for applications to export tuning options to the 
system. Each tuning option defines the expected con-
sumption of one or more system resources. The options 
are intended to be “knobs” that the system can use to 
adjust applications to changes in the environment. The 
main concern in designing the tuning interface is to en-
sure that it is expressive enough to describe the effects of 
all application tuning options. 

Resource management in meta-computing is a com-
plex task. While we do not have any final answers, we 
feel our approach promises to enable more comprehen-
sive resource policies than previously possible. 

3. Application to system API 
This section describes the interface between applications 
and the Harmony adaptation controller (hereafter re-
ferred to as “Harmony”). Applications use the API to 
specify tuning options to Harmony. Harmony differs 
from previous systems like Matchmaker [19] and the 
Globus RSI [4] in that it uses simple performance mod-
els to guide allocation decisions. These models require 
more application information than previous systems. 
While previous systems might accept requests for “a 
machine and a network,” Harmony requires each re-
source usage to be specifically quantified. This is neces-
sary because Harmony uses performance prediction to 
optimize an overall objective function, usually system 
throughput. Estimates of resource usage are employed to 
build simple performance models that can then predict 
the interaction of distinct jobs. Performance models give 
Harmony the ability to make judgements of the relative 
merits of distinct choices. 
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Figure 1: Major Components of Active Harmony 

Harmony’s decision-making algorithm can also con-
sider allocation decisions that require running applica-
tions to be reconfigured. Hence, applications that are 
written to the Harmony API periodically check to see 
whether Harmony has reconfigured the resources allo-
cated to them. 

We therefore require our tuning option API to have 
the following capabilities. First, it must be able to ex-
press mutually exclusive choices on multiple axises. 
These options can be thought of as a way of allowing 
Harmony to locate an individual application in n-
dimensional space, such that the choice corresponding to 
each dimension is orthogonal. 

Second, the interface must provide a means to spec-
ify the resource requirements of different options. For 
example, we need to be able to represent that a given 
option requires X cycles and Y amount of network band-
width. However, the “X cycles” is problematic to ex-
press. Cycle counts are only meaningful with reference 
to a particular processor, such as “20 minutes of CPU 



 

 

time on a UltraSparc 5.” To circumvent this problem, we 
specify CPU requirements with reference to an abstract 
machine, currently a 400 MHz Pentium II. Nodes then 
express their capacity as a scaling factor compared to the 
reference machine. Similar relative units of performance 
have been included in systems such as PVM[7]. 

Third, the tuning options must be able to express re-
lationships between entities. For example, we need to be 
able to express “I need two machines for 20 minutes, and 
a 10Mbps link between them.” Note that the link can be 
expressed relative to the machines, rather than in abso-
lute terms. The system must therefore be able to under-
stand the topology of the system resources, such as net-
work connections between machines, software services, 
etc. Possible infrastructures that we can leverage are 
Remos [14] and Matchmaker [19]. 

Fourth, the interface must be able to represent the 
granularity at which the modification can be performed. 
For example, an iterative data-parallel HPF Fortran ap-
plication might be able to change the number of proces-
sors that it exploits at runtime. However, this adaptation 
can probably only be performed at the completion of an 
outer loop iteration. 

Fifth, we need to express the frictional cost of 
switching from one option to another. For example, once 
the above data-parallel HPF application notices the 
change request from Harmony, it still needs to reconfig-
ure itself to run with the new option. If two options differ 
in the number of processors being used, the application 
will likely need to change the data layout, change the 
index structures, and move data among nodes to effect 
the reconfiguration. This frictional cost is certainly not 
negligible, and must be considered when Harmony 
makes re-allocation decisions. 

Finally, each option must specify some way in 
which the response time of a given application choice 
can be calculated by the system. This specification may 
be either explicit or left to Harmony. In the latter case, 
Harmony uses a simple model of computation and com-
munication to combine absolute resource requirements 
into a projected finishing time for an application. An 

explicit specification might include either an expression 
or a function that projects response time based on the 
amount of resources actually allocated to the application. 

3.1 The Harmony RSL 
The Harmony resource description language (RSL) pro-
vides a uniform set of abstractions and syntax that can be 
used to express both resource availability and resource 
requirements. The RSL consists of a set of interface rou-
tines, a default resource hierarchy, and a set of prede-
fined tags that specifies quantities used by Harmony. The 
RSL is implemented on top of the TCL scripting lan-
guage [16]. Applications specify requirements by send-
ing TCL scripts to Harmony, which executes them and 
sends back resource allocation descriptions.  

Several things make TCL ideal for our purposes. 
First, it is simple to incorporate into existing applica-
tions, and easily extended. Second, TCL lists are a natu-
ral way to represent Harmony'a resource requirements. 
Finally, TCL provides support for arbitrary expression 
and function evaluation. The latter is useful in specifying 
parametric values, such as defining communication re-
quirements as a function of the number of processors. 
More to the point, much of the matching and policy de-
scription is currently implemented directly in TCL. Per-
formance is acceptable because recent versions of TCL 
incorporate on-the-fly byte compilation, and updates in 
Harmony are on the order of seconds not micro-seconds. 
The following summarizes the main features of the RSL: 
Bundles: Applications specify bundles to Harmony. 

Each bundle consists of mutually exclusive options for 
tuning the application’s behavior. For example, differ-
ent options might specify configurations with different 
numbers of processors, or algorithm options such as 
table-driven lookup vs. sequential search.  

Resource requirements: Option definitions describe 
requested high-level resources, such as nodes or 
communication links. High-level resources are quali-
fied by a number of tags, each of which specifies 
some characteristic or requirement that the resource 
must be able to meet. For example, tags are used to 

Tag Purpose 

harmonyBundle Application bundle. 
 node Characteristics of desired node (e.g., CPU speed, memory, OS, etc.) 
 link Specifies required bandwidth between two nodes. 
 communication Alternate form of bandwidth specification. Gives total communication re-

quirements of application, usually parameterized by the resources allocated 
by Harmony (i.e., a function of the number of nodes). 

 performance Override Harmony’s default prediction function for that application. 
 granularity Rate at which the application can change between options. 
 variable Allows a particular resource (usually a node specification) to be instantiated 

by Harmony a variable number of times. 

harmonyNode Resource availability. 
 speed Speed of node relative to reference node (400 MHz Pentium II). 

Table 1: Primary tags in Harmony RSL 



 

 

specify how much memory and how many CPU cy-
cles are required to execute a process on a given node. 

 
Performance prediction: Harmony evaluates different 

option choices based on an overall objective function. 
By default, this is system throughput. Response times 
of individual applications are computed as simple 
combinations of CPU and network requirements, 
suitably scaled to reflect resource contention. Applica-
tions with more complicated performance characteris-
tics, provide simple performance prediction models in 
the form of TCL scripts. 

Naming: Harmony uses option definitions to build 
namespaces so that the actual resources allocated to 
any option can be named both from within the option 
definition, and from without.  A flexible and expres-
sive naming scheme is crucial to allowing applications 
to specify resource requirements and performance as a 
function of other resources. More detail on the naming 
scheme is presented below. 

Table 1 lists the primary tags used to describe available 
resources and application requirements. The “harmony-
Bundle” function is the interface for specifying require-
ments. The “harmonyNode” function is used to publish 
resource availability. 

3.2 Naming 
Harmony contains a hierarchical namespace to allow 
both the adaptation controller and the application to 
share information about the current instantiated applica-
tion options and about the assigned resources. This 
namespace allows applications to describe their option 
bundles to the Harmony system, and also allows Har-
mony to change options.  

The root of the namespace contains application in-
stances of the currently active applications in the system. 
Application instances are two part names, consisting of 
an application name and a system chosen instance id. 
The next level in the namespace consists of the option 
bundles supported by the application. Below these are 
hierarchical resource requirements, currently just nodes 
and links. Nodes contain sub-resources such as memory, 
CPU, I/O etc.  Links currently contain only bandwidth 
estimates. The fully qualified name would be: 

appliction.instance.bundle.option.

resourcename.tagname 
For example, if the client in Figure 3 was assigned in-
stance ID 66 by Harmony, the tag describing the memory 
resources allocated to the client of the data-shipping op-
tion would: 

DBclient.66.where.DS.client.memory.   

3.3 Simple parallel application 
We next present  show the expressiveness of Harmony’s 
interface. Our first example is shown in Figure 2 (a). 
“Simple” is a generic parallel application that runs on 
four processors. There are two high-level resource re-
quests. The first specifies the required characteristics of a 
worker node. Each node requires 300 seconds of compu-
tation on the reference machine and 32 Mbytes of mem-
ory. The “replicate” tag specifies that this node definition 
should be used to match four distinct nodes, all meeting 
the same requirements. Second, we use the “comunica-
tion” tag to specify communication requirements for the 
entire application. Since specific endpoints are not given, 
the system assumes that communication is general and 
that all nodes must be fully connected. 

3.4 Variable parallelism 
Our second application, “Bag”, is a parallel application 
that implements an application of the “bag-of-tasks” 
paradigm. The application is iterative, with computation 
being divided into a set of possibly differently-sized 
tasks. Each worker process repeatedly requests and ob-
tains tasks from the server, performs the associated com-
putations, returns the results to the server, and requests 
additional tasks. This method of work distribution allows 
the application to exploit varying amounts of parallelism, 
and to perform relatively crude load-balancing on arbi-
trarily-shaped tasks. 

Bag’s interface with Harmony is shown in Figure 2 
(b). There are three additional features in this example. 
First, bag uses the “variable” tag to specify that the ap-
plication can exploit 1, 2, 4, or eight worker processes. 
Assuming that the total amount of computation per-
formed by all processors is always the same, the total 
number of cycles in the system should be constant across 
different numbers of workers. Hence, we parameterize 
“seconds” on the “workerNodes” variable defined in the 
“variable” tag.  

harmonyBundle Simple - { 
  {- {node "worker" 
  {hostname  "*"} 
      {os "linux"} 
  {seconds  "300"} 
  {memory 32 
  {replicate 4}} 
 {communication "2 + 2 * 4"} 
 }} 

harmonyBundle bag howMany { 
{default {node "worker" 

 {hostname "*"} 
 {os "linux"} 
 {seconds "200/workerNodes"} 
 {memory  {32}}} 

{variable worker "workerNodes" 1 2 4 8} 
{communication "2 + 2 * workerNodes * workerNodes"} 
{performance {[interp workerNodes {1 1e5} {4 3e4} {8 2e4}]

}} 

(a) simple parallel application (b) bag-of-tasks application 

Figure 2: Harmonized applications 



 

 

Second, we use the “communication” tag to specify 
the overall communication requirements as a function of 
the number of processors assigned. The bandwidth speci-
fied by the communication tag defines that bandwidth 
grows as the square of the number of worker processes. 
Hence, “Bag” is an example of a broad domain of appli-
cations in which communication requirements grow 
much faster than computation. 

Third, we use the “performance” tag to tell Harmony 
to use an application-specific prediction model rather 
than its default model. The “performance” tag expects a 
list of data-points, that specify the expected running time 
of the application when using a specific number of 
nodes. Rather than requiring the user to specify all of the 
points explicitly, Harmony will interpolate using a 
piecewise linear curve based on the supplied values. 

Our model could be improved. For example, a better 
way of modeling communication costs is by CPU occu-
pancy on either end (for protocol processing, copying), 
plus wire time [3]. If this occupancy is significant, cycles 
on all worker processes would need to be parameterized 
based on the amount of communication, which includes 
the quadratic expression. This is not difficult or compu-
tationally expensive, but less convenient. 

3.5 Client-server database 
Our third example is that of a hybrid relational database 
[17]. The database consists of clients and servers, with 
the distinction being that queries are submitted at clients 
and the data resides at servers. Queries can execute at 
either place. In fact, this is the main choice the applica-
tion bundle exports to Harmony. We assume a single, 
always available server and one or more clients. The 
interface to Harmony is handled entirely by the clients. 
Each client that has queries to execute contacts Harmony 
with a choice bundle. The bundle consists of two op-
tions: query-shipping, in which queries are executed at 
the server, and data-shipping, where queries are exe-
cuted at the client. Each option specifies resource usage 
on behalf of both the client and the remote server. Al-
though there is no explicit link between clients, Harmony 
is able to combine server resource usage on behalf of 
multiple independent clients in order to predict total re-
source consumption by the server. 

Figure 3 shows one possible bundle specification. 
The DBclient application specifies a bundle named 
“where,” with two options: QS (query-shipping), and DS 
(data-shipping). In either case, cycles and memory are 
consumed at both the client and the server, and band-
width is consumed on a link between the two. The dis-
tinction is that “QS” consumes more resources at the 
server, and “DS” consumes more at the client. All other 
things being equal, the query-shipping approach is faster, 
but consumes more resources at the server.  Each option 
specifies two node resources, and a network link be-
tween the two. All numeric arguments are total require-
ments for the life of the job. Both assume that the server 
is at “harmony.cs.umd.edu”; presumably the clients and 
servers can locate each other given a machine name. 
Additionally, the nodes are qualified by “seconds”, 

meaning the total expected seconds of computation on 
our reference machine, and “memory,” which specifies 
the minimum amount of memory needed.  

harmonyBundle Dbclient:1 where { 
  {QS {node server 
  {hostname harmony.cs.umd.edu} 
  {seconds  9} 
  {memory  20}} 
 {node client   
      {hostname  *} 
  {os  linux} 
  {seconds  1} 
  {memory  42"}} 
 {link client server 2}} 
  {DS {node server 
    {hostname harmony.cs.umd.edu } 
  {seconds  1} 
  {memory  20}} 
 {node client  
      {hostname  *} 
  {os  linux} 
  {memory  >=17} 
  {seconds  9}} 
 {link client server  
  {44 + (client.memory > 24 ? 24 :  
  client.memory) - 17}} 
  }}

Figure 3: Client-Server Database 
Both options specify the nodes equivalently. The 

names “server” and “client” are used within the option 
namespace to identify which node is being referred to. 
For example, the “link” option specifies the total com-
munication requirements between “server” and “client”, 
without needing to know at application startup exactly 
which nodes are being instantiated to these names. 

In addition to basic functionality, the example illus-
trates two relatively sophisticated aspects of Harmony’s 
resource management. First, resource usage is higher at 
the server with query-shipping than data-shipping. This 
allows the system to infer that server load grows more 
quickly with the number of clients with query-shipping 
than with data-shipping. At some number of clients, the 
server machine will become overloaded, resulting in 
data-shipping providing better overall performance. The 
specification does not require the same option to be cho-
sen for all clients, so the system could use data-shipping 
for some clients and query-shipping for others. 

Second, the memory tag of “>= 32” tells Harmony 
that 32 MB is the minimal amount of memory that the 
application requires, but that additional memory can be 
used profitably used as well. The specification for band-
width in the data-shipping case is then parameterized as 
a function of “client.memory.” This allows the applica-
tion to tell Harmony that the amount of required band-
width is dependent on the amount of memory allocated 
on the client machine. Harmony can then decide to allo-
cate additional memory resources at the client in order to 
reduce bandwidth requirements. This tradeoff is a good 
one if memory is available, because additional memory 



 

 

usage does not increase the application’s response time, 
whereas additional network communication does. 

4. Policies 
A key piece of Harmony is the policies used by the 
automatic adaptation system to assign resources to appli-
cations. This section describes how Harmony matches 
application resource requirements to the available re-
sources. We then describe how we compose the per-
formance information from individual nodes into a 
global picture of resource utilization. Finally, we de-
scribe the overall objective function that Harmony opti-
mizes. The current polices, although simple, allow us to 
gain experience with the system. 

4.1 Matching Resource Needs 
Resources are assigned to new applications under Har-
mony based on the requirements described in the corre-
sponding RSL. When Harmony starts execution, we get 
an initial estimate of the capabilities of each node and 
links in the system. For nodes, this estimate includes 
information about the available memory, and the normal-
ized computing capacity of the node. For links, we note 
the bandwidth and latency attributes. As nodes and links 
are matched, we decrease the available resources based 
on the application’s RSL entries. 

We start by finding nodes that meet the minimum 
resource requirements required by the application.  When 
considering nodes, we also verify that the network links 
between nodes of the application meet the requirements 
specified in the RSL. Our current approach uses a simple 
first-fit allocation strategy.  In the future, we plan to ex-
tend the matching to use more sophisticated policies that 
try to avoid fragmentation.  However, for now our goal is 
to demonstrate the ability of our system to optimize ap-
plication performance based on the options, so any initial 
match of resource requirements is acceptable. 

4.2 Explicit (response time) models 
Harmony’s decisions are guided by an overarching ob-
jective function. Our objective function currently mini-

mizes the average completion time of the jobs currently 
in the system. Hence, the system must be able to predict 
the lifetime of applications. Harmony has a very simple 
default performance model that combines resource usage 
with a simple contention model.  

However, this simplistic model is inadequate to de-
scribe the performance of many parallel applications 
because of complex interactions between constituent 
processes. For example, we might use the critical path 
notion to take inter-process dependencies into account 
[11]. Other application models could model piece-wise 
linear curves. Figure 4 shows an example of Harmony’s 
configuration choices in the presence of our client-server 
database and an application with variable parallelism. 
The parallel application’s speedup curve is described in 
an application-specific performance model1. 

In the future we plan to investigate other objective 
functions. The requirement for an objective function is 
that it be a single variable that represents the overall be-
havior of the system we are trying to optimize (across 
multiple applications).  It really is a measure of goodness 
for each application scaled into a common currency.  

4.3 Setting Application Options 
The ability to select among possible application options 
is an integral part of the Harmony system. In order to 
make this possible, we need to evaluate the likely per-
formance of different options and select the one that 
maximizes our objective function.  However, the space 
of possible option combinations in any moderately large 
system will be so large that we will not be able to evalu-
ate all combinations. Instead, we will need a set of heu-
ristics that select an application option to change and 
then evaluate the overall system objective function. 

Currently, we optimize one bundle at a time when 
adding new applications to the system. Bundles are 
evaluated in the same lexical order as they were defined. 

                                                           
1 This performance model matches a simple bag of tasks paral-
lel application and a client-server database we have modified to 
support Harmony. 

0

1

2

3

4

5

6

1 2 3 4 5 6

# nodes

sp
ee

du
p

 

P1 P2 P3 P4 P5 P6 P7 P8

par1

par1

par1

par1

par1

par2

par2

par2

par2

par3

par3

par3

db1

db1 db1

db2

tim
e

 
(a) (b) 

Figure 4: Online reconfiguration – The left side (a) shows the performance of a parallel application and (b) shows 
the eight-processor configurations chosen by Harmony as new jobs arrive. Note the configuration of five nodes (rather than 
six) in the first time frame, and the subsequent configurations that optimize for average efficiency by choosing equal 
partitions for multiple instances of the parallel application, rather some large and some small. 



 

 

This is a simple form of greedy optimization that will not 
necessarily produce a globally optimal value, but it is 
simple and easy to implement.  After defining the initial 
options for a new application, we re-evaluate the options 
for existing applications. To minimize the search space, 
we simply iterate through the list of active applications 
and within each application through the list of options.  
For each option, we evaluate the objective function for 
the different values of the option.  During application 
execution, we continue this process on a periodic basis to 
adapt the system due to changes out of Harmony’s con-
trol (such as network traffic due to other applications). 

5. Prototype  
We have developed a prototype of the Harmony interface 
to show that applications can export options and respond 
to reconfiguration decisions made by system. The archi-
tecture of the prototype is shown in Figure 6. There are 
two major parts, a Harmony process and a client library 
linked into applications. 

The Harmony process is a server that listens on a 
well-known port and waits for connections from applica-
tion processes. Inside Harmony is the resource manage-
ment and adaptation part of the system. When a Har-
mony-aware application starts, it connects to the Har-
mony server and supplies the bundles that it supports.  

A Harmony-aware application must share informa-
tion with the Harmony process. The interface is summa-
rized in Figure 5. First, the application calls functions to 
initialize the Harmony runtime library, and define its 
option bundles. Second, the application uses special 
Harmony variables to make run-time decisions about 
how the computation should be performed.  For example, 
if an application exports an option to change its buffer 
size, it needs to periodically read the Harmony variable 
that indicates the current buffer size (as determined by 
Harmony controller), and then update its own state to 
this size. Applications access the “Harmony” variables 
by using the pointer to a Harmony variable returned by 
the harmony_add_variable() function.   

New values for Harmony variables are buffered in 
the until a flushPendingVars()call is made. This 

call sends all pending changes to the application proc-
esses. Inside the application, a I/O event handler function 
is called when the Harmony process sends variable up-
dates. The updates are then applied to the Harmony vari-
ables. The application process must periodically check 
the values of these variables and take appropriate action. 
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Figure 6: Architecture of Harmony Prototype. 

Our system uses a polling interface to detect 
changes in variables at the application. Many long-
running applications have a natural phase where it is 
both easier and more efficient to change their behavior 
rather than requiring them to react immediately to Har-
mony requests.  For example, database applications usu-
ally need to complete the current query before re-
configuring the system from a query shipping to a data-
shipping configuration.  Likewise, scientific applications 
generally have a time-step or other major loop that repre-
sents a natural point to re-configure the application.  

The Harmony process is an event driven system that 
waits for application and performance events. When an 
event happens, it triggers the automatic application adap-
tation system, and each of the option bundles for each 
application gets re-evaluated to see it should be changed 
(see Section 4 for a complete description of the way the 

harmony_startup(<unique id>, <use interrrupts>)

A program registers with the Harmony server using this call.

harmony_bundle_setup(“<bundle definition>”)

An application informs Harmony of one of its bundles this way.  The bundle definition looks like the 
examples given in Section 3.1.

void *harmony_add_variable(“variable name”, <default value>, <variable type>)

An application declares a variable that to communicate information between Harmony and the appli-
cation. Harmony variables include bundle values, and resource information (such as the nodes that 
the application has been assigned to use). The return value is the pointer to the variable.

harmony_wait_for_update()

The application process blocks until the Harmony system updates its options and variables.
harmony_end()

The application is about to terminate and Harmony should re-evaluate the application's resources. 

Figure 5: Harmony API Used by Application Programs. 



 

 

evaluation is done).  When option bundles are changed, 
the appropriate variables are updated in each application. 

6. An Example Application 
To explore the ability of the Harmony server to adapt an 
application, we modified a hybrid client-server database 
to allow Harmony to reconfigure where queries are proc-
essed: on client nodes or on server nodes. The database 
system used was Tornadito [17], a relational database 
engine built on top of the SHORE (Scalable Heterogene-
ous Object REpository) storage manager [2, 22]. All 
experiments were run on nodes of an IBM SP-2, and 
used the 320Mbps high performance switch to commu-
nicate between clients and the server. Each client ran the 
same workload, a set of similar, but randomly perturbed 
join queries over two instances of the Wisconsin bench-
mark relations [9], each of which contains 100,000 208-
byte tuples. In each query, tuples from both relations are 
selected on an indexed attribute (10% selectivity) and 
then joined on a unique attribute. While this is a fairly 
simple model of database activity, such query sets often 
arise in large databases that have multiple end users 
(bank branches, ATMs), and in query refinement.  

The Harmony interface exported by this program is 
the set of option bundles shown in Figure 3. For our ini-
tial experiments, the controller was configured with a 
simple rule for changing configurations based on the 
number of active clients.  We then ran the system and 
added clients about every three minutes.  The results of 
this experiment on shown in Figure 7. In this graph, the 
x-axis shows time, and the y-axis shows the mean re-
sponse time of the benchmark query. Each curve repre-
sents the response time of one of the three clients. Dur-
ing the first 200 seconds, there is only one client active 
and the system is processing the queries on the server. 
During the next 200 seconds, two clients are active, and 
the response time for both clients is approximately dou-
ble the initial response time with one active client.  

At 400 seconds, the third client starts, and the re-
sponse time of all clients increases to approximately 20 
seconds. During this interval one of the clients has a re-
sponse time that is noticeably better than the other two 
(client #1 for the first 100 seconds, and then client #2). 

This is likely due to cooperative caching effects on the 
server since all clients are accessing the same relations. 

The addition of the third client also eventually trig-
gers the Harmony system to send a re-configuration 
event to the clients to have them start processing the que-
ries locally rather than on the server. This results in the 
response time of all three clients being reduced, and in 
fact the performance is approximately the same as when 
two clients were executing their queries on the server. 
This demonstration shows that by adapting an applica-
tion to its environment, we can improve its performance. 

7. Related work 
GLOBUS [6] and Legion [12] are both large projects 
that are trying to address many of the different require-
ments to build a meta-computing environment.  By con-
trast, our work is concentrating on the specific problem 
of developing interfaces and policies to allow applica-
tions to react to their computing environment 

The Odyssey [15] and EMOP [5] projects are also 
focused on online adaptation. Odyssey gives resources, 
such as network bandwidth, to applications on a best-
effort basis. Applications can register system callbacks to 
notify them when resource allocations stray outside of 
minimum and maximum thresholds. EMOP provides 
mechanisms and services (including object migration 
facilities) that allow applications to define their own 
load-balancing and communication services. 

The Condor system[13] tries to allocate computing 
resources to nodes that are otherwise idle. Condor uses 
Classified Ads[20] to match resource suppliers and con-
sumers.  Their approach provides a flexible way to de-
scribe the attributes of a node that is required such as 
memory and processing speed. However, it is designed 
to handle the placement of sequential applications. The 
only runtime feedback an application is to leave a node 
when the workstation owner returns. 

One system that does try to adapt applications to 
available resources is AppLes [1]. AppLes allows appli-
cations to be informed of the variations in resources and 
presented with candidate lists of resources to use.  Each 
application is then able to develop its own customized 
resource allocation policy. Harmony differs from Ap-
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Figure 7: Client-server database application – Harmony chooses query-shipping with one 
or two clients, but switches all clients to data-shipping when the third client starts. 



 

 

pLes in that we try to optimize resource allocation be-
tween applications, whereas AppLes lets each applica-
tion adapt itself independently. In addition, by providing 
a structured interface for applications to disclose their 
specific preferences, Harmony will encourage program-
mers to think about their needs in terms of options and 
their characteristics rather than as selecting from specific 
resource alternatives described by the system. 

Computational Steering [8, 10, 18] provides a way 
for users to alter the behavior of an application under 
execution. Harmony’s approach is similar in that applica-
tions provide hooks to allow their execution to be 
changed. Many computational steering systems are de-
signed to allow the application semantics to be altered, 
for example adding a particle to a simulation, as part of a 
problem-solving environment, rather than for perform-
ance tuning. Also, most computational steering systems 
are manual in that a user is expected to make the changes 
to the program.  One exception to this is Autopilot [21] 
which allows applications to be adapted in an automated 
way. Harmony differs from Autopilot in that it tries to 
coordinate the use of resources by multiple applications. 

8. Conclusions 
We have presented an overview of the application adap-
tation interface that we are building as part of the Har-
mony project.  We described the way application can 
export different candidate options to the system.  We 
also reported on the development of an early prototype 
of the system and a client-server database application 
that have been extended for use with Harmony. Finally, 
we showed that our system was able to change the con-
figurations of the applications during execution to im-
prove not only the performance of a single client but also 
the overall throughput of the system. 
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