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Abstract—Data-intensive distributed applications can increase measurements into a tree metric space with a high accuracy.
the performance by running on a cluster of hosts with high- We expect that the bandwidth prediction framework will

bandwidth interconnections. However, there exists no effgive : ; :
. ; o : enable a clustering algorithm to run without any delay of
method to find such a bandwidth-constrained cluster in a deas measurements 9 ajg y y

tralized fashion. Our work is inspired by prior work that tre ats ) o . . .
Internet bandwidth as an approximate tree metric space. This With these motivations, we will design a decentralized
paper presents a decentralized, accurate, and efficient sggn algorithm to solve the following specific problem. Given a

that finds a cluster with constraints of the number of nodes get of nodes/, a bandwidth functionrBW on V, and query
and minimum interconnect bandwidth. We describe a centralzed constraintsk > 2 and b, find a setX such thatX C V,

polynomial time algorithm running in a tree metric space, abng —
with the proof of correctness. We then provide a decentralied [ X] =k, andBW(uw) 2 b Vu,v e X. . _
version. Simulation experiments with two real-world datagts We feel that five requirements must be considered in decen-

confirm that our clustering approach achieves high accuracyand  tralized bandwidth-constrained clustering.

§ca|abi|ity. We also discuss what the tradeoff of decgntriﬁation . Decentralized Cluster Formation: Nodes must be grouped
is and how the treeness of dataset affects the clustering acacy. . ) : .
into clusters without any help of a centralized server.
« Decentralized Query Processing: A query should be able
. INTRODUCTION to be submitted to any node in the system, and each node
should make a decision with local information.

« High Accuracy: A query result should satisfy constraints.
Scalable Search: A cost should increase in a scalable way
with an increasing number of nodes in the system.
o Dynamic Clustering: Members of each cluster should

Distributed applications can benefit from a decentralized
algorithm to find a cluster of hosts that have high-bandwidth |
connections to each other. For example, a peer-to-peer) (P2P
desktop grid [11], [10], [12], [14] can reduce a job execatio
time by scheduling a data-intensive scientific set of jobshs adatatively change as network condition changes.
as CyberShake workflow [4], on a set of nodes with high- L ) . )
bandwidth interconnections. A content delivery network][L Our contributions are fourfold in specific. First, we show

can quickly distribute data by finding several clusters 6Pat the clustering problem i& in a tree metric space by de-

high-bandwidth nodes and making a representative of ea\éﬂoping a centralized polynomial time algorithm and pryi

cluster responsible for distributing the data in the clustd'S Correctness. Second, we provide a decentralized diugte

Unfortunately, however, there exists no effective method f\lgorithm along with the proof of correctness. The key idea

find a bandwidth-constrained cluster in a decentralizedidms 'S to let each node maintain ‘?‘ simple routing table, so that a
Most of the existing studies only focus on latency-conaeei guery can route towards the direction where the wantedeslust
clustering [16], [24], [3]. They even need a centralizedstu exists. The third contribution is a new dataset that we cteig

ture [16] or a fixed set of landmark nodes that every node hg}é measuring available bgndw!dth b(_atween PIanet_Lab_ nodes.
to perform measurements with [24]. Finally, we present extensive simulation results valitatihe

There are two important reasons why decentraliz h accuracy and scalability and showing the tradeoff of

bandwidth-constrained clustering is not successfullyl@eul ecentralization and the effect of trgeness of datasets. !
yet. First, a clustering problem is difficult to solve, in thigis _The rest of the paper Is organlged as folIow;. We first
equivalent tok-Clique problem in a general undirected grapﬁj'scusS the ur_1der|y|ng |ntU|t_|on behind th|s_work n .SGC' .
which is N P-complete. Second, we were lack of effectiv§ec‘_ [Il describes the details of the algorithm design, and
framework for bandwidth prediction that is indispensatde tprovm!es a proof ‘?f correctness._Sec. IV evaluates our @ghro
minimize extra costs of measurements. Fortunately, it is n&xperlmentally. _F|naIIy, Sec Vv d|scgsses related work, aed
possible to overcome those difficulties as a consequenceCBInCIUde and discuss future work in Sec. V.

recent research efforts. Ramasubramanian et. al [21] ¢haain

a metric space for Internet bandwidth can be modeled by an
approximate tree metric space.If we limit the clustringtpeon This section defines our terms and provides backgrounds
in a tree metric space based on this finding, it is expectatlout how to represent bandwidth in a metric space and why
that we can develop a polynomial time algorithm. Also, ousandwidth is approximately a tree metric. We also describe
prior work [25], [26] designed a decentralized framework fathe design of a decentralized bandwidth prediction frantkwo
bandwidth prediction and successfully embedded bandwidtiat our clustering algorithm runs on.

II. TERMINOLOGY AND BACKGROUND



A. Definitions

« An edge-weighted trees a connected graph without
cycles, and with non-negative edge weights.

« The distancebetween two nodes and v on an edge-
weighted tre€l’, denotedir(u, v), is defined by the sum
of weights of edges on the path fromto v.

« An edge-weighted tre& inducesa metric spaceV,d)

if and only if T contains all nodes iV andVu,v € V,
d(u,v) = dr(u,v) holds. Prediction Tree Anchor Tree

« The four-point condition (4PCpn a metric spacéV, d) Fig. 1. Example Structures of Decentralized Bandwidth Rtieth System

states that for any set of four nodes x,y,z € V,
d(w, x)+d(y, z) < d(w,y)+d(z,z) < d(w, 2)+d(z,y)

implies d(w, y) + d(z, 2) = d(w, 2) + d(z, y). ~on Theorem 2.1, proved by Buneman [5], they constructed an
« A metric space that satisfies 4PC is calletre® metric edge-weighted tree to embed bandwidth measurements into.
space The result graph showed low relative errors of embedded

) , bandwidth value compared to the real data.
B. Bandwidth as a Metric Theorem 2.1:A metric space(V,d) satisfies 4PC if and
Higher values are considered better for bandwidth whitgnly if there exists an edge-weighted tree that indudésl).
closer is generally more desirable for distance in a metric
space. So, we use thrational transform functiond(u,v) = D. Decentralized Bandwidth Prediction System
c

Fwias (O represent bandwidth as a metric, whét®’ (u, v) Our clustering algorithm will be designed to run on top

is the bandwidth between nodesindv, d(u, v) is the distance ot 5 decentralized bandwidth prediction framework which is
in a metric space, an@' is a positive constant. Representlngjevebped in our prior work [25], [26]. It is briefly describe

bandwidth as a metric implies four properties: as belows how the framework is designed.
1) d(u,v) = 0 (non-negativity) An edge-weighted tree embedding bandwidth information
2) d(u,v) =0 if and only if u = v is called aprediction tree(Fig. 1). The number on each edge
3) d(u,v) = d(v,u) (symmetry) _ _ represents the weight of the edge. A leaf node in a prediction
4) d(u,w) < d(u,v) + d(v, w) (triangle inequality) tree has degree one and represents each participating host

The first property is satisfied becauSds a positive constant. in the system. An inner node with degree two or more is
By setting BW (u,u) = oo, we can also satisfy the second:reated when a new leaf node is added to a prediction tree.
property. Symmetry can be justified by one measuremethe rational transform functiod(u, v) = % is used to
study [15] that estimates an asymmetry fagtoe [0, 1] such represent bandwidth as a metric, aBdVz(u,v) = dTLM)

that « = 0 when BW (u,v) = BW(v,u) (i.e., complete for bandwidth prediction. For example, in Fig. 1 é’ =
symmetry). The study shows 90% of bandwidth capacity datgo, the predicted bandwidth valuW (b, c) is 77 because

in PlanetLab version 3 have less than 0.5. Nonethelessd;(b,c) = 23. A prediction tree starts with the first added
we satisfy the third property by setting boBW (u,v) and node as a singleton, and the second node is added along
BW (v,u) to the average bandwidth of forward and reversgith an edge that connects the two nodes and is weighted
directions. Even though there is no effective method folwad t by their distance. The tree grows by iteratively adding sode
directly addresses the last assumption, our prior work,[2%]s follows. To add a new node to a prediction tree, the
[26] succeeded in accurately embedding bandwidth into adgorithm chooses a nodecalled thebase nodewhich can

metric space with several heuristics. be any leaf node, and selects another ngdmlled theend
_ node that maximizesGromov product(z|y).. The Gromov
C. Treeness of Bandwidth product ofz andy at z, denoted z|y)., is defined agz|y). =

There are three evidences to verify that the Internet §d(z,z) + d(z,y) — d(z,y)). 2’s inner nodet, is created
close to a tree metric space in terms of bandwidth. Firstnd located on the path~ y wheredr(z,t;) = (z|y).. The
Ramasubramanian et. al [21] verify that a bandwidth datasdgorithm then adds: to the prediction tree by creating an
produces a lot of smalt values.e is introduced by Abraham edge (¢,, z) with weight (y|z),. That is,z’s position in the
et. al [1] to quantify how much a set of four nodes satifies 4P@raph is determined by the maximized Gromov product.

If all € values in a metric space are zero, the metric space is ar'he prediction framework constructs an overlay network of
perfect tree metric space. Second, there is a theoreticdéimachosts following a structure of a rooted unweighted treeechll

of network topology such that bandwidth between two nodesaschor tree The first added node in the system becomes the
bottlenecked at the access link of either end. And it is pdoveoot node of the anchor tree, and the second node becomes the
that a metric space for this model is a perfect tree metritild of the root node. When is added to the prediction tree,
space. [20] Last, the attempts of embedding bandwidth intaras also added to the anchor tree by becoming a child'of

tree metric space resulted in a high accuracy. [21], [26Basanchor node z’s anchor node is defined as a node that was



Algorithm 1: X = FindCluster(V,d, k,1): A centralized each of which is associated with each node pai/inThe
algorithm to find in a tree metric spa¢¥, d) a setX such ~ group of a node paifp, ¢) includes all the clusters,,, whose
that X C V, |X| =k, anddiam(X) <1 diameter is determined byp, ¢), which meansp,q € Sy,
LX< (3 andc_lmm(Sp_q) = d(p, q)_m formal terms. ITetS;q _denote the
» foreach node pair(p, q) such thatp, q € V do maximum size cluster_ in each group. Sln_ﬁgq is the _best
X X cluster in each group in terms of cluster size, checking only
Sk, —{z eV id(x,p) <d(p,q) Nd(z,q) < d(p,q)} . ; : :
if [S* | > k and diam(S,) < [ then Spq f_or eaph _grOl_J_pwHI be sgusfacto_ry to find a wanted clustgr.
)?q<_ a set of anyk rliqodes ing* With this intuition, Algorithm 1 iterates every node pair
break pa (p,q) in V and determines’; by collecting all nodes: € V/
such thatd(z,p) < d(p,q) andd(z,q) < d(p,q). From the
7 return X proof of Theorem 3.1, we know that Algorithm 1 correctly
createsS;, . If S;, satisfies the constraints and !, then the
algorithm stops iterating pairs and returns ahynodes in
sy added to he precicon ee longwith the ey 1% S0P U6 0 1 A0k U s e

that 2’s inner npdetm is located on. For exa’T‘p'e' assumingscause the algorithm has checked all possible clusters.
that nodes in Fig. 1 are added to the system in an alphabetic . .
heorem 3.1: (Correctness of Algorithm Given a tree

order, when adding to a prediction treeh’s inner nodet . : )
9 P h " metric space(V,d) and constraint valueg > 2 and |, if

is located dgéty, d). Noded is defined ash’ h
's located on edgéty, d). Noded is defined asi's anchor Algorithm 1 createsS,, for a pair of nodeg,q € V, then

node because eddé,, d) is created whenl was added. The "=~ . . :
anchor tree is also used to quickly find a global maximizer & diam(Sg,) - d(p, ) and ii) there exists n&,, C V' such
dbat|Spe| > S5, anddiam(Sye) = d(p, q).

Gromov product, so that the framework can be built witho
performing a fulln-to-n measurements. Proof of Theorem 3:1To provediam(Sy,) = d(p,q), we

A distance labelis assigned to each node, so that Will show d(r,s) < d(p,q) Vr,s € Si,. If r € {p,q} or
prediction tree is constructed in a distributed fashiondélo s € {p;q}, it is clear thatd(r,s) < d(p,q) by definition of
o's distance label contains all anchor nodes on the path from, iN Algorithm 1. Otherwise, three cases can be considered
the root node tar in the anchor tree. The label also containBY the order of three distance sums in 4PCpof, r, ands.

the corresponding distance values between anchor nodes ar) d(p, q) + d(r,s) < d(p,r) + d(q,s) = d(p,s) + d(q,r)

w

[o2 N O) N

inner nodes. For example, nodén Fig. 1 hag(a % b % d) By the assumption of 1y(r,s) < d(p,r) + d(gq,s) —
as its distance label, witldy(a,t,) = 0, dr(ty,b) = 25, d(p,q) and d(r,s) — d(p,q) < (d(p,r) — d(p.q)) +
dr(b,ty) = 10, anddr(t4,d) = 20. Since a distance label is (d(g, 5) ~d(p, q)). Sinced(p, r) < d(p,¢) andd(g, s) <

equivalent to a partial prediction tree, the distance betve/o d(p, q) by definition of S7,, d(r, s) — d(p,q) < 0.
nodes can be estimated with a simple computation. In other) d(p,r) + d(g,5) < d(p, s) +d(g,7) = d(p, q) + d(r, 5)
words, a distance label plays a similar role to the network ~ BY the assumption of 2)(r,s) = d(p,s) + d(q,r) —
coordinates in Vivaldi. d(p,q) and d(r,s) — d(p,q) = (d(p,s) — d(p,q)) +
(d(q,r)—d(p, q)). Sinced(p, s) < d(p, q) andd(q,r) <

I1l. DESIGN d(p, q) by definition of S, d(r,s) — d(p,q) < 0.
This section describes details of our approach. We first3) d(_pv_s) +d(g,r) < d(p,r) +d(q,s) = d(p,q) +d(r,s)

develop a centralized clustering algorithm, and then discu Similarly to 2), d(r, s) — d(p,q) < 0.

how to decentralize it with several techniques. Thus,diam(S,,,) = d(p, q).
Note that we consider bandwidth as a metric using theNow let's assume that there exists,, C V such that
rational transform function as described in Sec. Il. In th&y,| > |S;,| anddiam(Sy,) = d(p, q). |Spq| > |S,,| implies

bandwidth-constrained clustering problem defined in Sec.that there is a node € V' such thatr € Sy, andz ¢ S;,.
we can convert a bandwidth functioBW to a distance For such a node, d(x,p) < d(p,q) Ad(z,q) < d(p,q) holds
functiond and a bandwidth constraitito a distance constraint becauseliam(S,,) = d(p, q). However, by the definition of
l = % As a result, we can define this distance-constrainéd,, = ¢ S, implies d(z,p) > d(p,q) V d(x,q) > d(p, q),
clustering problem. Given a metric spadé d) and constraints which causes a contradiction. Thus, there existsSppoC V
k > 2 and/, find a setX such thatX C V, |X| =k, and such thatlS,,| > |S;,| anddiam(Sy,) = d(p,q). 1
d(u,v) <1Vu,v € X. By defining thediameterof a setX as Whenn is the number of nodes i, the algorithm takes
diam(X) = maxvy,vex{d(u,v)}, the distance contraint canO(n?) time because it take@(n) to createSy, for each pair

be rephrased agiam(X) <. and O(n?) to iterate every pair. We would not claim that
] o ] Algorithm 1 is the fastest algorithm to find a cluster in a
A. Centralized Clustering in a Tree Metric Space tree metric space. The point is that there actually exists an

Algorithm 1 describes a simple centralized algorithm to findffective algorithm to solve the clustering problem in aetre
a cluster in a tree metric spac¥, d). We first divide all the metric space. While the clustering problemAN&P-complete
clusters that can be considered(ivi, d) into several groups, in the real world as described in Sec. V, Algorithm 1 can find



a cluster in a polynomial time by determinirtf, under the Algorithm 2: z.DynAggrNodelnfo(m): Node z’s proce-
assumption of tree metric space. Since bandwidth is close todure to dynamically aggregate fromis neighborm the
tree metric as described in Sec. Il, Algorithm 1 can be applieinformation of nodes that are close 1o

to find a bandwidth-constrained cluster. 1 begin m’s propagation tac

2 candNode— {m}

. o 3 foreach m’s neighbor nodev exceptr do
The design goal for decentralization is to let users submjt L candNode— candNode m.aggrNodef]

a query to any node and to route it towards the direction R
where the wanted cluster exists. To achieve this decezehli 5 | PropNode« nc,; nodes that minimizedr(x, u) for
query processing, we first construct an overlay network with | @ll u € candNode

all the hosts that participate in clustering as a member. By | " sends propNode te

periodically exchanging messages with neighbors, eacle nod end. ]
aggregates the information of nodes that are close to .itself P&9in ='s aggregation fromn
Then each node runs Algorithm 1 on the aggregated nofle| @ receives propNode from
information and figures out the maximum size cluster that te | -aggrNodefn] < propNode
node can create. Each node then fill in the entry of a routiﬁ'gend

table by aggregating the information of the maximum size

cluster that exists in each direction of neighbors. Theildeta P

of these background mechanisms are provided in below. RUS,UI,

1) Overlay Construction:Our decentralized clustering al-
gorithm runs on top of the decentralized bandwidth prealicti
framework that is described in Sec. Il. For that reason, all
the hosts that are considered as a cluster member should
participate in constructing an anchor tree. By directlyngshe ScaUler |Seallez
overlay structure of the prediction framework, we can bénefi o hes
in three aspects. First, we can find clusters quickly. Badtwi Prediction Tree (T) Anchor Tree (
constrained clustering requires to measure bandwidthdstw
many nodes. Instead of performing measurements at the tiffg 2. Structures of the Prediction Framework from Nedis Perspective
of clustering, we use the bandwidth data that are accurately
predicted by the framework. Consequently, we can avoid any
delay for extensive measurements when searching for aclusthooses the top.,.; nodes that are the closestiaregarding
Second, we can exploit Algorithm 1 whose correctness i€ distance on a prediction tree. Since the underlyingéram
proved in a tree metric space. Since the framework accyrat@iork is designed to predict the real bandwidth accuratedy, [2
embeds bandwidth measurements into a tree metric spdbe, predicted distancer(u,v) is quite close to the real
Algorithm 1 is expected to work accurately with the banddistanced(u,v) for two nodesu andv. So, thenc,; chosen
width data predicted by the framework. Third, we can avoi@odes should be close to in terms of real distances. Note
any extra cost about overlay structuring. Since our approa®at the information size is limited te.,; nodes, so that a
already needs the prediction framework to achieve two bisnefnessaging workload can be controlled in a distributed syste
above, we would run our clustering algorithm directly on the? sends propNode ta, so thatz can setz.aggrNodefn].
framework rather than design a new overlay structure. ~ Note thatz.aggrNodefz] will dynamically change over time

2) Dynamic Aggregation of Close Nodeafter becoming becausg the decentrallze_d bandwidth predwqu framework
a member of the anchor tree, each node starts to periodic@ifomatically restructures itself as network conditioharge.
perform two types of background mechanisms, one of whiciieorem 3.2 states that by running Algorithm: 2eceives the
is described here, and the other in the next section. By th@frect information fromm, and the proof is also provided in
first mechanism, each nodeaggregates the information of theP€low.
nodes that are close to This aggregated information of close Theorem 3.2: (Correctness of Algorithm &jter the exe-
nodes will be used as a local system space where each nedéon of Algorithm 2,z.aggrNodefr] will contain a set of
can create a cluster. Algorithm 2 more specifically dessrib#1e topn.,: nodes inU that minimizes the predicted distance
such a procedure about hawreceives from each neighbor  dr(z,u) Yu € U whereU is a set of all nodes that are
on the anchor tree the information of the nodes that are tfgachable fromx via m on an anchor tree.
closest tar in the set of all the nodes reachable framia m. Proof of Theorem 3:2Without loss of generality, assume
Let p.aggrNodef] denote the information of nodes that a nodéhat a prediction tre€” and an anchor tred look as shown
p receives from its neighbarthroughp.DynAggrNodelnfo§). in Fig. 2 from the perspective of node. In A, m hasp as

m first creates a set candNode by collecting nodes frois parent,c; andcs as its children.S; denotes a set of child
m.aggrNodef] for each of m’s neighborv exceptz. m is nodes of node. R = A\ (S, U S¢, U Se, U{m,p,c1,ca}).
also included in candNode. To create another set propNade;I’ contains all nodes i as leaf nodest; means node’s

B. Decentralization




inner node.l; denotes a set of inner nodes in the subgraptilgorithm 3: z.DynAggrMaxCluster(m): Nodez's pro-

that contains a sef;. cedure to dynamically aggregate fraris neighborm the
Induction will be used for proof. Considering three cases irmaximum size of cluster imu’s direction.

terms of whatz is, we divide the theorem into three statements 1 «+ {i;,l,, ..., {;}

and will prove each one. Those statements are included drbegin m’'s propagation ta:

STMT(m) that is defined as follows: 3 Vi < {m}
1) p.aggrNodefn] is a set of the topn.,, nodes that 4 | foreachm’s neighbor nodev do
minimizesdr (p,u) Vu e U = A\ ({p} URU S)). 5 | Vin + Vin U m.aggrNodef]

2) ci.aggrNodefn] is a set of the topnc., nodes that ¢ | g, + the distance function of,,
minimizesdr(ci,u) Yu € U = A\ ({c1} U Se, ).

3) co.aggrNodefn] is a set of the topn.,, nodes that
minimizesdr(ca,u) Yu € U = A\ ({c2} U Se,).

Basis: Show that STMTm) holds whenm has only one
neighbor.

foreach! € L do
m.aggrCRT][{] < the maximumk such that
FindCluster{,., dv,, , k,1) returns a non-empty set
9 propCRT[] + maxy,cs{m.aggrCRTP][{]1}

/o 3
If the only neighborz is p, we can focus on the first wheres = {m, m's neighbor except }
statement.p.aggrNodefn] = {m} holds by the algorithm. 1o dm sends propCRI[ Vi € L 10 «
SinceU = {m} andm € U minimizesdr(p, m), the first 1 end ) .
statement is true, so does STM). Similarly, STMT(m) is 2 begin z’s gggregatlon fromn
true whenz = ¢, of z = cy. 13 x receives propCRT[ VI € L from m

: ) 14 foreach ! € L do
Inductive Step: Show that if STMT) holds for each ofn’s
neighbor;j, then STMTm) also hc-l)(ld)s. o | #-aggrCRT{[I] < propCRT]]
Since all the statements in STM%) can be proved in 16 end
the similar way, we only focus on the first statement. By the
induction hypothesis, the first statement of STl is true,

andU = {c1} U S, holds. This impliesm.aggrNodef:] the flexibility for the choice of query constrait Instead
is equal to a set of the tom.,; nodes that minimizes of allowing users to choose any value ifwe let users to
dr(m,u) Yu € U. As you can see inT" of Fig. 2, choose from a predetermined set of bandwidth classes. With
dr(m,u) = dr(m,te,) + dr(te,, u) Yu € U with a constant thjs limited flexibility of b, we can reduce the size of cluster
dr(m,t.,). Som.aggrNodef;] should also be equal to a setoyting table at each node.
Of the top ncue Nodes that minimizesir (tc,,u) Vu €U Algorithm 3 describes how a node aggregates the infor-
Since dr(p,u) = dr(p,te,) + dr(te,,u) Vu € U with & mation of the maximum size of cluster from its neighbor
constantdr (p, tc,) as shown inT, m.aggrNodef] should 1 is a fixed predetermined set of distance classes that are
also be equal to a set of the top,; nodes that minimizes {ansformed from bandwidth classes for query constraires.
dr(p,u) Vu € U = {c1}US,,. p.aggrCRT][!] VI € L denote values that receives from its
The first statement of STME;) is true with the induction neighborg throughp.DynAggrMaxClusterg). m first defines
hypothesis. So, similarlyy..aggrNodet,] is a set of at most ;s clustering spacéV,,, dy., ) wherem can create a cluster.
neue NOdes that minimizedr (p, u) Vu € U = {c2} U S, . V, is defined as the union ofm} and m.aggrNodef] for
By Algorithm 2, p.aggrNodein] is a set of the topncu:  all neighborsv. The distance functiody,, on V,, is defined
nodes that minimizedr(p,u) Yu € {m} U m.aggrNodef:]  from the distance values on a prediction tree. Since thesiode
U m.aggrNodef,]. By the above observations abouin v, are close tom, we can expect that they will be also
m.aggrNodef;] and m.aggrNodef,], p.aggrNodefn] must close to each other. Accordingly, we can expect our clusgeri
be equal to a set of the top., nodes that minimizes zigorithm to be responsive to a difficult query with large
dr(p,u) Yu € {m,c1,c2} U S, USe,, which is A\ ({p} U  bandwidth constraint (or small?).
RUS,). So, the first statement of STMiT:) is true. Algorithm 1 is executed several times until finding the
Similarly, the other two statements are also true. Thug;aximum size of cluster that we can create with nodei,in
Algorithm 2 produces a correataggrNodefn] with a limited  The binary search technique can be used for efficient search-
set candNode. [ ing. Thenm sends to its neighbar the maximum size of
3) Dynamic Aggregation of Maximum Cluster SizBy clusters that can be created by the nodes reachable:fraia
the second background mechanism, each node dynamicallym sets propCRT] to be the maximummn.aggrCRTP][(]
aggregates the information about the maximum size of aisistéor all v € {m, m’s neighbors except z}. After m sends
that exists in each direction of neighbors. The aggregatpbpCRT[] VI € L to z, = setsx.aggrCRTn][{] to the
cluster size information is used for each node to constructeceived propCRT] for eachi. x's CRT is defined as a set of
cluster routing tablg(CRT) that each node has to maintain irvalues ofr.aggrCRTp][/] for all z's neighborv and alll € L.
order to forward queries toward the direction where a wantdtheorem 3.3 states that by running Algorithmz3receives
cluster exists. As a tradeoff for decentralization, we fimthe correct information frommn for the entry of CRT. Since

o ~




Algorithm 4: z.ProcessQueryk, !, m): Node z’s proce- pair of nodes. This symmetric matrix is considered as a set

dure to process a quely;, () forwarded from noden of real-world bandwidth measurements for our simulations.
1 if k < 2.aggrCRTE][{] then To provide more reIiapIe experimental results, we colldcte

2 V, « {z} another set of bandwidth measurements between PlanetLab
s | foreach z’s neighbor node do nodes using pathChirp during two weeks starting in the late
4 | Vi « Vi U z.aggrNodef] October in 2010 and named itMD-PlanetLab We prepro-

cessed this new dataset into a full symmetric matrix of 317
nodes (out of 497) in the same way we did for HP-PlanetLab.
We simulated our clustering algorithm in Java by extending

(6]

dy, « the distance function o,
6 | X < FindClusterl.,dy,,k,1)

7 else the simulator used to evaluate the decentralized bandwidth
Tnext < any of z's neighborv exceptm such that prediction system [25], [26]. Our simulator is implemented
k < z.aggrCRTP][{] using the PeerSim [9] as a starting point.

9 if Zpext €Xiststhen X = x,...ProcessQueni( i, x) o )

10 else X = {} A. Accuracy of Clustering in Tree Metric Space

11 return X Since there is no effective system to find a bandwidth-

constrained cluster, we designed a new comparison model
by combining two algorithms. We first embed bandwidth
measurements into 2-d Euclidean coordinate space using Vi-
Theorem 3.3 can be proved by an induction in the similar waldi [7]. The rational transform function is used to refnes

to Theorem 3.2, we omit the proof. bandwidth as a metric as described in Sec. Il. We now need

Theorem 3.3: (Correctness of Algorithm Bjter the exe- a clustering algorithm to run based on the distance data that
cution of Algorithm 3,z.aggrCRTn][!] will be equal to the are predicted by Vivaldi. The centralized algorithm to solv
maximum size of clusters that have diameteaind can be the k-diameter problem which is described in a theoretical
created by all the nodes that are reachable fromia m on work [2], is used as a clustering algorithm on 2-d Euclidean
an anchor tree. coordinate space. The algorithm is about finding a sek of

4) Query Processing:Based on the background mechanodes that has the minimum diameter. By adding a diameter
nisms explained above, we are finally ready to describe h@@nstraint, the algorithm can be easily modified to find a set
to find a cluster in a decentralized fashion. A clusteringf ¥ nodes with diameter at mostso that we can apply it
query with size constraint and diameter constrairitis first to our bandwidth-constrained problem. Briefly explainihg t
submitted to any node in the system, then each node forwagdgorithm, for each pair of nodes, ¢) such thatd(p, ¢) <,
the query to its neighbor until finding a desired cluster. it first collects a set of nodessuch that(z, p) < d(p, q) and

Algorithm 4 describes how a nodeprocesses a quety, ) d(z,q) < d(p,q),divides the found set into two sets to create
that is forwarded by its neighbor node. A user can initiate @ bipartite graph, and finds the maximum independentXset
searching by invoking:.ProcessQueng(/, null) at any node in the bibpartite graph. IfX| > %, then X is a cluster that
x. x first tries to find cluster by running Algorithm 1 on itssatisfies the constraints.
clustering spacéV,, dv,). If it fails, = forwards the query to ~ As the correctness of the clustering algorithm is proved,
its neighborz,.«. such thatz is sure that there exists a clusteglustering error of this comparison model only comes from
iN Znex's Clustering space. The query should not be forwardéaperfect bandwidth embedding of Euclidean space. We used
back to the previous node to avoid any possibility of routing the simulator for Vivaldi that is implemented in C++ by
in an infinite cycle. Ifz ensures that there does not exist anlyedlie [13], and we implemented the clustering algorithm in
cluster in any direction, the algorithm returns an emptglu  Python.

For the HP-PlanetLab dataset, we will show the results of
IV. EVALUATION three different approachesiP-TREE-DECENTRAL , HP-

This section evaluates our approach by examining i) acClREE-CENTRAL , andHP-EUCL-CENTRAL . HP-TREE-
racy of clustering, ii) tradeoff of decentralization, i@ffect of DECENTRAL indicates our “decentralized clustering” algo-
the treeness of dataset, and iv) scalability of query rgutin rithm on a tree metric space described in Sec. lll, which

Our simulations are based on two datasets. The first datagets on the bandwidth data estimated by the decentralized
is namedHP-PlanetLab As described in [21], this datasetbandwidth prediction framework described in Sec. Il. HP-
contains available bandwidth measurements between Plaff@EE-CENTRAL means our “centralized clustering” algo-
Lab nodes collected at HP Labs using pathChirp [22]. Sincghm on a tree metric space described in Sec. lll, which
the raw dataset is incomplete and has many unmeasureds on the bandwidth data estimated by the same framework
pairs of nodes, we first extracted measurements for the 189 used in HP-TREE-DECENTRAL. HP-EUCL-CENTRAL
nodes (out of 459) that give a full-to-n asymmetric matrix represents the comparison model described above. HP-EUCL-
containing bandwidth measurements. Then we converted BENTRAL uses a “centralized clustering” algorithm on a 2-d
matrix to a symmetric one by estimating the average of tweuclidean coordinate space, which runs on the bandwidth dat
bandwidth values from forward and reverse directions oheaestimated by the Vivaldi framework.




We constructed a bandwidth prediction framework with thB. Tradeoff of Decentralization
HP-PlanetLab dataset and sent 1000 queries, each of whic
is a pair(k,b) of cluster size constraint = 10 nodes and
bandwidth constrainb = 15 ~ 75 Mbps. k is decided as

rAs discussed in Sec. lll, our decentralized clustering ap-
proach has the downside of a limited flexibility for the cheic
of query constrainb. This is useful to reduce the size of cluster

5% of the total number of nodes in the dataset, dnds . o
decided in between 20-th percentile and 80-th percentileaf routing table that each node maintains, and does not make
P P worse the quality of clustering results. However, the sdcon

bandwidth in the dataset. We used such non-difficult qUSOES 4 swnside of decentralization mighot allow the decentralized
that the algorithms could find a cluster for all queries, ared w

airl th ; It clust 10 Igorithm to find a cluster for some difficult queries with
can fairly compare the accuracy of result clusters. reur rge k. When each node periodically sends the information
are executed as 10 different frameworks are constructdu wif

different random seeds. So, total 10000 queries are exalmng?z
for each of the three approaches.

nodes to its neighbor by Algorithm 2, the information
e is limited upton.,; nhodes. As a result, we can control
a messaging workload in a distributed system to a desired
We define a performance metric to compare the threlegree. On the other hand, this results in a small clustering
approachesW PR (Wrong Pair Rate) means the ratio okpace where each node can create a cluster. Naturally, the
the number of wrong pair of nodes to the number of aflecentralized clustering would not be so responsive as the
pairs in all the clusters returned by a clustering algorithraentralized clustering.
As shown in Fig. IV-A, W PR increases a$ increases in e executed a simulation to see how this second downside
all three approaches. With largér it is more likely that of decentralization affects the result of clustering. FdP-H
the bandwidth prediction framework of each approach ifpjanetLab, we constructed a bandwidth prediction framkwor
correctly concludesBW (u,v) > b for a node pair(u,v) and sent 100 queries, each of which is a [pai) differently
when it is aCtua”yBW(u U) < b. HP-TREE-CENTRAL chosen fromk = 2 ~ 90 nodes and = 15 ~ 75 Mbps
and HP-TREE-DECENTRAL show higher accuracy than HP-o0 rounds are executed as 100 different frameworks are
EUCL-CENTRAL. This is because a tree metric space prgpnstructed with different random seeds,,; is set to 10
dicts bandwidth more accurately than a 2-d Euclidean metfigdes. RR (Return Rate) means the ratio of the number of
space. Fig. IV-A shows CDF of relative errors of bandiund clusters to the number of submitted queries. As shown
width prediction of two metric sPaces A relative error of gn Fig. IV-B, as a query gets more difficult with larger RR
pair of nodes(p, ¢) is defined by Z" 2.4 BWT 9l where gets smaller for both centralized and decentralized dlingte
BW (p, q) is the real bandwidth ofp, ) and BWr(p,q) is  algorithms. HP-TREE-DECENTRAL show&R less than or
its predicted bandwidth. HP-TREE shows the result of owqual to HP-TREE-CENTRAL at every. This is because
decentralized bandwidth prediction framework used in HRach node only knows about the information of partial system
TREE-CENTRAL and HP-TREE-DECENTRAL. HP-EUCL in the decentralized clustering approach. If a decengdliz
shows the result of Vivaldi system about bandwidth predicti system receives a query withbigger tham,.; Xmax{nneigh}
As you can see in Fig. IV-A, pairs in HP-TREE have smallefheremax{ncign} is the maximum number of neighbors of
prediction errors than those in HP-EUCL. nodes, a cluster satisfying the size constraintan never be

You can see in Fig. IV-A that the clustering accuracy dPund. However, it is rare that a user wants to find a cluster
HP-TREE-DECENTRAL and HP-TREE-CENTRAL is quiteOf very large size. Wherk is less than 20% of the total
similar. This is because both approaches run based on the stmber of nodes in the system, the differencerift of both
bandwidth prediction framework. Since we proved the copPproaches is negligible. Moreover, as we already confirmed
rectness of the clustering algorithms used in both appesmcin the previous experiments, i is small, WPR is also
on a perfect tree metric space, the inaccuracy of clusterifigite similar in both approaches. Thus, we can claim that our
can be caused only by the underlying bandwidth predictiél¢centralized approach shows a high clustering accuragy an
framework. Also, only queries with small are submitted in @ high responsiveness compared to our centralized approach
this experiment, so that both approaches can find a clusief queries with reasonably small constraintWe executed
for every query. If a difficult query with largé is used, a the same simulations for UMD-PlanetLab except that we
decentralized clustering algorithm will be outperformadeb Uused different queries such that= 2 ~ 150 nodes and

centralized one. This will be explained in the next section. b = 30 ~ 110 Mbps. The result in Fig. IV-B shows the similar
Bend to what we found with HP-PlanetLab.

We executed the same simulations for UMD-PlanetLa
except that we used different queries such that 16 nodes
andb = 30 ~ 110 Mbps. The same notations are use
except that HP is replaced with UMD. Fig. IV-A shows that This section describes how the treeness of dataset affects t
a tree metric space works more accurately for bandwidthecuracy of our clustering algorithm. Abraham et. al defined
constrained clustering than a 2-d Euclidean metric spalse, A a parameter € [0, 00) to indicate how close a dataset is to
this difference of clustering accuracy comes from the diffeé a tree metric space [1]. Sineeis determined by each set of
embedding accuracy of bandwidth prediction frameworks &sur nodes in a dataset, we will use the average valyg
shown in Fig. IV-A. to represent the treeness of one datasgt. = 0 means the

8:. Effect of Treeness
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Fig. 3. Clustering Accuracy: Bandwidth-constrained ausig works more accurate on a tree metric space than on awliti€an space.

dataset is a perfect tree metric space, and laggeindicates that while a bandwidth prediction framework chooses a node
a bad treeness of dataset. pair (p, ¢) such that the predicted bandwidBiV;(p, q) is at

There are many factors that can afféttPR. System size leastb, the real bandwidttBW (p, q) is actually less thai.
N, bandwidth distribution, and,,, are the characteristics of Itis clear thatiV PR increases ag, increases because there
dataset that can affe¢t’ PR. Query constraintg andb are are fewer choices of node pairs with bandwidth bigger than or
also important factors. To focus on the effectaf,, here equal tob. We can also expect that large,, leads to large
we will fix N and k. Since it is not easy to have multiplelV PR because the bandwidth prediction framework will result
datasets that have the same bandwidth distribution, weelefin high errors of bandwidth embedding for imperfect tree-met
two other variablesf, and f, by combining two factors of ric space. Let’s transform,,, € [0, o) to a bounded variable
bandwidth distribution and. f; is the fraction of node pairs €}, € [0, 1] for later usage by defining;,, = 1 — ﬁ
with bandwidth less tham. f, is the fraction of node pairs Large f, means that there are many node pairs ardyrahd
with bandwidth around, in the range ofb — 10,5+ 10]. In it will increase the effect ot,,,. Accordingly, if there are
other words,f, is CDF value ab, and f, indicates how steep two datasets with the samg,, values but different,, then
the slope of CDF ab is. the dataset with largef, will get higherW PR. By defining

We will see howe oy, f3, andy, affecti PR. Let's assume fa = (@ = &) % fa + 5 with a constantx > 1, we can
that the bandwidth prediction error of a node pair, caused gfnsforlm fa € 10,1] to a variable with a different bound
a bandwidth prediction framework, does not affect errors é © o+ @] We can multiplye;,, by f7 to strengthen or
other pairs. ThefV PR should be close to the probability thatVeaken the effect af;,, by a times. Such an adjusted variable
a bandwidth prediction framework chooses a wrong node pif treeness is defined by by, = ., x f;. And we can
for a given query to find a single pair with bandwidth biggepoundffvg € [0,1] by settingef,, =1 for e}, x f5 > 1.
than or equal tab. In other words,W PR is the probability = Now let’'s consider a more concrete mathematical model of
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WPRwith f, andeZ,. For f, € [0,1], WPR = 0 whenf, = S averags ——
0, andWPR =1 when f, = 1. Fore#,, € [0,1], WPR =0

whene?,, = 0 because the bandwidth prediction framework 4
will predict perfectly the bandwidth of pairs arouhdWhen
efvg = 1, we expectW PR = f;,. If a dataset is infinitely
far from a tree metric space, the prediction framework will
be totally confused about how to predict pairwise bandwidth 2 /
Accordingly, when the predicion framework tries to choose

a node pair with the bandwidth at leastit will be likely 1
to choose a random pair. Assuming that a uniformly random

pair is chosenV PR should be the same g%5. Considering 5 50 00 150 200 250 300
these relations betweelV PR, f;, and<# _, we can define System Size (n)

avg?
the following model.

Cost (# Routing Hops)

Fig. 6. Scalable Query Routing Cost: The number of queryimgubhops

1/e# increases in a scalable way.

WPR = f0/e) _ (075000710 )

We did a simulation to see how effective Equation 1 is. By

choosing subsets from HP-PlanetLab, we created six datasgtpR-f, curves in Fig. IV-C do not show any effect Of g,

of 100 nodes with different treeness. For each subset, We could see the effect of treeness(Il¥ PR)7« - f, curves in
constructed a bandwidth prediciton framework and sent 208gy. |v-C.

gueries such that = 5 nodes and = 5 ~ 300 Mbps. And

we ran 10 rounds by constructing 10 different frameworks

with different random seeds. Fig. IV-C and Fig. IV-C shovwy Scalability

some curves for each dataset, and the number that is included

in a legend represents,,, of each dataset. And the general The |ast experiment is about how the number of query
Shape of all the curves is quite similar to what we eXpeCted Ilau“ng hops increases as the System sizdoes. We created
Equation 1, wheréV PR increases ag;, does following the 10 different datasets with the sameby choosing a random
shape ofW PR = f; with a constant > 1. However, when sypset from UMD-PlanetLab. Total 70 datasets are created fo
we plotted the relation betwegfp andW PR in Fig. IV-C, any , — 50 ~ 300 nodes. For each dataset, we constructed a
effect ofe.,, was not seen. By computing with « = 3.2and  pandwidth prediction framework and sent 1000 queries such
normalizingW’ PR to (W PR)/«, we could see that a datasethat 1 — 0.05n ~ 0.30n and b = 30 ~ 110 Mbps. 10

with large .y, has a large normalize® PR in Fig. IV-C.  rgunds are executed as 10 different frameworks are construc

Since(WPR)/a = flfl/‘?;vg), the effect ofe,,, could appear with different random seeds. Then we computed the average
in Fig. IV-C. The dataset of large.., is plotted above that number of query routing hops for each system sizeAs
of smalle,yg. shown in Fig. 6, the average hop count is quite small, which

We did exactly the same experiment for UMD-PlanetLalis around two or three hops. Also, it increases slowlynas
and the result is shown in Fig. IV-C and Fig. IV-C. Whileincreases, shaping a concave curve.
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with WPR normalized byfy.

V. RELATED WORK and succeeded in accurately predicting pairwise bandwidth

There exist several systems that predict end-to-end nktwor k-CIlque_ 'S a WeII_-known problgm aWP-_compIeteand
performance without performing-to-n measurements. By Is about flndln_g a f:llqu.e of sizé in an undirected graph
using the data accurately predicted by such systems, ewh(_are a cllque_ G is a cpmplete subgraph CG Our
can expect to find a cluster quickly without spending an a_ndW|_oIth-constra|ned clustering problem is equwalenlt_-t
delay performing extensive measurements. GNP [18], PIC [§I|que in the real World because we can create an undirected
and Vivaldi [7] successfully embed end-to-end latency in faph with V' by adding an edggu, v) for nodesu and v
an almost Euclidean space. However, those systems are Tt thatBW (u, v) > b where BW (u,v) is the average of
good for bandwidth prediction, accordingly an attempt torward and reverse ba}ndW|dth betweeranq v Therg are
embed bandwidth measurements using Vivaldi results in pogﬁveral rgsearches to_ find a setiohodes with a maximum
accuracy [21] when the linear transform functidfu,v) = |arr;?)ter ina 2-d Euclidean space. Aggarwal et._ al [2] predid
C — BW(u,v) is used to represent bandwidth as a metri(,o.(k ' mogk g néogn)Qalgorlthm and Eppstem et. al [g]
Even though we found that Euclidean space could show mu roved it tOQ(k nlog”k +nlogn). In spite of the b.eauty_
higher accuracy with our rational transform functié, v) — of these Ialgorlthms, we could not successfully use it to find
%, it is still not so much accurate as tree metric spa bémdl\_/gdth-constramed clusl,lterl b?cagse banWIdth dr;i??tas no
as shown in Sec. IV. Based on the finding of the treenels —uclidean space very well. instead, we emgr@(_ )
of bandwidth as described in Sec. Il, Sequoia [21] constru@ gonthm to §0Ive the clusterlng problem m_atree Metrecep
an edge-weighted tree to embed bandwidth measurementS\ﬁl{PI‘ij applied it to our decentralized clustering approach.
low embedding errors. Our prior works [25], [26] decentrad There have been several research efforts about resource
Sequoia by removing a single fixed measurement bottlenegdkstering. Liu et. al [16] introduce a hierarchical cluste



structure and propose an approximate algorithm to answesults with a newly collected dataset confirm high accuracy
queries for resource clustering. The similarity to our aggh and scalability, and show the tradeoff of decentralizatod
is that they support a query with two constraints: the sizhe effect of treeness.
and network distance of cluster. However, they only conside We are currently extending this work in several ways. First,
latency-constrained clustering, and it is not feasibleiteally we are working on a different type of node search algorithm.
apply their approach to our problem. Their system constractFor a given set of multiple nodes, we are investigating ap-
centralized hierarchical structure, and communicatioesiso proaches to find a single node that has high bandwidth with
centralized, so that each node must start measurementtfimmadll the nodes in the input set. Second, we intend to use our
root node of the hierarchical structure. Shen et. al [243@né system as the underlying technology for resource discavery
a hierarchical cycloid overlay (HCO) architecture for liiga a P2P desktop grid [11], [10], [12], [14]. Finally, we will @s
preserving clustering. HCO is used to discover wide-ar@&h gour clustering approach to find a latency-constrained efust
resources with multiple attributes such as CPU and memo8jnce latency can also be successfully embedded into a tree
The difference between HCO and our approach is that HG@etric space [21], we expect that our decentralized clingter
only considers latency-constrained clustering, doesuqgpert approach can be directly applied to find a cluster under a
a distance constraint for queries, and relies on a fixed $afency constraint.
of landmark nodes to form clusters. Beaumont et. al [3]
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