
Decentralized, Accurate, and Low-Cost
Network Bandwidth Prediction

Sukhyun Song, Pete Keleher, Bobby Bhattacharjee, and Alan Sussman
UMIACS and Department of Computer Science, University of Maryland

{shsong, keleher, bobby, als}@cs.umd.edu

Abstract—The distributed nature of modern computing makes
end-to-end prediction of network bandwidth increasingly im-
portant. Our work is inspired by prior work that treats the
Internet and bandwidth as an approximate tree metric space. This
paper presents a decentralized, accurate, and low cost system
that predicts pairwise bandwidth between hosts. We describe an
algorithm to construct a distributed tree that embeds bandwidth
measurements. The correctness of the algorithm is provablewhen
driven by precise measurements. We then describe three novel
heuristics that achieve high accuracy for predicting bandwidth
even with imprecise input data. Simulation experiments with
a real-world dataset confirm that our approach shows high
accuracy with low cost.

I. I NTRODUCTION

Network bandwidth is an important factor in determining
the performance of distributed computing applications. Since
bandwidth measurements are generally expensive to perform,
we would expect that networked applications can greatly
benefit from the ability to predict pairwise bandwidth without
performing full n-to-nmeasurements. For example, a peer-to-
peer (P2P) computational grid system [1] could increase its
performance by finding high-bandwidth nodes (and links) to
store large scientific input or output datasets.

Unfortunately, however, there exists no effective framework
that can predict bandwidth between hosts in a decentral-
ized fashion. Euclidean coordinate spaces are not a good
model for embedding bandwidth measurements. Accordingly,
attempts [2] to use a traditional network coordinate system
do not work well in predicting bandwidth, resulting in poor
accuracy. Ramasubramanian et. al [2] claim that the Internet
and bandwidth can be modeled by an approximate tree metric
space that almost satisfies the four-point condition [3]. Based
on this finding, they proposed a new method for bandwidth
prediction, where bandwidth measurements are embedded as
distances in an edge-weighted tree. The result centralized
system has been shown to have reasonably high accuracy.

Inspired by the success of tree-embedding approach, our
study focuses on decentralization. We feel that a fully de-
centralized bandwidth prediction system must consider four
requirements: i) there must exist no centralized data structure
and no centralized component, ii) bandwidth should be pre-
dicted accurately, iii) measurement traffic should be scalable
as the number of hosts increases, and iv) the system should
be able to adapt to network changes. Our study appeared
originally in [4] as an extended abstract. The contributions
of this paper are fourfold. First we describe the design of

a decentralized bandwidth prediction system that satisfiesall
four requirements above. Especially, our algorithm does not
require a centralized component (such as a set of landmark
nodes) that all hosts must communicate with to measure band-
width. Second, we provide a theoretically provable algorithm.
The edge-weighted tree constructed by our algorithm embeds
bandwidth measurements without any error when we assume
that bandwidth measurements are exactly represented as a
tree metric space. The third contribution is a set of three
new heuristics that allow high prediction accuracy in the real
Internet. Finally, we present simulation results validating the
high accuracy and low cost for our algorithm.

The rest of the paper is organized as follows. We first
discuss the underlying intuition behind this work in Section II.
Section III describes the algorithm design, and presents the
techniques used to achieve high prediction accuracy in the real
world. Finally, Section IV evaluates our approach experimen-
tally, and we conclude and discuss future work in Section V.

II. BACKGROUND AND RELATED WORK

A. Definitions

• A metric space is an ordered pair(V, d) whereV is a set
of nodes andd is a metric (distance function) onV .

• An edge-weighted treeis a connected graph without
cycles, and with non-negative edge weights.

• The distancebetween two nodesu and v on an edge-
weighted treeT , denoteddT (u, v), is defined by the sum
of weights of edges on the path fromu to v.

• An edge-weighted treeT inducesa metric space(V, d)
if and only if T contains all nodes inV and∀u, v ∈ V ,
d(u, v) = dT (u, v) holds.

• The four-point condition (4PC)on a metric space(V, d)
states that for any set of four nodesw, x, y, z ∈ V ,
d(w, x)+d(y, z) ≤ d(w, y)+d(x, z) ≤ d(w, z)+d(x, y)
implies d(w, y) + d(x, z) = d(w, z) + d(x, y).

• A metric space that satisfies 4PC is called atree metric
space.

B. Bandwidth as a Metric and Treeness of the Internet

Higher values are considered better for bandwidth while
closer is generally more desirable for distance in a metric
space. So, Ramasubramanian et. al [2] used thelinear trans-
form functiond(u, v) = C−BW (u, v) to represent bandwidth
as a metric, whereBW (u, v) is the bandwidth between nodes
u and v, d(u, v) is the distance in a metric space, andC is

a constant. Representing bandwidth as a metric implies four
properties: i)d(u, v) ≥ 0, ii) d(u, v) = 0 if and only if u = v,
iii) d(u, v) = d(v, u), and iv) d(u,w) ≤ d(u, v) + d(v, w).
The first property is satisfied by having a large value forC,
for example, the expected maximum bandwidth. By setting
BW (u, u) = C, we can also satisfy the second property.
We satisfy the third property by setting bothBW (u, v) and
BW (v, u) to the average bandwidth of the forward and reverse
directions. Even though no effective method has been found
to directly address the last assumption, we provide several
heuristics to accurately embed bandwidth information intoa
metric space in the real Internet, as described in Section III-D.

There are two pieces of evidence to verify that the Internet
is close to a tree metric space for bandwidth. First, Ramasub-
ramanian et. al [2] verify that a bandwidth dataset produce
small values of parameterε. ε was introduced by Abraham et.
al [5] to quantify how closely a set of four nodes satifies 4PC.
If all ε values in a metric space are zero, the metric space
is a perfect tree metric space. Second, there is a theoretical
model of network topology such that bandwidth between two
nodes is bottlenecked in the first hop of routing path. It has
been proved that a metric space for this model is a perfect tree
metric space [2].

C. Approaches for Edge-Weighted Tree Construction

Theorem 2.1:A metric space(V, d) satisfies 4PC if and
only if there exists an edge-weighted tree that induces(V, d).

By Theorem 2.1, we can expect to use an edge-weighted tree
for bandwidth prediction. Buneman [3] proved Theorem 2.1 by
providing the first algorithm to construct an edge-weightedtree
for a given tree metric space. However, unlike our incremental
iterative algorithm described in Section III, Buneman’s recur-
sive algorithm does not allow nodes to be incrementally added
to existing trees. Since the resulting edge-weighted tree would
not be expandable, we cannot directly apply the algorithm in
practice when nodes dynamically join a distributed system.

Abraham et. al [5] proposes a tree construction algorithm for
an approximate tree metric space. Even though the theoretical
work has a contribution in providing upper and lower bounds
on the accuracy of tree embedding, it suffers the same problem
as Buneman’s algorithm for practical uses because it also uses
a non-incremental recursive algorithm.

Our research is inspired by the Sequoia system [2], which
uses a tree-embedding model for bandwidth prediction and
proposes an incremental iterative tree construction algorithm
for the first time. We naturally use the same terms as the
Sequoia authors do to explain our algorithm even though some
terms have somewhat different meanings. Our study has sev-
eral contributions relative to Sequoia. First, our system is fully
decentralized and does not require a centralized component.
To participate in the Sequoia system, each node must measure
bandwidth with several nodes starting from a fixed landmark
node called the lever node. On the other hand, each node joins
our system by performing measurement with an arbitrary set of
nodes starting at a random node. Second, we can prove that our
algorithm constructs an edge-weighted tree that induces a tree

t f

t i

t j

t k

et
dt

t h

t c

t g

a

b

c d e

f g i j k
h

(=tb)

b

g
c

d

i

k

e
8

6
10

5
5

5
8

7

h

10

5

5

10

10

5

8

j

8

6 4
f

Prediction Tree Anchor Tree

10

a

Fig. 1. A Prediction Tree and a Corresponding Anchor Tree

metric space without any error. Third, we succeed in achieving
higher accuracy in a real world network by introducing three
novel heuristics. Sequoia uses an algorithm that fits a perfect
tree metric space directly in practice, and results in lower
accuracy than our approach, as shown in Section IV.

III. D ESIGN

The overall design goal is to construct an edge-weighted tree
that induces a tree metric space. This section describes details
of the design starting from a centralized algorithm. The algo-
rithm is extended to a partially decentralized algorithm that
reduces measurement traffic without relying on any landmark
nodes. Then we discuss how to build a fully decentralized
algorithm by distributing data structures. Heuristics to improve
prediction accuracy are provided last.

A. Centralized Algorithm to Construct a Prediction Tree

An edge-weighted tree embedding bandwidth information
is called aprediction tree(Fig. 1). The number on each edge
represents the weight of the edge. A leaf node in a prediction
tree has degree one and represents each participating host in
the system. An inner node with degree two or more is created
when a new leaf node is added. The linear transform function
d(u, v) = C − BW (u, v) is used to represent bandwidth as
a metric, andBWT (u, v) = C − dT (u, v) for bandwidth
prediction. For example, in Fig. 1 ifC = 100, the predicted
bandwidth valueBWT (b, c) is 77 becausedT (b, c) = 23.

Algorithm 1 : AddNode(T,x): Add a nodex to a predic-
tion treeT using a random base node.

Pick a base nodez from any leaf nodesin T1

Measured(x, s) for all leaf nodess in T2

Find an end nodey that maximizes(x|y)z3

Put x’s inner nodetx on the pathz ∼ y where4

dT (z, tx) = (x|y)z holds
Add x with edge(tx, x) of weight d(z, x)− (x|y)z5

A prediction tree starts with the first added node as a
singleton, and the second node is added along with an edge
that connects the two nodes and is weighted by their distance.
The tree grows by iteratively adding nodes as shown in
Algorithm 1. To add a new nodex to a prediction tree, the
algorithm chooses a nodez called thebase node, which can be
any leaf node, and selects another nodey called theend node
that maximizesGromov product(x|y)z . The Gromov product
of x andy at z, denoted(x|y)z , is defined here as(x|y)z =
1
2 (d(z, x) + dT (z, y) − d(x, y)). x’s inner nodetx is created
and located on the pathz ∼ y wheredT (z, tx) = (x|y)z . The

algorithm then addsx to the prediction tree by creating an edge
(tx, x) of weightd(z, x)− (x|y)z , so thatdT (z, x) = d(z, x).
The key idea in Algorithm 1 is to choose a random base
node, and this provides an indispensable underpinning for a
decentralized system relying on no fixed landmark node. From
Theorem 3.1, we know that bandwidth information is correctly
embedded into the prediction tree constructed by Algorithm1.

Theorem 3.1: (Correctness of Algorithm 1)Given a tree
metric space(V, d) and a nodex ∈ V , let T be an edge-
weighted tree that induces a subspace(V \ {x}, d) of (V, d).
If Algorithm 1 addsx to T and creates a new edge-weighted
treeT ′, thenT ′ will induce (V, d).

B. Reducing Measurement Traffic with an Anchor Tree

Lines 2∼3 of Algorithm 1 show a naive way to find an end
node, which measures bandwidth to alln hosts in the system.
It is important to reduce this number of measurements to a
scalable amount in developing an efficient prediction system.
This leads us to introduce ananchor tree.

An anchor tree is a rooted unweighted tree where each
node represents a host in the system. The first added node
in the system becomes the root node of the anchor tree, and
the second node becomes the child of the root node. Then
the anchor tree grows along with a prediction tree following
Algorithm 2, which is an improved version of Algorithm 1
with respect to end node search time. When adding a new node
x to a prediction tree, the algorithm moves up and down on an
anchor tree starting from a random base nodez until finding
a Gromov product maximizery. At each hop, the algorithm
creates a set of candidate nodes to be an end node (CAND)
by considering the currently visited node and all its neighbors,
and measuresd(x, s) for each candidate nodes. The algorithm
then moves in the direction that locally maximizes the Gromov
product until reaching a global maximizer. Oncex is added
to the prediction tree in the same way as in Algorithm 1,x

is also added to the anchor tree by becoming a child ofx’s
anchor node. x’s anchor node is defined as a node that was
previously added to the prediction tree along with the edge
that x’s inner nodetx is located on. For example, assuming
that nodes in Fig. 1 are added to the system in an alphabetical
order, when addingh to a prediction tree,h’s inner nodeth
is located on edge(td, d). Node d is defined ash’s anchor
node because edge(td, d) is created whend was added. Using
Lemma 3.2 and mathematical induction, we can prove that a
prediction tree constructed by Algorithm 2 correctly induces a
tree metric space. The lemma deals with the case where part
of a prediction tree can be excluded from end node searching.

Lemma 3.2:Given a tree metric space(V, d) and a node
x ∈ V , let T be an edge-weighted tree that induces a subspace
(V \{x}, d) of (V, d). For three leaf nodesz, y, andw in T , let
t be an inner node on pathz ∼ y at distance(y|w)z from z. Let
S be a set of leaf nodes in all the subgraphs connected to (i.e.,
rooted at) the inner nodes on patht ∼ w. If (x|y)z ≥ (x|w)z ,
then (x|y)z ≥ (x|s)z ∀s ∈ S.

The number of measurements needed to run Algorithm 2.
depends on the number of visited nodes and the degree (the

Algorithm 2 : FastAddNode(T,A,x): Add a nodex to
a prediction treeT and an anchor treeA, skipping some
unnecessary measurements.

Pick a base nodez from any leaf nodes inT1

y ← z2

while true do3

CAND← {y, y’s parent and child nodes inA}4

Measured(x, s) ∀s ∈ CAND5

MAX← argmaxs∈CAND(x|s)z6

if y ∈ MAX then breakelsey ← one node inMAX7

Put x’s inner nodetx in T on the pathz ∼ y where8

dT (z, tx) = (x|y)z holds
Add x to T with edge(tx, x) of weight d(z, x)− (x|y)z9

Let x’s anchor nodea be a node that was previously10

added with the edgetx is located on
Add x to A asa’s child node11

number of neighbors) of each visited node. Those numbers
are both dependent on the shape of the anchor tree and
the locations of the base node and end node. Also, for a
given metric space, an anchor tree has different shapes from
different node addition orderings. The best case is when the
measurement starts at a leaf node and ends at its parent node
that has no other child nodes, so takesO(1) measurements.
For some poor orderings for adding nodes, the algorithm can
produce a long chain-style anchor tree ofO(n) depth or a
shallow anchor tree with a node ofO(n) degree, so that the
worst case number of measurements taken isO(n).

C. Fully Decentralizing with Distributed Structures

A distance labelis assigned to each node, so that we can
construct a prediction tree in a distributed fashion. Nodex’s
distance label contains all anchor nodes on the path from the
root node tox in the anchor tree. The distance label also
contains the corresponding distance values between anchor
nodes and inner nodes. Suppose there arek anchor nodes in
x’s distance label, fromx’s anchor nodea1 to the root node
ak. ai+1 is ai’s anchor node, andtai

is ai’s inner node for
1 ≤ i ≤ k − 1. Thenx’s distance label is denoted by:

(ak
dT (ak,tak−1

)
−−−−−−−−−−→
dT (ta

k−1
,ak−1)

ak−1 · · · a2
dT (a2,ta1

)
−−−−−−−→
dT (ta1

,a1)
a1

dT (a1,tx)
−−−−−−→
dT (tx,x)

x)

For example, noded in Fig. 1 has(a
0
−→
25

b
10
−→
20

d) as

its distance label, becausedT (a, tb) = 0, dT (tb, b) = 25,
dT (b, td) = 10, and dT (td, d) = 20. Since a distance label
is equivalent to a partial prediction tree, the distance between
two nodes can be estimated with a simple computation. The
participating nodes build an overlay network that directly
matches the structure of the anchor tree. We can use Algo-
rithm 2 to construct these distributed structures with a slight
modification. A joining nodex first chooses a random base
nodez from the system in the same way as a bootstrapping
node is identified in a general structured P2P system.x

measures bandwidth to several nodes while moving around
the overlay network until finding an end nodey. Then x

determines its anchor nodea and its distance label by using

the distance labels ofz and y to figure out wherex’s inner
nodetx is located on a prediction tree. Finally,x becomesa’s
child node by notifyinga of its join event.

Our system maintains and restructures the overlay network
in response to a changing network environment by having each
node send periodic heartbeat messages to its neighbor nodes.
We first discuss dealing with failover. When a nodem fails,
one ofm’s child nodesc takes overm’s role, andm’s other
child nodes becomec’s child nodes.c should be chosen such
that c’s inner nodetc is the closest tom among the inner
nodes on the path fromm to m’s inner nodetm. This is
because pathtm ∼ c must be long enough to contain all the
other inner nodes that were originally put on pathtm ∼ m. tm
becomesc’s new inner node.c must adjust its distance label
to reflect this change.c’s takeover event is propagated down
to the nodes inc’s new subtree, so that they can update their
distance labels. For example, in Fig. 1, ife fails thenk takes
over its role becausetk is closer toe than any other inner
nodes on pathe ∼ te. i andj becomek’s child nodes.

When bandwidths change dynamically over time, we re-
structure the part of the system where bandwidth changes
occur. Whenx detects a significant difference betweend(x, y)
anddT (x, y) for somey thatx has measured before, it leaves
the system, then joins again usingy as its base node.x’s rejoin
process is normally faster than an initial join process, because
x can utilize bandwidth measurements it has already made.

D. Tolerating Imperfect Data

Although the Internet approximates a tree metric space, di-
rectly applying the previously described algorithms in practice
will result in low accuracy for bandwidth prediction. We now
describe useful heuristics to improve prediction accuracy.

1) Error Minimization: Deciding the position of a new
nodex in a prediction tree by finding a Gromov product maxi-
mizer guarantees perfect prediction accuracy in an ideal world,
as shown by Theorem 3.1. However, when the 4PC does not
hold in a metric space, this is no longer an effective approach
to achieve high accuracy. We therefore modify the algorithm
to find x’s position that minimizes relative prediction error,
rather than finding the Gromov product maximizer. In the first
phase,x collects measurement data. At each hop,x computes
its temporary position in a prediction tree as for the base node
and each candidate end node. With each ofx’s temporary
positions, x estimates relative prediction errors, using the
formula |BW (x,t)−BWT (x,t)|

BW (x,t) , for each nodet out of nt nodes
that x has measured so far. Thenx moves to the candidate
node that minimizes the average of thent relative prediction
errors. Once an error minimizer is found,x determines its final
position in the second phase with the collected measurement
data. For each of all possible pairs of nodes in the set ofnt

measured nodes, again,x computes its temporary position and
estimates the average relative prediction error. The position
that minimizes the error is selected asx’s final position.
Note that while only the pairs with the single base node are
considered in the first phase, all the possible pairs are usedto
find the best position ofx in the second phase.

We have found that minimizing relative error shows better
accuracy on a real-world bandwidth dataset than moving to the
local Gromov product maximizer. Sincex uses the bandwidth
data it has already collected, this heuristic does not causeany
additional measurements to be made. The heuristic also does
not affect accuracy in the ideal world scenario.

2) Rational Transform Function:A linear transform func-
tion BWT (u, v) = C − dT (u, v) is used for bandwidth
prediction in the base system. Unlike the ideal world sce-
nario, dT (u, v) might not be equal tod(u, v) in the real
network. IfdT (u, v) is much larger thand(u, v), that can result
in predicting a negative bandwidth value and will decrease
overall prediction accuracy. To overcome this problem, we
use a rational transform functiond(u, v) = C

BW (u,v) for

embedding andBWT (u, v) = C
dT (u,v) for prediction, so

that the predicted bandwidth is always positive even when
dT (u, v) is overestimated. As does the linear function, the
rational transform function inverts ordering of bandwidthafter
performing the transformation. The second property of a
metric space, as described in Section II, is satisfied by setting
BW (u, u) = ∞. An additional benefit of this change is that
it adds no extra costs into the system, similar to the error
minimization heuristic.

3) Deep Search:The previously discussed node join al-
gorithm considers only direct neighbors as candidate nodes
to be an end node. We can modify that to take advantage
of additional candidates by using indirect two-hop neighbors.
Unlike the other two heuristics, however, deep search does
require more measurements with additional candidates.

IV. EVALUATION

This section evaluates our approach by examining i) ac-
curacy and cost, ii) heuristic efficacy, and iii) scalability
of measurement traffic. Our simulations are based on the
HP-PlanetLab dataset described in [2]. This dataset contains
available bandwidth measurements between PlanetLab nodes
collected at HP Labs [6] using pathChirp [7]. Since the raw
dataset is incomplete and has many unmeasured pairs of nodes,
we first extracted measurements for the 190 nodes (out of 459)
that give a fulln-to-nasymmetric matrix containing bandwidth
measurements. We then converted the matrix to a symmetric
one by averaging bandwidth values from forward and reverse
directions for each pair of nodes. The treeness of the dataset is
measured withε values [5]. The preprocessed dataset produces
0.186 for the averageε when the rational transform function
is used withC = 10000.0 (Mbps).

We show experimental results for three different approaches
in Fig. 2.NEW shows results from our system using all three
heuristics: error minimization, rational transform function,
and deep search.NEW-EXHAUSTIVE is a special case of
NEW that uses exhaustiven-to-n measurements to construct
a prediction tree with the highest prediction accuracy. Each
joining node performs measurements with all existing nodes
in the system and finds its best position. While this approach
is only theoretical, not practical, it provides an upper bound on

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
D

F
 (

%
)

Relative Prediction Error

NEW-EXHAUSTIVE
NEW

SEQUOIA

(a) Accuracy

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
D

F
 (

%
)

Relative Prediction Error

NEW-EXHAUSTIVE
NEW-3
NEW-2
NEW-1
NEW-0

(b) Heuristic Efficacy

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140 160 180

C
o
s
t
(A

v
e
ra

g
e
 #

 M
e
a
s
u
re

d
 P

a
ir
s
)

System Size (# Nodes)

 NEW-EXHAUSTIVE
NEW

SEQUOIA

(c) Scalability
Fig. 2. Experimental Results

the potential results for the real algorithms.SEQUOIA refers
to our simulation of the centralized Sequoia algorithm [2].

We first constructed the systems for the three approaches
by adding 190 nodes in the same order. Fig. 2(a) shows the
CDF of the relative errors for all possible pairs among the
190 nodes. The relative bandwidth prediction error between
node u and v is defined as|BW (u,v)−BWT (u,v)|

BW (u,v) . NEW is
more accurate than SEQUOIA, with more than 90% of the
node pairs having a relative error less than 0.5, and closely
tracks NEW-EXHAUSTIVE. We also estimated the total num-
ber of measurements needed to construct the system. NEW-
EXHAUSTIVE causes 17955 measurements between all 190
nodes. NEW requires 5652 measurements, much fewer than
the 11328 for SEQUOIA. Sequoia’s high costs come from
the top-down node join process with a fixed base node in an
anchor tree. A new nodex performs measurements starting at
the root noder and its child noderc, and passes through other
nodes in a top-down way. The position ofx’s inner nodetx
in a prediction tree is always determined on the path with the
base noder fixed at one end. So, it is more likely thattx is
positioned on pathr ∼ rc in a prediction tree, andx becomes
rc’s child node in an anchor tree.rc in SEQUOIA actually has
113 child nodes. This high degree of high-level node causes
heavy traffic as the next joining node performs measurements
in a top-down way. On the other hand, our approach allowstx
to be positioned on a path with a random base node. So, there
is a smaller chance thatx choosesrc as a parent, resulting in
rc’s 27 child nodes in NEW. All the experiments performed
with 10 different node addition orderings show similar results
to those shown.

Fig. 2(b) shows how effectively the three heuristics dis-
cussed in Section III-D raise the accuracy of our system.
NEW-0 shows results for our system without any heuristics,
NEW-1 is the system with error minimization applied to
NEW-0, NEW-2 is the system with the rational transform
function applied to NEW-1, andNEW-3 is the system with
deep search applied to NEW-2. (NEW-3 is equal to NEW in
Fig. 2(a).) Those curves show how accuracy improves as the
heuristics are applied one by one. Use of the heuristics allows
accuracy to approach that of the exhaustive test case.

Fig. 2(c) shows scalability results, in terms of the measure-
ment traffic needed to construct a system. For each system
size, we created five different datasets, and we constructed
a system 20 times with a different node join order for each

dataset. Then we collected the total number of measurements
to construct a system and computed an average value in each
system size. NEW shows lower cost than SEQUOIA. The cost
for SEQUOIA and NEW increases almost linearly while the
exhaustive testing takes quadratic number of measurements.

V. CONCLUSIONS ANDFUTURE WORK

This paper has presented a decentralized and scalable sys-
tem that accurately predicts pairwise bandwidths with low
cost. Our node join algorithm does not require any fixed
infrastructure, such as landmark nodes, that all hosts must
measure bandwidth to and from. The algorithm also uses
novel heuristics to achieve accuracy on imprecise, real-world,
datasets. Simulation results show high accuracy, low cost,and
scalability. We are currently extending this work in several
ways. First, we are studying a cluster search algorithm to find
a set ofk nodes with the minimum interconnection bandwidth
b. Second, we intend to use our system as the underlying
technology for resource discovery in a P2P desktop grid [1].

ACKNOWLEDGMENT

We thank Venugopalan Ramasubramanian and the other
developers of Sequoia for providing us with the HP-PlanetLab
dataset used to evaluate our algorithm in Section IV.

REFERENCES

[1] J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Suss-
man, “Resource discovery techniques in distributed desktop grid environ-
ments,” in Proceedings of the 7th IEEE/ACM International Conference
on Grid Computing - GRID 2006. IEEE Computer Society Press, Sep.
2006.

[2] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta,
and A. Akella, “On the treeness of internet latency and bandwidth,” in
Proceedings of the 11th International Joint Conference on Measurement
and Modeling of Computer Systems - SIGMETRICS/Performance2009.
ACM, Jun. 2009.

[3] P. Buneman, “A note on the metric properties of trees,”Journal of
Combinatorial Theory, Ser. B, vol. 17, pp. 48–50, 1974.

[4] S. Song, P. J. Keleher, B. Bhattacharjee, and A. Sussman,“Decentralized
network bandwidth prediction,” inProceedings of the 24th International
Symposium on Distributed Computing - DISC 2010. Springer, Sep. 2010.

[5] I. Abraham, M. Balakrishnan, F. Kuhn, D. Malkhi, V. Ramasubramanian,
and K. Talwar, “Reconstructing approximate tree metrics,”in Proceed-
ings of the 26th Annual ACM Symposium on Principles of Distributed
Computing - PODC 2007. ACM, Aug. 2007.

[6] “S3: Scalable sensing service.” [Online]. Available: http://networking.
hpl.hp.com/s-cube/

[7] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
“pathchirp: Efficient available bandwidth estimation for network paths,”
in Proceedings of the 4th Passive and Active Measurement Workshop -
PAM 2003. Springer, Apr. 2003.

