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Abstract—The distributed nature of modern computing makes a decentralized bandwidth prediction system that satisfies
end-to-end prediction of network bandwidth increasingly im-  four requirements above. Especially, our algorithm does no
portant. Our work is inspired by prior work that treats the — aqjire a centralized component (such as a set of landmark

Internet and bandwidth as an approximatetree metric space. This d that all host t cate with t band
paper presents a decentralized, accurate, and low cost Sgsh nodes) that all hosts must communicate with to measure band-

that predicts pairwise bandwidth between hosts. We describan  Width. Second, we provide a theoretically provable algonit
algorithm to construct a distributed tree that embeds bandvidth The edge-weighted tree constructed by our algorithm embeds

measurements. The correctness of the algorithm is provablehen  pandwidth measurements without any error when we assume
driven by precise measurements. We then describe three ndve that bandwidth measurements are exactly represented as a

heuristics that achieve high accuracy for predicting bandvidth . . - .
even with imprecise input data. Simulation experiments wib tree metric space. The third contribution is a set of three

a real-world dataset confirm that our approach shows high new heuristics that allow high prediction accuracy in thal re
accuracy with low cost. Internet. Finally, we present simulation results validgtithe

high accuracy and low cost for our algorithm.
The rest of the paper is organized as follows. We first
Network bandwidth is an important factor in determiningliscuss the underlying intuition behind this work in Sectib
the performance of distributed computing applicationsic8i Section Ill describes the algorithm design, and preserds th
bandwidth measurements are generally expensive to perfotathniques used to achieve high prediction accuracy inghie r
we would expect that networked applications can greatyorld. Finally, Section IV evaluates our approach experime
benefit from the ability to predict pairwise bandwidth withio tally, and we conclude and discuss future work in Section V.
performing full n-to-n measurements. For example, a peer-to-
peer (P2P) computational grid system [1] could increase its
performance by finding high-bandwidth nodes (and links) #. Definitions

store large scientific input or output datasets. « A metric space is an ordered pdlr, d) whereV is a set
Unfortunately, however, there exists no effective framewo of nodes andl is a metric (distance function) oW.

that can predict bandwidth between hosts in a decentral, An edge-weighted treés a connected graph without
ized fashion. Euclidean coordinate spaces are not a good cycles, and with non-negative edge weights.
model for embedding bandwidth measurements. Accordingly,, The distancebetween two nodes and v on an edge-

attempts [2] to use a traditional network coordinate system weighted treel’, denotedir (u, v), is defined by the sum
do not work well in predicting bandwidth, resulting in poor of weights of edges on the path fromto v.

accuracy. Ramasubramanian et. al [2] claim that the Interne, An edge-weighted tre@ inducesa metric spacéV, d)
and bandwidth can be modeled by an approximate tree metric if and only if 7' contains all nodes iV andVu,v € V,

space that almost satisfies the four-point condition [3dgh d(u,v) = dp(u,v) holds.
on this finding, they proposed a new method for bandwidth, The four-point condition (4PCpn a metric spacéV, d)
prediction, where bandwidth measurements are embedded as states that for any set of four nodes z,y,z € V,
distances in an edge-weighted tree. The result centralized d(w,z)+d(y, z) < d(w,y)+d(zx, 2) < d(w, z)+d(z,y)
system has been shown to have reasonably high accuracy. implies d(w, y) + d(z, z) = d(w, z) + d(z, y).

Inspired by the success of tree-embedding approach, oug A metric space that satisfies 4PC is callettee metric
study focuses on decentralization. We feel that a fully de- space
centralized bandwidth prediction system must consider fou ) _
requirements: i) there must exist no centralized data strac B- Bandwidth as a Metric and Treeness of the Internet
and no centralized component, ii) bandwidth should be pre-Higher values are considered better for bandwidth while
dicted accurately, iii) measurement traffic should be diala closer is generally more desirable for distance in a metric
as the number of hosts increases, and iv) the system shapdce. So, Ramasubramanian et. al [2] useditiear trans-
be able to adapt to network changes. Our study appeafedn functiond(u,v) = C'— BW (u,v) to represent bandwidth
originally in [4] as an extended abstract. The contribudioras a metric, wher&W (u, v) is the bandwidth between nodes
of this paper are fourfold. First we describe the design af andv, d(u,v) is the distance in a metric space, afidis

|I. INTRODUCTION
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a constant. Representing bandwidth as a metric implies four

properties: i)d(u,v) > 0, ii) d(u,v) = 0 if and only if u = v,

i) d(u,v) = d(v,u), and iv) d(u,w) < d(u,v) + d(v, w).

The first property is satisfied by having a large value @&r

for example, the expected maximum bandwidth. By setting

BW(u,u) = C, we can also satisfy the second property.

We satisfy the third property by setting boV (u, v) and

BW (v, u) to the average bandwidth of the forward and reverse Prediction Tree Anchor Tree

directions. Even though no effective method has been found Fig- 1. A Prediction Tree and a Corresponding Anchor Tree

to directly address the last assumption, we provide sevenagtric space without any error. Third, we succeed in achgvi

heuristics to accurately embed bandwidth information iato higher accuracy in a real world network by introducing three

metric space in the real Internet, as described in Sectleld.ll novel heuristics. Sequoia uses an algorithm that fits a perfe
There are two pieces of evidence to verify that the Internigee metric space directly in practice, and results in lower

is close to a tree metric space for bandwidth. First, Ramaswdtcuracy than our approach, as shown in Section V.

ramanian et. al [2] verify that a bandwidth dataset produce

small values of parameter ¢ was introduced by Abraham et.

al [5] to quantify how closely a set of four nodes satifies 4PC. The overall design goal is to construct an edge-weighted tre

If all ¢ values in a metric space are zero, the metric spadat induces a tree metric space. This section describagsdet

is a perfect tree metric space. Second, there is a thedretiehthe design starting from a centralized algorithm. Theoalg

model of network topology such that bandwidth between twithm is extended to a partially decentralized algorithratth

nodes is bottlenecked in the first hop of routing path. It hagduces measurement traffic without relying on any landmark

been proved that a metric space for this model is a perfeet tiegodes. Then we discuss how to build a fully decentralized

metric space [2]. algorithm by distributing data structures. Heuristicsrgprove

prediction accuracy are provided last.

IIl. DESIGN

C. Approaches for Edge-Weighted Tree Construction _ . o
Theorem 2.1:A metric space(V,d) satisfies 4PC if and A. Centralized Algorithm to Construct a Prediction Tree

only if there exists an edge-weighted tree that indudés!). An edge-weighted tree embedding bandwidth information
By Theorem 2.1, we can expect to use an edge-weighted tie&alled aprediction tree(Fig. 1). The number on each edge

for bandwidth prediction. Buneman [3] proved Theorem 2.1 Higpresents the weight of the edge. A leaf node in a prediction

providing the first algorithm to construct an edge-weighted tree has degree one and represents each participatingrhost i

for a given tree metric space. However, unlike our incremlenthe system. An inner node with degree two or more is created

iterative algorithm described in Section 1Il, Buneman'sue when a new leaf node is added. The linear transform function

sive algorithm does not allow nodes to be incrementally dddé(u,v) = C — BW (u,v) is used to represent bandwidth as

to existing trees. Since the resulting edge-weighted tegdy @ metric, andBWr(u,v) = C — dr(u,v) for bandwidth

not be expandable, we cannot directly apply the algorithm Riediction. For example, in Fig. 1 if* = 100, the predicted

practice when nodes dynamically join a distributed system.bandwidth valueBWr (b, ¢) is 77 becausér (b, c) = 23.
Abraham et. al [5] proposes a tree construction algorithm foalgorithm 1 : AddNode(T, x): Add a nodez to a predic-

an approximate tree metric space. Even though the theafetigion treeT" using a random base node.

work has a contribution in providing upper and lower bounds

T Pick a base node from any leaf nodesin T

on the accuracy of tree embedding, it suffers the same p'robl% Measured(z, s) for all leaf nodess in T

as Buqeman s algorithm fpr practpal uses because it alss US Eind an end node that maximizeg(z|y).
a non-incremental recursive algorithm.

Our research is inspired by the Sequoia system [2], WhiCAhSUtIS mEer nodet,. on the path: ~ y where
. . b 7r(z,tz) = (z|y). holds
uses a tree-embedding model for bandwidth prediction anA
proposes an incremental iterative tree construction #lgor
for the first time. We naturally use the same terms as theA prediction tree starts with the first added node as a
Sequoia authors do to explain our algorithm even though sosiagleton, and the second node is added along with an edge
terms have somewhat different meanings. Our study has sthat connects the two nodes and is weighted by their distance
eral contributions relative to Sequoia. First, our systeriuily The tree grows by iteratively adding nodes as shown in
decentralized and does not require a centralized componexigorithm 1. To add a new node to a prediction tree, the
To participate in the Sequoia system, each node must measlgerithm chooses a nodecalled thebase nodewhich can be
bandwidth with several nodes starting from a fixed landmaadny leaf node, and selects another ngdmlled theend node
node called the lever node. On the other hand, each node jdimst maximizesGromov productz|y).. The Gromov product
our system by performing measurement with an arbitraryfsetaf = andy at z, denoted(z|y)., is defined here a&ely)., =
nodes starting at a random node. Second, we can prove thatbli(z, z) + dr(z,y) — d(z,y)). «’s inner nodet, is created
algorithm constructs an edge-weighted tree that inducesea tand located on the path~ y wheredr(z,t,) = (z|y).. The

dd z with edge(t,, z) of weightd(z, z) — (x|y).




algorithm then adds to the prediction tree by creating an edgeAlgorithm 2: FastAddNodgT, A, x): Add a nodex to
(ty,z) of weightd(z,z) — (z]y)., so thatdr(z,z) = d(z,z). @ prediction tre€l” and an anchor tred, skipping some
The key idea in Algorithm 1 is to choose a random basé/nnecessary measurements.
node, and this provides an indispensable underpinning for;aPick a base node from any leaf nodes i’
decentralized system relying on no fixed landmark node. From, «
Theorem 3.1, we know that bandwidth information is corsectls while true do
embedded into the prediction tree constructed by Algorithm 4 CAND <« {y,y's parent and child nodes i}

Theorem 3.1: (Correctness of Algorithm Given a tree s Measured(z, s) Vs € CAND
metric space(V,d) and a noder € V, let T be an edge- & MAX < argmaxcanp (7]5)-
weighted tree that induces a subspége\ {z},d) of (V,d). 7 if y € MAX then breakelsey < one node inMAX
If Algorithm 1 ad(_js;: to T and creates a new edge-welghte% Puta’s inner nodet, in T on the path: ~ y where
treeT’, thenT” will induce (V, d). dr(z,t2) = (z]y). holds

T\<, lx Y)z

B. Reducing Measurement Traffic with an Anchor Tree ¢ Add = to T" with edge(t,, z) of weightd(z, z) — (z[y)-

Lines 2~3 of Algorithm 1 show a naive way to find an end® gﬁgzj a_r:ﬁht(r)]rené)ddez bz %2;23 t:r?t was previously
node, which measures bandwidth toalhosts in the system. Wi g€ |

It is important to reduce this number of measurements tollaAdd @ 10 A asa’s child node

scalable amount in developing an efficient prediction syste yymber of neighbors) of each visited node. Those numbers
This leads us to introduce amchor tree are both dependent on the shape of the anchor tree and

An anchor tree is a rooted unweighted tree where eag{e |ocations of the base node and end node. Also, for a
node represents a host in the system. The first added ngfgn metric space, an anchor tree has different shapes from
in the system becomes the root node of the anchor tree, giferent node addition orderings. The best case is when the
the second node becomes the child of the root node. TheBasurement starts at a leaf node and ends at its parent node
the anchor tree grows along with a prediction tree followinghat has no other child nodes, so takegl) measurements.
Algorithm 2, which is an improved version of Algorithm 1gqor some poor orderings for adding nodes, the algorithm can
with respect to end node search time. When adding a new neglgduce a long chain-style anchor tree ©@fn) depth or a

« to a prediction tree, the algorithm moves up and down on @Ra|iow anchor tree with a node 6f(n) degree, so that the
anchor tree starting from a random base nedetil finding \orst case number of measurements takef (is)

a Gromov product maximizey. At each hop, the algorithm

creates a set of candidate nodes to be an end rodalip) C. Fully Decentralizing with Distributed Structures

by considering the currently visited node and all its nemisb A distance labels assigned to each node, so that we can

and measured(x, s) for each candidate node The algorithm construct a prediction tree in a distributed fashion. Nete

then moves in the direction that locally maximizes the Gremalistance label contains all anchor nodes on the path from the

product until reaching a global maximizer. Ongeis added root node toz in the anchor tree. The distance label also

to the prediction tree in the same way as in Algorithmzl, contains the corresponding distance values between anchor

is also added to the anchor tree by becoming a child’®f nodes and inner nodes. Suppose therekaa@chor nodes in

anchor node z’s anchor node is defined as a node that wass distance label, from’s anchor node:; to the root node

previously added to the prediction tree along with the edgg. a;, is a;’s anchor node, and,, is a;’s inner node for

that 2’s inner nodet,, is located on. For example, assuming < i < k — 1. Thenz’s distance label is denoted by:

that nodes in Fig. 1 are added _to_the system in an alphabetical 4, (4, 1,, ) dr(as.tay) dr(a1,ts)

order, when adding: to a prediction treel’s inner nodet, (ax ————— ak—1 -+ a2 1

is located on edgéty,d). Node d is defined ash’s anchor 7lteg k) dr(tay a1) o dTﬁ;"z)

node because edge;, d) is created whed was added. Using For example, nodel in Fig. 1 has(a — b — d) as

Lemma 3.2 and mathematical induction, we can prove thaita distance label, because-(a,t,) = 0, dr(ty,b) = 25,

prediction tree constructed by Algorithm 2 correctly inds@ dr(b,t;) = 10, and dr(tq,d) = 20. Since a distance label

tree metric space. The lemma deals with the case where paréquivalent to a partial prediction tree, the distancevben

of a prediction tree can be excluded from end node searchingo nodes can be estimated with a simple computation. The
Lemma 3.2:Given a tree metric spacg/,d) and a node participating nodes build an overlay network that directly

x € V, letT be an edge-weighted tree that induces a subspanatches the structure of the anchor tree. We can use Algo-

(V\{z},d) of (V,d). For three leaf nodes y, andw in T', let rithm 2 to construct these distributed structures with ghsili

t be an inner node on path~ y at distancéy|w), fromz. Let modification. A joining noder first chooses a random base

S be a set of leaf nodes in all the subgraphs connected to (irode z from the system in the same way as a bootstrapping

rooted at) the inner nodes on path- w. If (z|y). > (z|w),, node is identified in a general structured P2P system.

then (z|y), > (z|s), Vs € S. measures bandwidth to several nodes while moving around
The number of measurements needed to run Algorithm the overlay network until finding an end node Then z

depends on the number of visited nodes and the degree (@le¢ermines its anchor nodeand its distance label by using




the distance labels of andy to figure out wherer’s inner We have found that minimizing relative error shows better
nodet, is located on a prediction tree. Finallybecomes/’s accuracy on a real-world bandwidth dataset than movingeo th
child node by notifyinga of its join event. local Gromov product maximizer. Sineaeuses the bandwidth
Our system maintains and restructures the overlay netwatéta it has already collected, this heuristic does not cange
in response to a changing network environment by having eaatiditional measurements to be made. The heuristic also does
node send periodic heartbeat messages to its neighbor.nodes affect accuracy in the ideal world scenario.
We first discuss dealing with failover. When a noudefails, 2) Rational Transform FunctionA linear transform func-
one ofm’s child nodesc takes overn’s role, andm’s other tion BWr(u,v) = C — dr(u,v) is used for bandwidth
child nodes becomes child nodes.c should be chosen suchprediction in the base system. Unlike the ideal world sce-
that ¢’s inner nodet. is the closest tan among the inner nario, dr(u,v) might not be equal tad(u,v) in the real
nodes on the path fromn to m's inner nodet,,. This is network. Ifdr(u,v) is much larger thad(u, v), that can result
because path,, ~ ¢ must be long enough to contain all thein predicting a negative bandwidth value and will decrease
other inner nodes that were originally put on pgth~ m.t,, overall prediction accuracy. To overcome this problem, we

becomes’’s new inner nodec must adjust its distance labeluse arational transform functiond(u,v) = % for
to reflect this change:'s takeover event is propagated dOW'?ambedding andBWr (u,v) = % for prediction so
’ 7 (u,v !

to the nodes in’'s new subtree, so that they can update thejpat the predicted bandwidth is always positive even when
distance labels. For example, in Fig. 1eifails thenk takes ,.(y v) is overestimated. As does the linear function, the
over its role because, is closer toe than any other inner rational transform function inverts ordering of bandwidfter
nodes on patl ~itet and;j becomekts child ”Od?s- performing the transformation. The second property of a
When bandwidths change dynamically over time, we renetric space, as described in Section II, is satisfied bjngett
structure the part of the system where bandwidth changg$y (y,u) = co. An additional benefit of this change is that
occur. Whenz detects a significant difference betwe#r, ) it adds no extra costs into the system, similar to the error
anddr(z,y) for somey thatz has measured before, it leavesninimization heuristic.
the system, then joins again usip@s its base node:s rejoin 3y peep Search:The previously discussed node join al-
process is normally faster than an initial join processabee yqrithm considers only direct neighbors as candidate nodes
x can utilize bandwidth measurements it has already madgy pe an end node. We can modify that to take advantage
of additional candidates by using indirect two-hop neigisbo

, i Unlike the other two heuristics, however, deep search does
Although the Internet approximates a tree metric space, gé'quire more measurements with additional candidates.
rectly applying the previously described algorithms ingbice

will result in low accuracy for bandwidth prediction. We now
describe useful heuristics to improve prediction accuracy
1) Error Minimization: Deciding the position of a new This section evaluates our approach by examining i) ac-
nodez in a prediction tree by finding a Gromov product maxieuracy and cost, ii) heuristic efficacy, and iii) scalayilit
mizer guarantees perfect prediction accuracy in an idedbwo of measurement traffic. Our simulations are based on the
as shown by Theorem 3.1. However, when the 4PC does hti2-PlanetLab dataset described in [2]. This dataset amtai
hold in a metric space, this is no longer an effective apgdroaavailable bandwidth measurements between PlanetLab nodes
to achieve high accuracy. We therefore modify the algorithoollected at HP Labs [6] using pathChirp [7]. Since the raw
to find 2's position that minimizes relative prediction errordataset is incomplete and has many unmeasured pairs of,nodes
rather than finding the Gromov product maximizer. In the firste first extracted measurements for the 190 nodes (out of 459)
phase; collects measurement data. At each hogomputes that give a fulln-to-nasymmetric matrix containing bandwidth
its temporary position in a prediction tree as for the bas#enomeasurements. We then converted the matrix to a symmetric
and each candidate end node. With eachzisf temporary one by averaging bandwidth values from forward and reverse
positions, = estimates relative prediction errors, using thdirections for each pair of nodes. The treeness of the dadtase
formula IBW (@0 -BWr(x.0)| tor each node out of n, nodes measured witl values [5]. The preprocessed dataset produces
that = has measured so far. Thenmoves to the candidate0.186 for the average when the rational transform function
node that minimizes the average of therelative prediction is used withC' = 10000.0 (Mbps).
errors. Once an error minimizer is founddetermines its final ~ We show experimental results for three different approsche
position in the second phase with the collected measuremankig. 2. NEW shows results from our system using all three
data. For each of all possible pairs of nodes in the set,of heuristics: error minimization, rational transform fuioct,
measured nodes, againcomputes its temporary position andand deep searctNEW-EXHAUSTIVE is a special case of
estimates the average relative prediction error. The ipasit NEW that uses exhaustiveto-n measurements to construct
that minimizes the error is selected a% final position. a prediction tree with the highest prediction accuracy.hEac
Note that while only the pairs with the single base node aj@ning node performs measurements with all existing nodes
considered in the first phase, all the possible pairs are wsedn the system and finds its best position. While this approach
find the best position of in the second phase. is only theoretical, not practical, it provides an upper fxbon

D. Tolerating Imperfect Data

IV. EVALUATION
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Fig. 2. Experimental Results

the potential results for the real algorithn8EQUOIA refers dataset. Then we collected the total number of measurements
to our simulation of the centralized Sequoia algorithm [2]. to construct a system and computed an average value in each
We first constructed the systems for the three approactsystem size. NEW shows lower cost than SEQUOIA. The cost
by adding 190 nodes in the same order. Fig. 2(a) shows flee SEQUOIA and NEW increases almost linearly while the
CDF of the relative errors for all possible pairs among thexhaustive testing takes quadratic number of measurements

190 nodes. The relative bandwidth prediction error between
node v and v is defined as'BW(“’”V)V_(f‘;V)T(“’”)‘. NEW is
more accurate than SEQUOIA, with more than 90% of the
node pairs having a relative error less than 0.5, and clos

V. CONCLUSIONS ANDFUTURE WORK

This paper has presented a decentralized and scalable sys-
m that accurately predicts pairwise bandwidths with low

tracks NEW-EXHAUSTIVE. We also estimated the total numg st. Our node join algorithm does not require any fixed

ber of measurements needed to construct the system. NE

Wr_astructure, such as landmark nodes, that all hosts must

EXHAUSTIVE causes 17955 measurements between all 183SUre bandwidth to and from. The algorithm also uses

nodes. NEW requires 5652 measurements, much fewer t
the 11328 for SEQUOIA. Sequoia’s high costs come fro
the top-down node join process with a fixed base node in
anchor tree. A new node performs measurements starting
the root node and its child node., and passes through othe
nodes in a top-down way. The position 86 inner nodet,

in a prediction tree is always determined on the path with t
base node- fixed at one end. So, it is more likely that is

positioned on path ~ r. in a prediction tree, and becomes

el heuristics to achieve accuracy on imprecise, realeyo

atasets. Simulation results show high accuracy, low eost,
aﬁalability. We are currently extending this work in severa
apays. First, we are studying a cluster search algorithm @ fin
A set ofk nodes with the minimum interconnection bandwidth
b. Second, we intend to use our system as the underlying
ﬁ%chnology for resource discovery in a P2P desktop grid [1].
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