
Searching for Bandwidth-Constrained Clusters
Sukhyun Song, Pete Keleher, and Alan Sussman

UMIACS and Department of Computer Science, University of Maryland
{shsong, keleher, als}@cs.umd.edu

Abstract—Data-intensive distributed applications can increase
the performance by running on a cluster of hosts with high-
bandwidth interconnections. However, there exists no effective
method to find such a bandwidth-constrained cluster in a decen-
tralized fashion. Our work is inspired by prior work that tre ats
Internet bandwidth as an approximate tree metric space. This
paper presents a decentralized, accurate, and efficient system
that finds a cluster with constraints of the number of nodes
and minimum interconnect bandwidth. We describe a centralized
polynomial time algorithm running in a tree metric space, along
with the proof of correctness. We then provide a decentralized
version. Simulation experiments with two real-world datasets
confirm that our clustering approach achieves high accuracyand
scalability. We also discuss what the tradeoff of decentralization
is and how the treeness of dataset affects the clustering accuracy.

I. I NTRODUCTION

Distributed applications can benefit from a decentralized
algorithm to find a cluster of hosts that have high-bandwidth
connections to each other. For example, a peer-to-peer (P2P)
desktop grid [11], [10], [12], [14] can reduce a job execution
time by scheduling a data-intensive scientific set of jobs, such
as CyberShake workflow [4], on a set of nodes with high-
bandwidth interconnections. A content delivery network [17]
can quickly distribute data by finding several clusters of
high-bandwidth nodes and making a representative of each
cluster responsible for distributing the data in the cluster.
Unfortunately, however, there exists no effective method to
find a bandwidth-constrained cluster in a decentralized fashion.
Most of the existing studies only focus on latency-constrained
clustering [16], [24], [3]. They even need a centralized sturuc-
ture [16] or a fixed set of landmark nodes that every node has
to perform measurements with [24].

There are two important reasons why decentralized
bandwidth-constrained clustering is not successfully explored
yet. First, a clustering problem is difficult to solve, in that it is
equivalent tok-Clique problem in a general undirected graph,
which is NP -complete. Second, we were lack of effective
framework for bandwidth prediction that is indispensable to
minimize extra costs of measurements. Fortunately, it is now
possible to overcome those difficulties as a consequence of
recent research efforts. Ramasubramanian et. al [21] claimthat
a metric space for Internet bandwidth can be modeled by an
approximate tree metric space.If we limit the clustring problem
in a tree metric space based on this finding, it is expected
that we can develop a polynomial time algorithm. Also, our
prior work [25], [26] designed a decentralized framework for
bandwidth prediction and successfully embedded bandwidth

measurements into a tree metric space with a high accuracy.
We expect that the bandwidth prediction framework will
enable a clustering algorithm to run without any delay of
measurements.

With these motivations, we will design a decentralized
algorithm to solve the following specific problem. Given a
set of nodesV , a bandwidth functionBW on V , and query
constraintsk ≥ 2 and b, find a setX such thatX ⊆ V ,
|X | = k, andBW (u, v) ≥ b ∀u, v ∈ X .

We feel that five requirements must be considered in decen-
tralized bandwidth-constrained clustering.

• Decentralized Cluster Formation: Nodes must be grouped
into clusters without any help of a centralized server.

• Decentralized Query Processing: A query should be able
to be submitted to any node in the system, and each node
should make a decision with local information.

• High Accuracy: A query result should satisfy constraints.
• Scalable Search: A cost should increase in a scalable way

with an increasing number of nodes in the system.
• Dynamic Clustering: Members of each cluster should

adatatively change as network condition changes.

Our contributions are fourfold in specific. First, we show
that the clustering problem isP in a tree metric space by de-
veloping a centralized polynomial time algorithm and proving
its correctness. Second, we provide a decentralized clustering
algorithm along with the proof of correctness. The key idea
is to let each node maintain a simple routing table, so that a
query can route towards the direction where the wanted cluster
exists. The third contribution is a new dataset that we collected
by measuring available bandwidth between PlanetLab nodes.
Finally, we present extensive simulation results validating the
high accuracy and scalability and showing the tradeoff of
decentralization and the effect of treeness of datasets.

The rest of the paper is organized as follows. We first
discuss the underlying intuition behind this work in Sec. II.
Sec. III describes the details of the algorithm design, and
provides a proof of correctness. Sec. IV evaluates our approach
experimentally. Finally, Sec V discusses related work, andwe
conclude and discuss future work in Sec. VI.

II. T ERMINOLOGY AND BACKGROUND

This section defines our terms and provides backgrounds
about how to represent bandwidth in a metric space and why
bandwidth is approximately a tree metric. We also describe
the design of a decentralized bandwidth prediction framework
that our clustering algorithm runs on.

A. Definitions

• An edge-weighted treeis a connected graph without
cycles, and with non-negative edge weights.

• The distancebetween two nodesu and v on an edge-
weighted treeT , denoteddT (u, v), is defined by the sum
of weights of edges on the path fromu to v.

• An edge-weighted treeT inducesa metric space(V, d)
if and only if T contains all nodes inV and∀u, v ∈ V ,
d(u, v) = dT (u, v) holds.

• The four-point condition (4PC)on a metric space(V, d)
states that for any set of four nodesw, x, y, z ∈ V ,
d(w, x)+d(y, z) ≤ d(w, y)+d(x, z) ≤ d(w, z)+d(x, y)
implies d(w, y) + d(x, z) = d(w, z) + d(x, y).

• A metric space that satisfies 4PC is called atree metric
space.

B. Bandwidth as a Metric

Higher values are considered better for bandwidth while
closer is generally more desirable for distance in a metric
space. So, we use therational transform functiond(u, v) =

C
BW (u,v) to represent bandwidth as a metric, whereBW (u, v)

is the bandwidth between nodesu andv, d(u, v) is the distance
in a metric space, andC is a positive constant. Representing
bandwidth as a metric implies four properties:

1) d(u, v) ≥ 0 (non-negativity)
2) d(u, v) = 0 if and only if u = v
3) d(u, v) = d(v, u) (symmetry)
4) d(u,w) ≤ d(u, v) + d(v, w) (triangle inequality)

The first property is satisfied becauseC is a positive constant.
By settingBW (u, u) = ∞, we can also satisfy the second
property. Symmetry can be justified by one measurement
study [15] that estimates an asymmetry factorα ∈ [0, 1] such
that α = 0 when BW (u, v) = BW (v, u) (i.e., complete
symmetry). The study shows 90% of bandwidth capacity data
in PlanetLab version 3 haveα less than 0.5. Nonetheless,
we satisfy the third property by setting bothBW (u, v) and
BW (v, u) to the average bandwidth of forward and reverse
directions. Even though there is no effective method found that
directly addresses the last assumption, our prior work [25],
[26] succeeded in accurately embedding bandwidth into a
metric space with several heuristics.

C. Treeness of Bandwidth

There are three evidences to verify that the Internet is
close to a tree metric space in terms of bandwidth. First,
Ramasubramanian et. al [21] verify that a bandwidth dataset
produces a lot of smallε values.ε is introduced by Abraham
et. al [1] to quantify how much a set of four nodes satifies 4PC.
If all ε values in a metric space are zero, the metric space is a
perfect tree metric space. Second, there is a theoretical model
of network topology such that bandwidth between two nodes is
bottlenecked at the access link of either end. And it is proved
that a metric space for this model is a perfect tree metric
space. [20] Last, the attempts of embedding bandwidth into a
tree metric space resulted in a high accuracy. [21], [26] Based

t f

t i

t j

t k

et
dt

t h

t c

t g

a

b

c d e

f g i j k
h

(=tb)

b

g
c

d

i

k

e
8

6
10

5
5

5
8

7

h

10

5

5

10

10

5

8

j

8

6 4
f

Prediction Tree Anchor Tree

10

a

Fig. 1. Example Structures of Decentralized Bandwidth Prediction System

on Theorem 2.1, proved by Buneman [5], they constructed an
edge-weighted tree to embed bandwidth measurements into.
The result graph showed low relative errors of embedded
bandwidth value compared to the real data.

Theorem 2.1:A metric space(V, d) satisfies 4PC if and
only if there exists an edge-weighted tree that induces(V, d).

D. Decentralized Bandwidth Prediction System

Our clustering algorithm will be designed to run on top
of a decentralized bandwidth prediction framework which is
developed in our prior work [25], [26]. It is briefly described
as belows how the framework is designed.

An edge-weighted tree embedding bandwidth information
is called aprediction tree(Fig. 1). The number on each edge
represents the weight of the edge. A leaf node in a prediction
tree has degree one and represents each participating host
in the system. An inner node with degree two or more is
created when a new leaf node is added to a prediction tree.
The rational transform functiond(u, v) = C

BW (u,v) is used to
represent bandwidth as a metric, andBWT (u, v) = C

dT (u,v)
for bandwidth prediction. For example, in Fig. 1 ifC =
100, the predicted bandwidth valueBWT (b, c) is 77 because
dT (b, c) = 23. A prediction tree starts with the first added
node as a singleton, and the second node is added along
with an edge that connects the two nodes and is weighted
by their distance. The tree grows by iteratively adding nodes
as follows. To add a new nodex to a prediction tree, the
algorithm chooses a nodez called thebase node, which can
be any leaf node, and selects another nodey called theend
node that maximizesGromov product(x|y)z . The Gromov
product ofx andy at z, denoted(x|y)z , is defined as(x|y)z =
1
2 (d(z, x) + d(z, y) − d(x, y)). x’s inner nodetx is created
and located on the pathz ∼ y wheredT (z, tx) = (x|y)z . The
algorithm then addsx to the prediction tree by creating an
edge(tx, x) with weight (y|z)x. That is,x’s position in the
graph is determined by the maximized Gromov product.

The prediction framework constructs an overlay network of
hosts following a structure of a rooted unweighted tree called
anchor tree. The first added node in the system becomes the
root node of the anchor tree, and the second node becomes the
child of the root node. Whenx is added to the prediction tree,
x is also added to the anchor tree by becoming a child ofx’s
anchor node. x’s anchor node is defined as a node that was

Algorithm 1 : X = FindCluster(V,d,k, l): A centralized
algorithm to find in a tree metric space(V, d) a setX such
thatX ⊆ V , |X | = k, anddiam(X) ≤ l

X ← {}1

foreach node pair(p, q) such thatp, q ∈ V do2

S∗
pq ← {x ∈ V : d(x, p) ≤ d(p, q)∧d(x, q) ≤ d(p, q)}3

if |S∗
pq| ≥ k and diam(S∗

pq) ≤ l then4

X ← a set of anyk nodes inS∗
pq5

break6

return X7

previously added to the prediction tree along with the edge
that x’s inner nodetx is located on. For example, assuming
that nodes in Fig. 1 are added to the system in an alphabetical
order, when addingh to a prediction tree,h’s inner nodeth
is located on edge(td, d). Node d is defined ash’s anchor
node because edge(td, d) is created whend was added. The
anchor tree is also used to quickly find a global maximizer of
Gromov product, so that the framework can be built without
performing a fulln-to-n measurements.

A distance label is assigned to each node, so that a
prediction tree is constructed in a distributed fashion. Node
x’s distance label contains all anchor nodes on the path from
the root node tox in the anchor tree. The label also contains
the corresponding distance values between anchor nodes and
inner nodes. For example, noded in Fig. 1 has(a

0
−→
25

b
10
−→
20

d)

as its distance label, withdT (a, tb) = 0, dT (tb, b) = 25,
dT (b, td) = 10, anddT (td, d) = 20. Since a distance label is
equivalent to a partial prediction tree, the distance between two
nodes can be estimated with a simple computation. In other
words, a distance label plays a similar role to the network
coordinates in Vivaldi.

III. D ESIGN

This section describes details of our approach. We first
develop a centralized clustering algorithm, and then discuss
how to decentralize it with several techniques.

Note that we consider bandwidth as a metric using the
rational transform function as described in Sec. II. In the
bandwidth-constrained clustering problem defined in Sec. I,
we can convert a bandwidth functionBW to a distance
functiond and a bandwidth constraintb to a distance constraint
l = C

b . As a result, we can define this distance-constrained
clustering problem. Given a metric space(V, d) and constraints
k ≥ 2 and l, find a setX such thatX ⊆ V , |X | = k, and
d(u, v) ≤ l ∀u, v ∈ X . By defining thediameterof a setX as
diam(X) = max∀u,v∈X{d(u, v)}, the distance contraint can
be rephrased asdiam(X) ≤ l.

A. Centralized Clustering in a Tree Metric Space

Algorithm 1 describes a simple centralized algorithm to find
a cluster in a tree metric space(V, d). We first divide all the
clusters that can be considered in(V, d) into several groups,

each of which is associated with each node pair inV . The
group of a node pair(p, q) includes all the clustersSpq whose
diameter is determined by(p, q), which meansp, q ∈ Spq

anddiam(Spq) = d(p, q) in formal terms. LetS∗
pq denote the

maximum size cluster in each group. SinceS∗
pq is the best

cluster in each group in terms of cluster size, checking only
S∗
pq for each group will be satisfactory to find a wanted cluster.
With this intuition, Algorithm 1 iterates every node pair

(p, q) in V and determinesS∗
pq by collecting all nodesx ∈ V

such thatd(x, p) ≤ d(p, q) and d(x, q) ≤ d(p, q). From the
proof of Theorem 3.1, we know that Algorithm 1 correctly
createsS∗

pq. If S∗
pq satisfies the constraintsk and l, then the

algorithm stops iterating pairs and returns anyk nodes in
S∗
pq. If the algorithm did not find anyS∗

pq that satisfies the
constraints, we can ensure that a wanted cluster does not exist
because the algorithm has checked all possible clusters.

Theorem 3.1: (Correctness of Algorithm 1)Given a tree
metric space(V, d) and constraint valuesk ≥ 2 and l, if
Algorithm 1 createsS∗

pq for a pair of nodesp, q ∈ V , then
i) diam(S∗

pq) = d(p, q) and ii) there exists noSpq ⊆ V such
that |Spq| > |S

∗
pq| anddiam(Spq) = d(p, q).

Proof of Theorem 3.1: To provediam(S∗
pq) = d(p, q), we

will show d(r, s) ≤ d(p, q) ∀r, s ∈ S∗
pq. If r ∈ {p, q} or

s ∈ {p, q}, it is clear thatd(r, s) ≤ d(p, q) by definition of
S∗
pq in Algorithm 1. Otherwise, three cases can be considered

by the order of three distance sums in 4PC ofp, q, r, ands.

1) d(p, q) + d(r, s) ≤ d(p, r) + d(q, s) = d(p, s) + d(q, r)
By the assumption of 1)d(r, s) ≤ d(p, r) + d(q, s) −
d(p, q) and d(r, s) − d(p, q) ≤ (d(p, r) − d(p, q)) +
(d(q, s)−d(p, q)). Sinced(p, r) ≤ d(p, q) andd(q, s) ≤
d(p, q) by definition ofS∗

pq, d(r, s)− d(p, q) ≤ 0.
2) d(p, r) + d(q, s) ≤ d(p, s) + d(q, r) = d(p, q) + d(r, s)

By the assumption of 2),d(r, s) = d(p, s) + d(q, r) −
d(p, q) and d(r, s) − d(p, q) = (d(p, s) − d(p, q)) +
(d(q, r)−d(p, q)). Sinced(p, s) ≤ d(p, q) andd(q, r) ≤
d(p, q) by definition ofS∗

pq, d(r, s)− d(p, q) ≤ 0.
3) d(p, s) + d(q, r) ≤ d(p, r) + d(q, s) = d(p, q) + d(r, s)

Similarly to 2),d(r, s)− d(p, q) ≤ 0.

Thus,diam(S∗
pq) = d(p, q).

Now let’s assume that there existsSpq ⊆ V such that
|Spq| > |S

∗
pq| anddiam(Spq) = d(p, q). |Spq| > |S

∗
pq| implies

that there is a nodex ∈ V such thatx ∈ Spq andx /∈ S∗
pq.

For such a nodex, d(x, p) ≤ d(p, q)∧d(x, q) ≤ d(p, q) holds
becausediam(Spq) = d(p, q). However, by the definition of
S∗
pq, x /∈ S∗

pq implies d(x, p) > d(p, q) ∨ d(x, q) > d(p, q),
which causes a contradiction. Thus, there exists noSpq ⊆ V
such that|Spq| > |S

∗
pq| anddiam(Spq) = d(p, q).

Whenn is the number of nodes inV , the algorithm takes
O(n3) time because it takesO(n) to createS∗

pq for each pair
and O(n2) to iterate every pair. We would not claim that
Algorithm 1 is the fastest algorithm to find a cluster in a
tree metric space. The point is that there actually exists an
effective algorithm to solve the clustering problem in a tree
metric space. While the clustering problem isNP -complete
in the real world as described in Sec. V, Algorithm 1 can find

a cluster in a polynomial time by determiningS∗
pq under the

assumption of tree metric space. Since bandwidth is close toa
tree metric as described in Sec. II, Algorithm 1 can be applied
to find a bandwidth-constrained cluster.

B. Decentralization

The design goal for decentralization is to let users submit
a query to any node and to route it towards the direction
where the wanted cluster exists. To achieve this decentralized
query processing, we first construct an overlay network with
all the hosts that participate in clustering as a member. By
periodically exchanging messages with neighbors, each node
aggregates the information of nodes that are close to itself.
Then each node runs Algorithm 1 on the aggregated node
information and figures out the maximum size cluster that the
node can create. Each node then fill in the entry of a routing
table by aggregating the information of the maximum size
cluster that exists in each direction of neighbors. The details
of these background mechanisms are provided in below.

1) Overlay Construction:Our decentralized clustering al-
gorithm runs on top of the decentralized bandwidth prediction
framework that is described in Sec. II. For that reason, all
the hosts that are considered as a cluster member should
participate in constructing an anchor tree. By directly using the
overlay structure of the prediction framework, we can benefit
in three aspects. First, we can find clusters quickly. Bandwidth-
constrained clustering requires to measure bandwidth between
many nodes. Instead of performing measurements at the time
of clustering, we use the bandwidth data that are accurately
predicted by the framework. Consequently, we can avoid any
delay for extensive measurements when searching for a cluster.
Second, we can exploit Algorithm 1 whose correctness is
proved in a tree metric space. Since the framework accurately
embeds bandwidth measurements into a tree metric space,
Algorithm 1 is expected to work accurately with the band-
width data predicted by the framework. Third, we can avoid
any extra cost about overlay structuring. Since our approach
already needs the prediction framework to achieve two benefits
above, we would run our clustering algorithm directly on the
framework rather than design a new overlay structure.

2) Dynamic Aggregation of Close Nodes:After becoming
a member of the anchor tree, each node starts to periodically
perform two types of background mechanisms, one of which
is described here, and the other in the next section. By the
first mechanism, each nodex aggregates the information of the
nodes that are close tox. This aggregated information of close
nodes will be used as a local system space where each node
can create a cluster. Algorithm 2 more specifically describes
such a procedure about howx receives from each neighborm
on the anchor tree the information of the nodes that are the
closest tox in the set of all the nodes reachable fromx via m.
Let p.aggrNode[q] denote the information of nodes that a node
p receives from its neighborq throughp.DynAggrNodeInfo(q).
m first creates a set candNode by collecting nodes from

m.aggrNode[v] for each ofm’s neighborv exceptx. m is
also included in candNode. To create another set propNode,m

Algorithm 2 : x.DynAggrNodeInfo(m): Nodex’s proce-
dure to dynamically aggregate fromx’s neighborm the
information of nodes that are close tox.
begin m’s propagation tox1

candNode← {m}2

foreach m’s neighbor nodev exceptx do3

candNode← candNode∪ m.aggrNode[v]4

propNode← ncut nodes that minimizesdT (x, u) for5

all u ∈ candNode
m sends propNode tox6

end7

begin x’s aggregation fromm8

x receives propNode fromm9

x.aggrNode[m] ← propNode10

end11

1c 2c

t m

t c1 t c2

Sc1 Sc2

Sp

1c 2c
Sc1 Sc2I c1 I c2

I pSp

p

m

p

m

U U

R

U UR

Prediction Tree (T) Anchor Tree (A)

Fig. 2. Structures of the Prediction Framework from Nodem’s Perspective

chooses the topncut nodes that are the closest tox regarding
the distance on a prediction tree. Since the underlying frame-
work is designed to predict the real bandwidth accurately [26],
the predicted distancedT (u, v) is quite close to the real
distanced(u, v) for two nodesu and v. So, thencut chosen
nodes should be close tox in terms of real distances. Note
that the information size is limited toncut nodes, so that a
messaging workload can be controlled in a distributed system.
m sends propNode tox, so thatx can setx.aggrNode[m].
Note thatx.aggrNode[m] will dynamically change over time
because the decentralized bandwidth prediction framework
automatically restructures itself as network conditions change.
Theorem 3.2 states that by running Algorithm 2x receives the
correct information fromm, and the proof is also provided in
below.

Theorem 3.2: (Correctness of Algorithm 2)After the exe-
cution of Algorithm 2,x.aggrNode[m] will contain a set of
the topncut nodes inU that minimizes the predicted distance
dT (x, u) ∀u ∈ U where U is a set of all nodes that are
reachable fromx via m on an anchor tree.

Proof of Theorem 3.2: Without loss of generality, assume
that a prediction treeT and an anchor treeA look as shown
in Fig. 2 from the perspective of nodem. In A, m hasp as
its parent,c1 andc2 as its children.Si denotes a set of child
nodes of nodei. R = A \ (Sp ∪ Sc1 ∪ Sc2 ∪ {m, p, c1, c2}).
T contains all nodes inA as leaf nodes.ti means nodei’s

inner node.Ii denotes a set of inner nodes in the subgraph
that contains a setSi.

Induction will be used for proof. Considering three cases in
terms of whatx is, we divide the theorem into three statements
and will prove each one. Those statements are included in
STMT(m) that is defined as follows:

1) p.aggrNode[m] is a set of the topncut nodes that
minimizesdT (p, u) ∀u ∈ U = A \ ({p} ∪R ∪ Sp).

2) c1.aggrNode[m] is a set of the topncut nodes that
minimizesdT (c1, u) ∀u ∈ U = A \ ({c1} ∪ Sc1).

3) c2.aggrNode[m] is a set of the topncut nodes that
minimizesdT (c2, u) ∀u ∈ U = A \ ({c2} ∪ Sc2).

Basis: Show that STMT(m) holds whenm has only one
neighbor.

If the only neighborx is p, we can focus on the first
statement.p.aggrNode[m] = {m} holds by the algorithm.
SinceU = {m} and m ∈ U minimizesdT (p,m), the first
statement is true, so does STMT(m). Similarly, STMT(m) is
true whenx = c1 or x = c2.
Inductive Step: Show that if STMT(j) holds for each ofm’s
neighborj, then STMT(m) also holds.

Since all the statements in STMT(m) can be proved in
the similar way, we only focus on the first statement. By the
induction hypothesis, the first statement of STMT(c1) is true,
and U = {c1} ∪ Sc1 holds. This impliesm.aggrNode[c1]
is equal to a set of the topncut nodes that minimizes
dT (m,u) ∀u ∈ U . As you can see inT of Fig. 2,
dT (m,u) = dT (m, tc1) + dT (tc1 , u) ∀u ∈ U with a constant
dT (m, tc1). Som.aggrNode[c1] should also be equal to a set
of the top ncut nodes that minimizesdT (tc1 , u) ∀u ∈ U .
Since dT (p, u) = dT (p, tc1) + dT (tc1 , u) ∀u ∈ U with a
constantdT (p, tc1) as shown inT , m.aggrNode[c1] should
also be equal to a set of the topncut nodes that minimizes
dT (p, u) ∀u ∈ U = {c1} ∪ Sc1 .

The first statement of STMT(c2) is true with the induction
hypothesis. So, similarly,m.aggrNode[c2] is a set of at most
ncut nodes that minimizesdT (p, u) ∀u ∈ U = {c2} ∪ Sc2 .

By Algorithm 2, p.aggrNode[m] is a set of the topncut

nodes that minimizesdT (p, u) ∀u ∈ {m} ∪ m.aggrNode[c1]
∪ m.aggrNode[c2]. By the above observations about
m.aggrNode[c1] and m.aggrNode[c2], p.aggrNode[m] must
be equal to a set of the topncut nodes that minimizes
dT (p, u) ∀u ∈ {m, c1, c2} ∪ Sc1 ∪ Sc2 , which is A \ ({p} ∪
R ∪ Sp). So, the first statement of STMT(m) is true.

Similarly, the other two statements are also true. Thus,
Algorithm 2 produces a correctx.aggrNode[m] with a limited
set candNode.

3) Dynamic Aggregation of Maximum Cluster Size:By
the second background mechanism, each node dynamically
aggregates the information about the maximum size of clusters
that exists in each direction of neighbors. The aggregated
cluster size information is used for each node to construct a
cluster routing table(CRT) that each node has to maintain in
order to forward queries toward the direction where a wanted
cluster exists. As a tradeoff for decentralization, we limit

Algorithm 3 : x.DynAggrMaxCluster(m): Nodex’s pro-
cedure to dynamically aggregate fromx’s neighborm the
maximum size of cluster inm’s direction.
L← {l1, l2, ..., l|L|}1

begin m’s propagation tox2

Vm ← {m}3

foreach m’s neighbor nodev do4

Vm ← Vm ∪ m.aggrNode[v]5

dVm
← the distance function onVm6

foreach l ∈ L do7

m.aggrCRT[m][l] ← the maximumk such that8

FindCluster(Vm, dVm
, k, l) returns a non-empty set

propCRT[l] ← max∀v∈S{m.aggrCRT[v][l]}9

whereS = {m, m′s neighbor except x}

m sends propCRT[l] ∀l ∈ L to x10

end11

begin x’s aggregation fromm12

x receives propCRT[l] ∀l ∈ L from m13

foreach l ∈ L do14

x.aggrCRT[m][l] ← propCRT[l]15

end16

the flexibility for the choice of query constraintb. Instead
of allowing users to choose any value ofb, we let users to
chooseb from a predetermined set of bandwidth classes. With
this limited flexibility of b, we can reduce the size of cluster
routing table at each node.

Algorithm 3 describes how a nodex aggregates the infor-
mation of the maximum size of cluster from its neighborm.
L is a fixed predetermined set of distance classes that are
transformed from bandwidth classes for query constraints.Let
p.aggrCRT[q][l] ∀l ∈ L denote values thatp receives from its
neighborq throughp.DynAggrMaxCluster(q). m first defines
m’s clustering space(Vm, dVm

) wherem can create a cluster.
Vm is defined as the union of{m} and m.aggrNode[v] for
all neighborsv. The distance functiondVm

on Vm is defined
from the distance values on a prediction tree. Since the nodes
in Vm are close tom, we can expect that they will be also
close to each other. Accordingly, we can expect our clustering
algorithm to be responsive to a difficult query with large
bandwidth constraintb (or small l).

Algorithm 1 is executed several times until finding the
maximum size of cluster that we can create with nodes inVm.
The binary search technique can be used for efficient search-
ing. Thenm sends to its neighborx the maximum size of
clusters that can be created by the nodes reachable fromx via
m. m sets propCRT[l] to be the maximumm.aggrCRT[v][l]
for all v ∈ {m, m′s neighbors except x}. After m sends
propCRT[l] ∀l ∈ L to x, x sets x.aggrCRT[m][l] to the
received propCRT[l] for eachl. x’s CRT is defined as a set of
values ofx.aggrCRT[v][l] for all x’s neighborv and alll ∈ L.
Theorem 3.3 states that by running Algorithm 3x receives
the correct information fromm for the entry of CRT. Since

Algorithm 4 : x.ProcessQuery(k, l,m): Node x’s proce-
dure to process a query(k, l) forwarded from nodem

if k ≤ x.aggrCRT[x][l] then1

Vx ← {x}2

foreach x’s neighbor nodev do3

Vx ← Vx ∪ x.aggrNode[v]4

dVx
← the distance function onVx5

X ← FindCluster(Vx, dVx
, k, l)6

else7

xnext ← any of x’s neighborv exceptm such that8

k ≤ x.aggrCRT[v][l]
if xnext existsthen X = xnext.ProcessQuery(k, l, x)9

else X = {}10

return X11

Theorem 3.3 can be proved by an induction in the similar way
to Theorem 3.2, we omit the proof.

Theorem 3.3: (Correctness of Algorithm 3)After the exe-
cution of Algorithm 3,x.aggrCRT[m][l] will be equal to the
maximum size of clusters that have diameterl and can be
created by all the nodes that are reachable fromx via m on
an anchor tree.

4) Query Processing:Based on the background mecha-
nisms explained above, we are finally ready to describe how
to find a cluster in a decentralized fashion. A clustering
query with size constraintk and diameter constraintl is first
submitted to any node in the system, then each node forwards
the query to its neighbor until finding a desired cluster.

Algorithm 4 describes how a nodex processes a query(k, l)
that is forwarded by its neighbor nodem. A user can initiate
searching by invokingx.ProcessQuery(k, l, null) at any node
x. x first tries to find cluster by running Algorithm 1 on its
clustering space(Vx, dVx

). If it fails, x forwards the query to
its neighborxnext such thatx is sure that there exists a cluster
in xnext’s clustering space. The query should not be forwarded
back to the previous nodem to avoid any possibility of routing
in an infinite cycle. Ifx ensures that there does not exist any
cluster in any direction, the algorithm returns an empty cluster.

IV. EVALUATION

This section evaluates our approach by examining i) accu-
racy of clustering, ii) tradeoff of decentralization, iii)effect of
the treeness of dataset, and iv) scalability of query routing.

Our simulations are based on two datasets. The first dataset
is namedHP-PlanetLab. As described in [21], this dataset
contains available bandwidth measurements between Planet-
Lab nodes collected at HP Labs using pathChirp [22]. Since
the raw dataset is incomplete and has many unmeasured
pairs of nodes, we first extracted measurements for the 190
nodes (out of 459) that give a fulln-to-n asymmetric matrix
containing bandwidth measurements. Then we converted the
matrix to a symmetric one by estimating the average of two
bandwidth values from forward and reverse directions of each

pair of nodes. This symmetric matrix is considered as a set
of real-world bandwidth measurements for our simulations.
To provide more reliable experimental results, we collected
another set of bandwidth measurements between PlanetLab
nodes using pathChirp during two weeks starting in the late
October in 2010 and named itUMD-PlanetLab. We prepro-
cessed this new dataset into a full symmetric matrix of 317
nodes (out of 497) in the same way we did for HP-PlanetLab.

We simulated our clustering algorithm in Java by extending
the simulator used to evaluate the decentralized bandwidth
prediction system [25], [26]. Our simulator is implemented
using the PeerSim [9] as a starting point.

A. Accuracy of Clustering in Tree Metric Space

Since there is no effective system to find a bandwidth-
constrained cluster, we designed a new comparison model
by combining two algorithms. We first embed bandwidth
measurements into 2-d Euclidean coordinate space using Vi-
valdi [7]. The rational transform function is used to represent
bandwidth as a metric as described in Sec. II. We now need
a clustering algorithm to run based on the distance data that
are predicted by Vivaldi. The centralized algorithm to solve
the k-diameter problem which is described in a theoretical
work [2], is used as a clustering algorithm on 2-d Euclidean
coordinate space. The algorithm is about finding a set ofk
nodes that has the minimum diameter. By adding a diameter
constraintl, the algorithm can be easily modified to find a set
of k nodes with diameter at mostl so that we can apply it
to our bandwidth-constrained problem. Briefly explaining the
algorithm, for each pair of nodes(p, q) such thatd(p, q) ≤ l,
it first collects a set of nodesx such thatd(x, p) ≤ d(p, q) and
d(x, q) ≤ d(p, q),divides the found set into two sets to create
a bipartite graph, and finds the maximum independent setX
in the bibpartite graph. If|X | ≥ k, thenX is a cluster that
satisfies the constraints.

As the correctness of the clustering algorithm is proved,
clustering error of this comparison model only comes from
imperfect bandwidth embedding of Euclidean space. We used
the simulator for Vivaldi that is implemented in C++ by
Ledlie [13], and we implemented the clustering algorithm in
Python.

For the HP-PlanetLab dataset, we will show the results of
three different approaches:HP-TREE-DECENTRAL , HP-
TREE-CENTRAL , andHP-EUCL-CENTRAL . HP-TREE-
DECENTRAL indicates our “decentralized clustering” algo-
rithm on a tree metric space described in Sec. III, which
runs on the bandwidth data estimated by the decentralized
bandwidth prediction framework described in Sec. II. HP-
TREE-CENTRAL means our “centralized clustering” algo-
rithm on a tree metric space described in Sec. III, which
runs on the bandwidth data estimated by the same framework
as used in HP-TREE-DECENTRAL. HP-EUCL-CENTRAL
represents the comparison model described above. HP-EUCL-
CENTRAL uses a “centralized clustering” algorithm on a 2-d
Euclidean coordinate space, which runs on the bandwidth data
estimated by the Vivaldi framework.

We constructed a bandwidth prediction framework with the
HP-PlanetLab dataset and sent 1000 queries, each of which
is a pair (k, b) of cluster size constraintk = 10 nodes and
bandwidth constraintb = 15 ∼ 75 Mbps. k is decided as
5% of the total number of nodes in the dataset, andb is
decided in between 20-th percentile and 80-th percentile ofreal
bandwidth in the dataset. We used such non-difficult queriesso
that the algorithms could find a cluster for all queries, and we
can fairly compare the accuracy of result clusters. 10 rounds
are executed as 10 different frameworks are constructed with
different random seeds. So, total 10000 queries are examined
for each of the three approaches.

We define a performance metric to compare the three
approaches.WPR (Wrong Pair Rate) means the ratio of
the number of wrong pair of nodes to the number of all
pairs in all the clusters returned by a clustering algorithm.
As shown in Fig. IV-A, WPR increases asb increases in
all three approaches. With largerb, it is more likely that
the bandwidth prediction framework of each approach in-
correctly concludesBW (u, v) ≥ b for a node pair(u, v)
when it is actuallyBW (u, v) < b. HP-TREE-CENTRAL
and HP-TREE-DECENTRAL show higher accuracy than HP-
EUCL-CENTRAL. This is because a tree metric space pre-
dicts bandwidth more accurately than a 2-d Euclidean metric
space. Fig. IV-A shows CDF of relative errors of band-
width prediction of two metric spaces. A relative error of a
pair of nodes(p, q) is defined by|BW (p,q)−BWT (p,q)|

BW (p,q) where
BW (p, q) is the real bandwidth of(p, q) andBWT (p, q) is
its predicted bandwidth. HP-TREE shows the result of our
decentralized bandwidth prediction framework used in HP-
TREE-CENTRAL and HP-TREE-DECENTRAL. HP-EUCL
shows the result of Vivaldi system about bandwidth prediction.
As you can see in Fig. IV-A, pairs in HP-TREE have smaller
prediction errors than those in HP-EUCL.

You can see in Fig. IV-A that the clustering accuracy of
HP-TREE-DECENTRAL and HP-TREE-CENTRAL is quite
similar. This is because both approaches run based on the same
bandwidth prediction framework. Since we proved the cor-
rectness of the clustering algorithms used in both approaches
on a perfect tree metric space, the inaccuracy of clustering
can be caused only by the underlying bandwidth prediction
framework. Also, only queries with smallk are submitted in
this experiment, so that both approaches can find a cluster
for every query. If a difficult query with largek is used, a
decentralized clustering algorithm will be outperformed by a
centralized one. This will be explained in the next section.

We executed the same simulations for UMD-PlanetLab
except that we used different queries such thatk = 16 nodes
and b = 30 ∼ 110 Mbps. The same notations are used
except that HP is replaced with UMD. Fig. IV-A shows that
a tree metric space works more accurately for bandwidth-
constrained clustering than a 2-d Euclidean metric space. Also,
this difference of clustering accuracy comes from the different
embedding accuracy of bandwidth prediction frameworks as
shown in Fig. IV-A.

B. Tradeoff of Decentralization

As discussed in Sec. III, our decentralized clustering ap-
proach has the downside of a limited flexibility for the choice
of query constraintb. This is useful to reduce the size of cluster
routing table that each node maintains, and does not make
worse the quality of clustering results. However, the second
downside of decentralization mightnot allow the decentralized
algorithm to find a cluster for some difficult queries with
large k. When each node periodically sends the information
of nodes to its neighbor by Algorithm 2, the information
size is limited uptoncut nodes. As a result, we can control
a messaging workload in a distributed system to a desired
degree. On the other hand, this results in a small clustering
space where each node can create a cluster. Naturally, the
decentralized clustering would not be so responsive as the
centralized clustering.

We executed a simulation to see how this second downside
of decentralization affects the result of clustering. For HP-
PlanetLab, we constructed a bandwidth prediction framework
and sent 100 queries, each of which is a pair(k, b) differently
chosen fromk = 2 ∼ 90 nodes andb = 15 ∼ 75 Mbps.
100 rounds are executed as 100 different frameworks are
constructed with different random seeds.ncut is set to 10
nodes.RR (Return Rate) means the ratio of the number of
found clusters to the number of submitted queries. As shown
in Fig. IV-B, as a query gets more difficult with largerk, RR
gets smaller for both centralized and decentralized clustering
algorithms. HP-TREE-DECENTRAL showsRR less than or
equal to HP-TREE-CENTRAL at everyk. This is because
each node only knows about the information of partial system
in the decentralized clustering approach. If a decentralized
system receives a query withk bigger thanncut×max{nneigh}
wheremax{nneigh} is the maximum number of neighbors of
nodes, a cluster satisfying the size constraintk can never be
found. However, it is rare that a user wants to find a cluster
of very large size. Whenk is less than 20% of the total
number of nodes in the system, the difference inRR of both
approaches is negligible. Moreover, as we already confirmed
in the previous experiments, ifk is small, WPR is also
quite similar in both approaches. Thus, we can claim that our
decentralized approach shows a high clustering accuracy and
a high responsiveness compared to our centralized approach
for queries with reasonably small constraintk. We executed
the same simulations for UMD-PlanetLab except that we
used different queries such thatk = 2 ∼ 150 nodes and
b = 30 ∼ 110 Mbps. The result in Fig. IV-B shows the similar
trend to what we found with HP-PlanetLab.

C. Effect of Treeness

This section describes how the treeness of dataset affects the
accuracy of our clustering algorithm. Abraham et. al defined
a parameterε ∈ [0,∞) to indicate how close a dataset is to
a tree metric space [1]. Sinceε is determined by each set of
four nodes in a dataset, we will use the average valueεavg
to represent the treeness of one dataset.εavg = 0 means the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90

W
ro

n
g

 P
a

ir
 R

a
te

 (
W

P
R

)

Query Constraint b (Mbps)

HP-TREE-DECENTRAL
HP-TREE-CENTRAL
HP-EUCL-CENTRAL

(a) HP-PlanetLab: Wrong Pair Rate

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

C
D

F
 (

%
)

Relative Prediction Error

HP-TREE
HP-EUCL

(b) HP-PlanetLab: Bandwidth Prediction Error

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120

W
ro

n
g

 P
a

ir
 R

a
te

 (
W

P
R

)

Query Constraint b (Mbps)

UMD-TREE-DECENTRAL
UMD-TREE-CENTRAL
UMD-EUCL-CENTRAL

(c) UMD-PlanetLab: Wrong Pair Rate

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

C
D

F
 (

%
)

Relative Prediction Error

UMD-TREE
UMD-EUCL

(d) UMD-PlanetLab: Bandwidth Prediction Error

Fig. 3. Clustering Accuracy: Bandwidth-constrained clustering works more accurate on a tree metric space than on a 2-d Euclidean space.

dataset is a perfect tree metric space, and largeεavg indicates
a bad treeness of dataset.

There are many factors that can affectWPR. System size
N , bandwidth distribution, andεavg are the characteristics of
dataset that can affectWPR. Query constraintsk and b are
also important factors. To focus on the effect ofεavg, here
we will fix N and k. Since it is not easy to have multiple
datasets that have the same bandwidth distribution, we define
two other variablesfb and fa by combining two factors of
bandwidth distribution andb. fb is the fraction of node pairs
with bandwidth less thanb. fa is the fraction of node pairs
with bandwidth aroundb, in the range of[b − 10, b+ 10]. In
other words,fb is CDF value atb, andfa indicates how steep
the slope of CDF atb is.

We will see howεavg, fb, andfa affectWPR. Let’s assume
that the bandwidth prediction error of a node pair, caused by
a bandwidth prediction framework, does not affect errors of
other pairs. ThenWPR should be close to the probability that
a bandwidth prediction framework chooses a wrong node pair
for a given query to find a single pair with bandwidth bigger
than or equal tob. In other words,WPR is the probability

that while a bandwidth prediction framework chooses a node
pair (p, q) such that the predicted bandwidthBWT (p, q) is at
leastb, the real bandwidthBW (p, q) is actually less thanb.

It is clear thatWPR increases asfb increases because there
are fewer choices of node pairs with bandwidth bigger than or
equal tob. We can also expect that largeεavg leads to large
WPR because the bandwidth prediction framework will result
in high errors of bandwidth embedding for imperfect tree met-
ric space. Let’s transformεavg ∈ [0,∞) to a bounded variable
ε∗avg ∈ [0, 1] for later usage by definingε∗avg = 1 − 1

1+εavg
.

Largefa means that there are many node pairs aroundb, and
it will increase the effect ofεavg. Accordingly, if there are
two datasets with the sameεavg values but differentfa, then
the dataset with largerfa will get higherWPR. By defining
f∗
a = (α − 1

α) × fa + 1
α with a constantα > 1, we can

transformfa ∈ [0, 1] to a variable with a different bound
f∗
a ∈ [1α , α]. We can multiplyε∗avg by f∗

a to strengthen or
weaken the effect ofε∗avg byα times. Such an adjusted variable
for treeness is defined by byε#avg = ε∗avg × f∗

a . And we can
boundε#avg ∈ [0, 1] by settingε#avg = 1 for ε∗avg × f∗

a > 1.

Now let’s consider a more concrete mathematical model of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

R
e

tu
rn

 R
a

te
 (

R
R

)

k (nodes)

HP-TREE-DECENTRAL
HP-TREE-CENTRAL

(a) HP-PlanetLab: Return Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

R
e

tu
rn

 R
a

te
 (

R
R

)

k (nodes)

UMD-TREE-DECENTRAL
UMD-TREE-CENTRAL

(b) UMD-PlanetLab: Return Rate

Fig. 4. Tradeoff of Decentralization: In a decentralized approach, each node maintains the partial information of system, so that the algorithm cannot find a
cluster for a difficult query with very largek.

WPR with fb andε#avg. Forfb ∈ [0, 1], WPR = 0 whenfb =
0, andWPR = 1 whenfb = 1. For ε#avg ∈ [0, 1], WPR = 0
when ε#avg = 0 because the bandwidth prediction framework
will predict perfectly the bandwidth of pairs aroundb. When
ε#avg = 1, we expectWPR = fb. If a dataset is infinitely
far from a tree metric space, the prediction framework will
be totally confused about how to predict pairwise bandwidth.
Accordingly, when the predicion framework tries to choose
a node pair with the bandwidth at leastb, it will be likely
to choose a random pair. Assuming that a uniformly random
pair is chosen,WPR should be the same asfb. Considering
these relations betweenWPR, fb, and ε#avg, we can define
the following model.

WPR = f
(1/ε#avg)

b = f
(1/ε∗avg)(1/f

∗

a
)

b (1)

We did a simulation to see how effective Equation 1 is. By
choosing subsets from HP-PlanetLab, we created six datasets
of 100 nodes with different treeness. For each subset, we
constructed a bandwidth prediciton framework and sent 2000
queries such thatk = 5 nodes andb = 5 ∼ 300 Mbps. And
we ran 10 rounds by constructing 10 different frameworks
with different random seeds. Fig. IV-C and Fig. IV-C show
some curves for each dataset, and the number that is included
in a legend representsεavg of each dataset. And the general
shape of all the curves is quite similar to what we expected in
Equation 1, whereWPR increases asfb does following the
shape ofWPR = f c

b with a constantc > 1. However, when
we plotted the relation betweenfb andWPR in Fig. IV-C, any
effect ofεavg was not seen. By computingf∗

a with α = 3.2 and
normalizingWPR to (WPR)f

∗

a , we could see that a dataset
with large εavg has a large normalizedWPR in Fig. IV-C.

Since(WPR)f
∗

a = f
(1/ε∗avg)

b , the effect ofεavg could appear
in Fig. IV-C. The dataset of largeεavg is plotted above that
of small εavg.

We did exactly the same experiment for UMD-PlanetLab,
and the result is shown in Fig. IV-C and Fig. IV-C. While

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

C
o

s
t

(#
 R

o
u

ti
n

g
 H

o
p

s
)

System Size (n)

average

Fig. 6. Scalable Query Routing Cost: The number of query routing hops
increases in a scalable way.

WPR-fb curves in Fig. IV-C do not show any effect ofεavg,
we could see the effect of treeness in(WPR)f

∗

a -fb curves in
Fig. IV-C.

D. Scalability

The last experiment is about how the number of query
routing hops increases as the system sizen does. We created
10 different datasets with the samen by choosing a random
subset from UMD-PlanetLab. Total 70 datasets are created for
n = 50 ∼ 300 nodes. For each dataset, we constructed a
bandwidth prediction framework and sent 1000 queries such
that k = 0.05n ∼ 0.30n and b = 30 ∼ 110 Mbps. 10
rounds are executed as 10 different frameworks are constructed
with different random seeds. Then we computed the average
number of query routing hops for each system sizen. As
shown in Fig. 6, the average hop count is quite small, which
is around two or three hops. Also, it increases slowly asn
increases, shaping a concave curve.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
ro

n
g

 P
a

ir
 R

a
te

 (
W

P
R

)

Fraction of Pairs < b (fb)

HP-0.071
HP-0.074
HP-0.114
HP-0.125
HP-0.157
HP-0.245

 0

 0.05

 0.1

 0.15

 0.2

 0.6 0.65 0.7 0.75 0.8

(a) HP-PlanetLab:WPR vs fb

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
d

ju
s
te

d
 W

ro
n

g
 P

a
ir
 R

a
te

 (
W

P
R

)(f
a
*)

Fraction of Pairs < b (fb)

HP-0.071
HP-0.074
HP-0.114
HP-0.125
HP-0.157
HP-0.245

 0

 0.05

 0.1

 0.15

 0.2

 0.6 0.65 0.7 0.75 0.8

(b) HP-PlanetLab:(WPR)f
∗

a vs fb

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
ro

n
g

 P
a

ir
 R

a
te

 (
W

P
R

)

Fraction of Pairs < b (fb)

UMD-0.287
UMD-0.358
UMD-0.429
UMD-0.447
UMD-0.496
UMD-1.097

(c) UMD-PlanetLab:WPR vs fb

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
d

ju
s
te

d
 W

ro
n

g
 P

a
ir
 R

a
te

 (
W

P
R

)(f
a
*)

Fraction of Pairs < b (fb)

UMD-0.287
UMD-0.358
UMD-0.429
UMD-0.447
UMD-0.496
UMD-1.097

(d) UMD-PlanetLab:(WPR)f
∗

a vs fb

Fig. 5. The Effect of Treeness: A dataset that is close to a tree metric space with lowε results in higher accuracy of clustering. The effect can be shown
with WPR normalized byf∗

a .

V. RELATED WORK

There exist several systems that predict end-to-end network
performance without performingn-to-n measurements. By
using the data accurately predicted by such systems, we
can expect to find a cluster quickly without spending any
delay performing extensive measurements. GNP [18], PIC [6],
and Vivaldi [7] successfully embed end-to-end latency into
an almost Euclidean space. However, those systems are not
good for bandwidth prediction, accordingly an attempt to
embed bandwidth measurements using Vivaldi results in poor
accuracy [21] when the linear transform functiond(u, v) =
C − BW (u, v) is used to represent bandwidth as a metric.
Even though we found that Euclidean space could show much
higher accuracy with our rational transform functiond(u, v) =

C
BW (u,v) , it is still not so much accurate as tree metric space
as shown in Sec. IV. Based on the finding of the treeness
of bandwidth as described in Sec. II, Sequoia [21] constructs
an edge-weighted tree to embed bandwidth measurements with
low embedding errors. Our prior works [25], [26] decentralized
Sequoia by removing a single fixed measurement bottleneck

and succeeded in accurately predicting pairwise bandwidth.

k-Clique is a well-known problem asNP -completeand
is about finding a clique of sizek in an undirected graph
G, where a clique inG is a complete subgraph ofG. Our
bandwidth-constrained clustering problem is equivalent to k-
Clique in the real world because we can create an undirected
graph with V by adding an edge(u, v) for nodesu and v
such thatBW (u, v) ≥ b whereBW (u, v) is the average of
forward and reverse bandwidth betweenu and v. There are
several researches to find a set ofk nodes with a maximum
diameter in a 2-d Euclidean space. Aggarwal et. al [2] provided
O(k2.5n log k + n logn) algorithm and Eppstein et. al [8]
improved it toO(k2n log2 k+ n logn). In spite of the beauty
of these algorithms, we could not successfully use it to find
a bandwidth-constrained cluster because bandwidth does not
fit Euclidean space very well. Instead, we designedO(n3)
algorithm to solve the clustering problem in a tree metric space
and applied it to our decentralized clustering approach.

There have been several research efforts about resource
clustering. Liu et. al [16] introduce a hierarchical cluster

structure and propose an approximate algorithm to answer
queries for resource clustering. The similarity to our approach
is that they support a query with two constraints: the size
and network distance of cluster. However, they only consider
latency-constrained clustering, and it is not feasible to directly
apply their approach to our problem. Their system constructs a
centralized hierarchical structure, and communications are also
centralized, so that each node must start measurement from the
root node of the hierarchical structure. Shen et. al [24] present
a hierarchical cycloid overlay (HCO) architecture for locality-
preserving clustering. HCO is used to discover wide-area grid
resources with multiple attributes such as CPU and memory.
The difference between HCO and our approach is that HCO
only considers latency-constrained clustering, does not support
a distance constraint for queries, and relies on a fixed set
of landmark nodes to form clusters. Beaumont et. al [3]
designed a distributed approximation algorithm for resource
clustering and proved its correctness theoretically. Theysolved
a complicated problem to answer a query with both distance
constraint and storage capacity. However, they just provides
an approximation, and especially they restricted their work to
a 1-d Euclidean space which is definitely not a strong model
to embed bandwidth measurements. SWORD [19] provides a
decentralized algorithm to discover wide-area resources with
multiple inter-node and per-node characteristics. Even though
they consider both latency and bandwidth to find a cluster of
nodes, there is a serious limitation in their clustering scheme.
SWORD basically relies on an exhaustive search taking an
exponential time, and stops searching when timeout expires.
On the other hand, our approach guarantees to answer a query
in a polynomial time under the assumption of tree metric
space.

We currently consider three possible applications of our
decentralized bandwidth-constrained clustering algorithm. Our
overall research project on P2P desktop grid systems motivates
this work. When a data-intensive scientific set of jobs, suchas
CyberShake workflow [4], runs in a P2P desktop grid, we can
increase the performance by assigning the jobset to a cluster of
nodes connected through high-bandwidth connections. We can
also expect to distribute large-scale data quickly in a content
delivery network [17]. We first divide content subscribers into
several high-bandwidth clusters, deploy data only to a few
of nodes in each cluster, and finally let the data distributed
quickly within each cluster. A P2P storage system [23] can use
our clustering algorithm for fast and consistent maintenance
of multiple replicas.

VI. CONCLUSIONS ANDFUTURE WORK

This paper has presented a decentralized and scalable
method that accurately finds a cluster of Internet hosts with
two constraints: clsuter size and minimum pairwise bandwidth.
We show that our centralized algorithm takes a polynomial
time in a tree metric space. A decentralized algorithm lets
any node receive a query and routes the query to the direction
where the wanted cluster exists. To do that, each node dynam-
ically aggregates the information of other nodes. Simulation

results with a newly collected dataset confirm high accuracy
and scalability, and show the tradeoff of decentralizationand
the effect of treeness.

We are currently extending this work in several ways. First,
we are working on a different type of node search algorithm.
For a given set of multiple nodes, we are investigating ap-
proaches to find a single node that has high bandwidth with
all the nodes in the input set. Second, we intend to use our
system as the underlying technology for resource discoveryin
a P2P desktop grid [11], [10], [12], [14]. Finally, we will use
our clustering approach to find a latency-constrained cluster.
Since latency can also be successfully embedded into a tree
metric space [21], we expect that our decentralized clustering
approach can be directly applied to find a cluster under a
latency constraint.

REFERENCES

[1] I. Abraham, M. Balakrishnan, F. Kuhn, D. Malkhi, V. Ramasubramanian,
and K. Talwar, “Reconstructing approximate tree metrics,”in PODC,
I. Gupta and R. Wattenhofer, Eds. ACM, 2007, pp. 43–52.

[2] A. Aggarwal, H. Imai, N. Katoh, and S. Suri, “Fining points with min-
imum diameter and related problems,” inSymposium on Computational
Geometry, 1989, pp. 283–291.

[3] O. Beaumont, N. Bonichon, P. Duchon, and H. Larchevêque, “Dis-
tributed approximation algorithm for resource clustering,” in SIROCCO,
ser. Lecture Notes in Computer Science, A. A. Shvartsman andP. Felber,
Eds., vol. 5058. Springer, 2008, pp. 61–73.

[4] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of Scientific Workflows,” inProceedings
of 3rd Workshop on Workflows in Support of Large-Scale Science
(WORKS08).

[5] P. Buneman, “A note on the metric properties of trees,”Journal of
Combinatorial Theory, Ser. B, vol. 17, pp. 48–50, 1974.

[6] M. Costa, M. Castro, A. I. T. Rowstron, and P. B. Key, “Pic:Practical
internet coordinates for distance estimation,” inICDCS. IEEE Computer
Society, 2004, pp. 178–187.

[7] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris, “Vivaldi:a decen-
tralized network coordinate system,” inSIGCOMM, R. Yavatkar, E. W.
Zegura, and J. Rexford, Eds. ACM, 2004, pp. 15–26.

[8] D. Eppstein and J. Erickson, “Iterated nearest neighbors and finding
minimal polytopes,” inSODA, 1993, pp. 64–73.

[9] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The Peersim
simulator,” http://peersim.sf.net.

[10] J.-S. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman,
“Using content-addressable networks for load balancing indesktop
grids,” in Proceedings of the 16th IEEE International Symposium on
High Performance Distributed Computing (HPDC-16). IEEE Computer
Society Press, Jun. 2007.

[11] J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee, and
A. Sussman, “Resource discovery techniques in distributeddesktop
grid environments,” inProceedings of the 7th IEEE/ACM International
Conference on Grid Computing - GRID 2006. IEEE Computer Society
Press, Sep. 2006.

[12] J.-S. Kim, B. Nam, M. Marsh, P. Keleher, B. Bhattacharjee, and A. Suss-
man, “Integrating categorical resource types into a P2P desktop grid
system,” inProceedings of the 9th IEEE/ACM International Conference
on Grid Computing - GRID 2008. IEEE Computer Society Press, Sep.
2008.

[13] J. Ledlie, “The vivaldi simulator,”
http://www.eecs.harvard.edu/ syrah/nc/.

[14] J. Lee, P. Keleher, and A. Sussman, “Decentralized resource man-
agement for multi-core desktop grids,” inProceedings of the 24th
International Parallel & Distributed Processing Symposium. IEEE
Computer Society Press, Apr. 2010.

[15] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca, “Measuring
bandwidth between planetlab nodes,” inPAM, ser. Lecture Notes in
Computer Science, C. Dovrolis, Ed., vol. 3431. Springer, 2005, pp.
292–305.

[16] C. Liu and I. T. Foster, “A scalable cluster algorithm for internet
resources,” inIPDPS. IEEE, 2007, pp. 1–8.

[17] A. Nandi, A. Ganjam, P. Druschel, T. S. E. Ng, I. Stoica, H. Zhang, and
B. Bhattacharjee, “Saar: A shared control plane for overlaymulticast,”
in NSDI. USENIX, 2007.

[18] T. S. E. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” inINFOCOM, 2002.

[19] D. L. Oppenheimer, J. R. Albrecht, D. A. Patterson, and A. Vahdat,
“Design and implementation tradeoffs for wide-area resource discovery,”
in HPDC. IEEE, 2005, pp. 113–124.

[20] V. Ramasubramanian, D. Malkhi, F. Kuhn, I. Abraham, M. Balakrishnan,
A. Gupta, and A. Akella, “A unified network coordinate systemfor
bandwidth and latency,” Microsoft Research, Tech. Rep. MSR-TR-2008-
124, 2008.

[21] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta,
and A. Akella, “On the treeness of internet latency and bandwidth,” in
SIGMETRICS/Performance, J. R. Douceur, A. G. Greenberg, T. Bonald,
and J. Nieh, Eds. ACM, 2009, pp. 61–72.

[22] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
“pathchirp: Efficient available bandwidth estimation for network paths,”
in In Passive and Active Measurement Workshop, 2003.

[23] A. I. T. Rowstron and P. Druschel, “Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility,” in SOSP,
2001, pp. 188–201.

[24] H. Shen and K. Hwang, “Locality-preserving clusteringand discovery
of wide-area grid resources,” inICDCS. IEEE Computer Society, 2009,
pp. 518–525.

[25] S. Song, P. J. Keleher, B. Bhattacharjee, and A. Sussman, “Brief
announcement: Decentralized network bandwidth prediction,” in DISC,
ser. Lecture Notes in Computer Science, N. A. Lynch and A. A.
Shvartsman, Eds., vol. 6343. Springer, 2010, pp. 198–200.

[26] ——, “Decentralized network bandwidth prediction,” inINFOCOM,
2011, submitted.

