File System Support for Collaboration in the Wide Area

Vasile Gaburici, Pete Keleher, and Bobby Bhattacharjee
Department of Computer Science
University of Maryland
College Park, MD 20742
{gaburici,keleher,bobby } @cs.umd.edu

Abstract

We describe the design, implementation, and performance
of MFS, a new file system designed to support efficient wide-
area collaboration. MFS is structured around the twin ab-
stractions of lightweight sessions and snapshots, along with
a highly configurable capability-based security architecture.
Sessions simplify and clarify collaborative semantics. Snap-
shots allow atomic access to arbitrary collections of files, and
allow sharing to be defined in a simple and expressive fash-
ion.

MFS’s security architecture is a layered system that al-
lows diverse usage scenarios. Pure capability-based access
allows clients to access data without needing expensive pub-
lic key or authentication servers, or complicated administra-
tion. However, MFS’s capabilities can also be watermarked,
allowing a range of services to be added on a per-mount ba-
sis, up to and including traditional user authentication based
on passwords or public keys.

Basing the system around the use of immutable snapshots
enables the underlying system to use several performance op-
timizations aggressively. Performance results from our MFS
prototype show that, far from adding overhead, the use of
snapshots allows the system to perform comparably to NFS
in the local-area case and significantly outperform existing
systems in wide-area environments.

1 Introduction

This paper describes the design and implementation of
MFS, a new file system intended to support small, dynamic,
collaborating groups in the wide-area. MFS differs from
previous systems in its support for both transparent and
non-transparent replication, and the expressiveness of its
capability-based security architecture. In the rest of this sec-
tion we argue that all three characteristics are necessary to ef-
ficiently support wide-area collaboration, and make the claim
that neither existing file systems nor applications are suffi-
cient.

Replication in data management systems is usually moti-
vated by the need for either high performance or availabil-
ity [17]. Such replication is transparent in that the view of
data seen by users and applications preserves single-copy se-
mantics. However, allowing users to temporarily see diverg-

ing replicas is desirable in some cases, even when all clients
are fully connected.

For example, consider CVS [5] and similar version con-
trol systems. The most important innovation that CVS pio-
neered is the unreserved checkout feature. This feature al-
lows developers to work in parallel on potentially diverging
replicas (working copies) of multiple files containing mu-
tual dependencies. However, developers must be aware of
changes committed by others, and merge those changes into
their working copies before committing their own changes.
As a simple example, a source file and its header might need
to agree on the prototype of a function defined therein, or
other clients will not be able to compile the program’s source.
A change to the function’s parameter list must be reflected in
both the function’s definition in the source file, and in the
prototype definition in the header. The changes to both must
be made visible together in a single atomic action, much like
transactional semantics.

A generalization of this type of collaboration is often
termed either asynchronous or autonomous collaboration
(see Edwards et al. [9] for a discussion), where participants
temporarily work independently before combining their ef-
forts. Asynchronous collaboration is characterized by the
need for users to explicitly authorize files being merged, or
made visible to others. In other words, such systems re-
quire replication to be non-transparent. By implication, a file
system intended to support collaboration must support both
transparent and non-transparent replication, and in the latter
case mutual dependencies between files must be preserved.

A related issue is that of naming: clients can only share
collections of files if there is some way to specify exactly
which files, and versions, are being shared.

Sessions and Snapshots MFS is structured around
lightweight sessions and snapshots, both of which are
mountable entities. A session is similar to a mounted
directory in a traditional file system, providing readable and
writable files and directories. A snapshot is an immutable
view of a session at a single instant in time. Snapshots are
extremely lightweight, having only constant time and space
requirements. New sessions, in turn, are created by writing
to mounted snapshots.

MFS supports the usual transparent replication through
shared sessions, sessions explicitly joined by multiple users.
All clients joining a shared session see each other’s updates

audit write
trails quotas

fine-grained | public key
revocation 1 auth.

extension layer

capability verification
capability layer

named versions
tag namespace

implicit versions
covering paths

file store
base MFS

Figure 1: MFS Architecture: the components in solid rectangles
have been implemented and are described in this paper.

in best-effort manner, similarly to traditional file systems.
Sessions can continue indefinitely, as they survive machine
reboots and have no monotonically growing state other than
file updates. Joining a shared session, then, is conceptually
quite similar to mounting a directory in a traditional file sys-
tem. Permanently mounting a session merely requires spec-
ification of a server name, a session ID, and an appropriate
capability.

MFS supports non-transparent replication through the im-
plicit forks potentially resulting from writes to mounted
snapshots. Writing to a mounted snapshot generates a new
session because snapshots themselves are immutable. File
and directory modifications made in one session are invisible
in other sessions, so two clients mounting and writing to the
same snapshot implicitly create a fork.

Sessions and snapshots can be combined through explicit
merge procedures. While MFS can automatically merge en-
tities that differ only in non-conflicting directory operations,
more generalized merging must be controlled by the applica-
tion layer. This is appropriate, as the semantics of file con-
tents differ according to the application, and no application-
independent merger can handle all cases.

Security MFS’s security architecture consists of two layers:
a capability layer, in which the basic access control function-
ality is defined, and an extension layer, which allows a vari-
ety of additional services and policies to be defined on a per-
mount basis. As a result, MFS can be configured to imple-
ment a variety of very different security policies. These poli-
cies can range from pure capability-based access, which al-
lows clients to access data without needing expensive public
key or authentication servers, to identity-based approaches
that rely on password or public-key authentication.

User-based access control is particularly awkward in
wide-area environments when multiple administrative do-
mains are involved. The problem is that clients must be
mapped to credentials accepted at the server, which entails
slow and cumbersome out-of-band communication. The
common practice of mapping remote users to existing local
user classes also poses the threat of implicit rights amplifi-
cation, where users requiring only limited rights are given
stronger rights than necessary.

MFS’s capability layer grants access purely on the basis of
capabilities: access is granted to any client that can provide

the proper capability. As such, an MFS capability consists of
a session or snapshot ID and a hash of a corresponding secret,
without any specification of valid users, or indeed anything
to authenticate the intended user of a capability.

This minimalist approach has two primary advantages.
First, access to sessions and snapshots can be granted to a
new client simply by securely transferring an appropriate ca-
pability, without involving any authentication server, or even
the server that hosts the session or snapshot. The client is
never authenticated, and does not need an account on the
server. Second, clients can locally derive new capabilities
with reduced rights (e.g., access to a restricted set of files
in the snapshot), allowing access rights to be granted at ex-
actly the desired level. The ability to share files and direc-
tories without requiring clients to be authenticated, or have
accounts at the server, makes sharing quite flexible and effi-
cient.

The protections provided by the base capability layer are
augmented by a variety of services in the extension layer.
These services work by using watermarked capabilities. Wa-
termarking adds an indelible tag to a capability. Services
such as auditing, quota-checking, and fine-grained revoca-
tion can be added by tracking such tags. Further, the capabil-
ity layer could be augmented with a translation layer that can
implement traditional authentication services that use pass-
words or public keys.

MFS’s security architecture is described in more detail in
Gaburici et al. [12].

Why Not CVS? Application-layer tools, such as CVS [5],
Subversion [3], and ClearCase [7], address both the non-
transparent replication and naming problems by allowing
users to specify versioned sets of files. MFS may be thought
of as an exercise in understanding the issues involved in mov-
ing these abstractions into the operating system. There are
several reasons why moving this functionality into the oper-
ating system might be appropriate.

The first is performance. Integrating the versioning into
the file system allows several low-level performance opti-
mizations, including fast caching in the kernel, prefetching,
and “trickle” writebacks rather than a single large write at
commit time. Since the sharing is visible to the underlying
file system, the system can pipeline, aggregate, and some-
times eliminate updates when it detects that a session is not
shared (i.e., single-writer semantics). Section 6 discusses
performance in some detail.

The second issue is that of convenience, i.e., the same
reason that local area file systems are preferred over using
ftp to emulate shared access. Integrating the versioning
and replication support into the file system allows explicit
check-ins to be avoided because all files are versioned. Re-
lationships between files need not be specified until after the
fact, as a single snapshot can cover any set of files, not just
those that were entered together in the same initial check-in.
Automating the versioning removes one source of user error.
Moving the versioning functionality into the file system al-
lows it to be used transparently by any application that can
read or write files.

The last major issue is that of access control. MFS has
an integrated security architecture that grants access to any

client presenting a session or snapshot ID and an appropriate
capability. The client does not have to establish an account on
the server, and inter-administrative domain agreements need
not be negotiated. By contrast, a user must have an account
at a CVS server before checking out files from a repository.
Authentication mechanisms could be duplicated at the appli-
cation level, but would not be integrated into the operating
system mechanisms, possibly exposing confidential data.

MFS does not implement the full functionality of CVS,
much less that of ClearCase or Subversion. Supporting ver-
sioning abstractions in the file system does not eliminate the
need for such applications, but it potentially makes their im-
plementation much simpler. A variety of “thin” CVS-like
applications can be built on top of MFS far more easily and
efficiently than equivalent applications on conventional file
systems.

1.1 Road Map

Figure 1 shows the principal layers of the MFS design. An
MFS server exports sessions and lightweight snapshots, and
implements a versioning file store (Section 2). Since snap-
shots are immutable, they cannot be overwritten or obscured.
File modifications are written to new versions that only be-
come visible to other clients when they are included in new
snapshots.

Section 2 describes the base consistency-related abstrac-
tions, and Section 3 describes the tag namespace and cov-
ering path abstractions, which allow convenient naming and
searching for session and snapshot IDs. Above this is the
base security layer, which is not discussed further in this pa-
per. Section 4 gives a brief overview of the use of our sys-
tem, Section 5 describes the current prototype, and the results
in Section 6 show that MFS generally performs significantly
better than the alternatives. Finally, we discuss related work
in Section 7, and summarize our work in Section 8.

2 Sessions and Snapshots

This section describes MFS’s central consistency-related
abstractions. A session [40] is conceptually a materialization
of the complete execution of a log of file system update op-
erations performed to a to an initial immutable state. These
actions include file and directory creates, deletes, and writes.
Each session has a unique identifier, and can be mounted by
specifying it directly.

An anonymous snapshot, defined by a session ID and a
timestamp, is an immutable materialization of the execution
of log entries up to and including the time specified by a
timestamp. Such a snapshot is completely defined by a ses-
sion ID/timestamp in the context of a single server. All times-
tamps are monotonically increasing server clock times, but
direct use of anonymous snapshots is seldom necessary. Thus
clock synchronization is generally not important in MFS and
will not be discussed further.

A named snapshot has an identifier, and possibly other at-
tributes. Named snapshots are created by users, usually spec-
ify the current time, and can be mounted via the identifier. A
primordial snapshot is a named snapshot that gives access to

the “empty” file system state, a file system containing only
the empty root directory. The primordial snapshot identifier
is chosen by the administrator at server file store initialization
time.

An aggregate view is a tree-structured specification that
defines a set of session and snapshot mounts, together with
their relative mount points in the local file system. Aggregate
views can be used to automatically perform multiple mounts,
possibly from different servers. Views can be used similarly
to the Unix /etc/fstab, except that paths are relative.
The view can therefore can be mounted anywhere, includ-
ing on clients other than the one on which it was created.
Furthermore, views can encapsulate capabilities.

Named snapshots automatically provide a root restriction
feature similar to Unix chroot jails. When a snapshot is
taken, the snapshot’s directory is recorded as the snapshot’s
root. On subsequent mounts of the snapshot, that directory is
used as root directory for the mount point. Sessions derived
from a rooted snapshot inherit the snapshot’s root.

2.1 Shared Sessions

By default, two clients writing to the same base snapshot
create distinct sessions; writes made in one session are not
visible in the other. This non-transparent replication is very
different than traditional file system semantics, but is the ba-
sis for autonomous collaboration using MFS. Clients possess-
ing the correct credentials can join existing sessions, creating
shared sessions, which are much closer to traditional seman-
tics. Shared sessions attempt to provide transparent replica-
tion to all session participants, but the session as a whole is
still isolated from other sessions.

Consistency Shared sessions can be created in two consis-
tency modes. The default “best-effort” mode is similar to
existing file systems: updates (or invalidates) for modified
files are propagated quickly to other session participants, but
near-simultaneous updates by multiple clients could result in
some updates being lost.

A shared session in “fork” mode differs from the above
in that when the server detects unordered updates (a write
arrives from a client whose cache was not up to date), the
out-of-date client’s view of the session is forked off of the
shared session.

This raises the question of how to notify clients/users that
a fork has occurred. The file system could either raise some
sort of user-visible exception (as in Ficus or Coda), or rely on
the user to notice through polling. Our prototype currently
takes the latter approach.

Update Propagation Shared sessions also come in two fla-
vors with respect to how aggressively updates/invalidates are
propagated to session participants.

Synchronous shared sessions are intended to support
closely-collaborating users. For example, two users collabo-
rating on a new program release might sit at adjoining termi-
nals, verbally ensuring they never work on the same file con-
currently. They might both expect to see modifications made
by the other immediately, or at least once a file is closed.

In a synchronous shared sessions, updates (or invalidates)
generated at one client are synchronously pushed to the
server, which pushes them to all other clients in a best-effort
fashion.

Asynchronous sessions are intended for single users who
keep a single session open on multiple machines, moving
from one machine to another without ever closing or re-
mounting the session explicitly. Movement from one ma-
chine to another is assumed to be slow relative to network
speeds, and therefore updates are no longer propagated syn-
chronously. Instead, the MFS client can take advantage of
several techniques, such as aggregation, available to lazy up-
daters.

Consistency While local file systems can make strong con-
sistency guarantees for local clients, systems like NFS [6]
provide only best-effort consistency across networks, rely-
ing on file locking when needed. Wide-area file systems like
Coda and Ficus provide “close-to-open” semantics, which
insures that all updates made by a client to a single file be-
tween an open and close are seen atomically by the rest of
the clients sharing the file.

We argue that neither of these approaches is appropriate
for MFS because MFS needs to support consistency between
files. In other words, consistency needs to be defined across
all files covered by a session or snapshot, rather than just a
single file.

The analogue to a database’s transaction in MFS is a non-
shared session, so we define consistency with respect to such
sessions. Together with a simple merging algorithm, sessions
can be seen to provide a well-studied database consistency
property called snapshot isolation [4, 10].

2.2 Snapshot Merging

We discuss two ways of merging multiple snapshots: join-
ing and aggregation. The former results in another snapshot,
the latter in an aggregate view.

Recall that a snapshot is specific to a single directory clo-
sure (the directory and its subdirectories) on a remote server.
Hence, two snapshots must pertain to the same remote direc-
tory to be joined into a single new snapshot. The desired se-
mantics are clear when there are no conflicts: the most recent
version of each file under the snapshots’ directory should be
chosen. Conflicting modifications to the same file are more
properly resolved at the application or user level. However,
determining whether there is a conflict is not always trivial.

Let S; and S; be the snapshots to be merged, and S}, be
the first common ancestor. In Figure 2, for example, the first
common ancestor of Sy and S5 is Sy. We say that S; and S
conflict if there is any file whose versions in both .S; and S
differ from the version in Sj, where the notion of “differs”
includes deletion, as well as creation of distinct files with the
same name.

If S; and S; have no conflicts, a new joined snapshot,
Sjoin, can be defined as follows. Let S}, initially be de-
fined as the set of file versions from S;. For each distinct
file, replace it with the most recent modification described in
either S; or S; (where modification includes deletion). Fi-
nally, add each new file described in either S; or S;.

We have written a short Perl script to perform this merg-
ing operation. The Perl script is able to determine the last
common ancestor of two snapshots by querying a command-
line tool called “mfs”. The new snapshot is created without
copying any files over the network. The script makes use of a
copy primitive that allows a file to be copied from a snapshot
to a session on the same server without network communica-
tion.

Building a joined snapshot in this manner is correct, but
requires time proportional to the number of files covered by
the snapshots. A more efficient approach can be based on
marking entries in snapshot logs. The basic idea is to modify
the lookup procedure of files covered by such a snapshot to
pursue both paths of the fork in the snapshot ancestry (see
Section 5).

Snapshot joins result in another snapshot. By contrast, an
aggregate view consists of a document containing a set of
snapshot identifiers, each with an offset into the aggregate
mount. The offset specifies the name of a local directory un-
der which the associated snapshot should be mounted. The
local directory specified in the offset is relative to the mount
point of the aggregate view. For example, consider the fol-
lowing aggregate view:

{snapshot-ID: 1, offset: ""}
{snapshot-ID: 2, offset: "backup"}

Mounting this aggregate at /mnt/mfs is equivalent to
mounting S7 at /mnt/mfs and Sy at /mnt /mfs/backup.
Any two snapshots can be aggregated, whether from the same
or distinct servers. Aggregate views are therefore an ex-
tremely useful tool for saving, restoring, and sharing client
views.

3 Naming and Searching

One consequence of structuring file system semantics
around snapshots is that updates to individual files and direc-
tories are not necessarily serialized. A snapshot is only or-
dered with respect to the snapshot on which it is based, and
with respect to snapshots based upon it. Hence, snapshots
are only partially ordered, and there is no semantics-based
method of determining the “last” snapshot to modify a given
file or directory.

For example, snapshots S7 and S5 in Figure 2 are both
ordered with respect to Sy, but not each other. The relation-
ships among snapshots (hosted at a single server) can be rep-
resented as a DAG with snapshots as vertices, and directed ar-
rows from “parent” snapshots to each of the snapshots based
on them (Figure 2). Each snapshot has a single parent and an
arbitrary number of children.

As a result, naming of snapshots becomes an issue.
Snapshot IDs (even with optional comments) are relatively
opaque; they do not provide either ordering information, or
detailed information about which files are named by snap-
shots.

3.1 The Tag Namespace

MFS provides two ways to map file and directory names

/
)

s @\

&)

Figure 2: Snapshot relationships

back to appropriate snapshot IDs. The first method is via the
tag namespace. The tag namespace maps arbitrary names
to snapshot identifiers. Including a tag on a snapshot com-
mand allows clients to “publish” snapshot IDs under that tag.
For example, snapshots of nightly builds of the Linux ker-
nel might be published as “linux nightly”. Clients can mount
the last nightly build by providing the tag to the mount com-
mand.

We have taken the minimalist approach of designing a lin-
early versioned tag namespace, though more sophisticated
organizations are also possible. However, the minimalist ap-
proach is powerful enough to implement a lightweight CVS-
equivalent application on top of MFS, and to implement snap-
shot isolation.

Snapshot tags are publicly readable, but the overwriting
of tags is controlled by checking tag capabilities. When tags
are instantiated, both a snapshot ID and a tag capability must
be provided. The instantiation succeeds unless the tag al-
ready exists. Presentation of the tag capability is required for
later modifications of the tag’s mapping. The orthogonality
of naming and access rights means that the ability to name
a snapshot does not imply permission to read the files. Ca-
pabilities for the named files must be acquired through some
other method.

Though the discussion above has concentrated on snap-
shots, session IDs can also be stored in the tag namespace.

3.2 Snapshot Naming and Covering Paths

The second approach to identifying relevant snapshot
IDs is the covering path search, which returns the last
snapshot whose directory is a prefix of the search pa-
rameter. In this case, “last” means the snapshot that ar-
rived at the server last. For example, suppose Alice
mounts a snapshot over local directory /home/alice, and
later creates a snapshot of the local directory hierarchy
/home/alice/work/paper. The covering path for this
new snapshot is /work/paper. The server could return
this new snapshot as a covering-path result on a search
for /work/paper, or /work/paper/fast05, but not for
/work.

Our prototype currently limits the covering path method
to searching for the last snapshot committed at the server, but
this approach can be trivially generalized to searching for the
last snapshot before a specific time, or searching for arbitrary
characteristics of the snapshot. This method is convenient in
that it requires no action from the user to create the naming

association. By definition, however, the result is not defined
under concurrent updates, and our current experience is that
it is little used.

4 Using MFS

This section gives a variety of usage scenarios, and de-
scribes how MFS commands can be used to handle them.
For purposes of this section, a capability is merely a short
file containing identifiers (including server identifiers) and
secrets that provide access to snapshot and/or sessions.

Producer-Consumer The canonical producer-consumer
sharing pattern is realized in MFS by having the producer
create a non-shared session, write new data, take a snapshot,
and pass the snapshot and associated capability to the con-
sumer. We have combined these four discrete steps into a
shell script, allowing this sequence to be realized as follows:

> mfs-mount -snap 4382 /ml
<write filess>
> mfs-capa /ml "item.capa"

The first line mounts snapshot 4832 over local directory /m1.
Files under /m1 are then read and written through normal file
operations, and then mfs-capa takes a new snapshot, and
creates a capability providing access to the snapshot in the
local file “item.capa”. The producer would then mail or pass
by other means the capability to the consumer. The consumer
mounts the resulting data at /mnt/item as follows:

> mfs-mount -capa "item.capa" /mnt/item

Migrating User A user might wish to mount her home di-
rectory on each of several different machines (home, work,
laptops, etc.). Since the user will presumably only be using
a single machine at a time, she can create an asynchronous
shared session on one machine and connect to it from the
other machines as follows:

> mfs-mount -tag "a tag" /ml
> mfs-capa -sess /ml "home"

The first line mounts an initial snapshot described by tag “a
tag” at /m1 in the local file system. The “mfs-capa” call cre-
ates a new shared session from the snapshot mounted at /m1
if it does not already exist, creates a capability granting ac-
cess to the session, and stores it in a local file called “home.”
On each of her other machines, she does the following:

> mfs-mount -capa -async "home" /ml

and the resulting session is mounted at /m1 on all other ma-
chines, persisting until explicitly canceled. Once the session
has been attached to in the asynchronous mode, all subse-
quent attachment attempts will fail unless they are also asyn-
chronous.

Close Collaborators Close collaborators establish their
sharing session as above, with a “-sync” flag instead of “-
async”.

Release Testing Consider an open-source software project
where any member can mount and modify source, but only a
single trusted user can “check in” new, presumably verified
source. The software project will use two versioned tags:
“test” and “release”. A developer checks code out by merely
by mounting the snapshot shown in the current release ver-
sion:

> mfs-mount -tag "release" /ml

The developer makes local changes on the code in /m1, and
uploads a new version to be validated for possible inclusion
in a release by taking a snapshot of the changes and posting
the snapshot ID:

> mfs-snap -tag "test" /ml

The gatekeeper periodically peruses all submitted code by
checking all snapshots written to the “test” tag since the last
check, chooses some modifications to include in the next re-
lease, and does the following:

> mfs-mount -tag "release" /ml
<apply selected changess>
> mfs-snap -tag "release" /ml

This only works if write access to “release” is protected by
a write capability held only by the gatekeeper, and “test” is
not protected by a write tag at all. Tags are versioned, with
each new version being assigned a monotonically increasing
integer. The current version of a tag is retrieved by:

> mfs-tag -top <tag name>
The value of a specific version a tag is retrieved as follows:
> mfs-tag [-version n] <tag name>

where n is the requested version of the tag. The query de-
faults to the current version if the version argument is not
supplied.

5 MFS Prototype

Figure 3 shows the structure of our prototype. The proto-
type is approximately 27,000 lines of C, and includes all of
the functionality discussed in this paper. The prototype con-
sists of two multi-threaded user-level daemons, one running
on the server, and one running on the client. The MFS server
daemon serves data from the underlying file system (ext3 in
this case). Data is relayed via XDR [38] to the client machine
through the MFS client daemon, which talks to the client ker-
nel by posing as an NES version 3 [6] server, similar to the
operation of the sfstoolkit [26]. Our implementation has only

been tested on GNU/Linux, but we expect that the lack of a
kernel component will simplify ports to other systems.

Locating the MFS client on the client host is not strictly
necessary, but improves performance by caching data locally.
However, much of this benefit is achievable in the wide area
by locating the MFS client “near” the client machine in net-
work latency. This approach allows the MFS client to serve
architectures and OS’s that we do not currently support.

The MFS client uses a disk-based cache to improve perfor-
mance. This cache operates in write back mode: writes are
first logged to an operational log on disk. By default, writes
are sent to the server asynchronously via periodic flushes of
log blocks. This raises the possibility of a snapshot token
being presented to a server before it has been flushed by the
client. However, users can explicitly flush the log if they
wish others to use a snapshot immediately. The log is always
flushed synchronously after each write for shared sessions.

Snapshot creation is lightweight, in that it involves little
more than appending an appropriate entry to the log. Snap-
shots are, therefore, either fully materialized at the server,
i.e., all preceding writes have already arrived at the server, or
the server does not know anything about that snapshot. This
approach ensures that snapshots appear atomic and consis-
tent to clients.

MFS uses the rsync library [41] to create delta encod-
ings of new versions of files that are to be written back to
the server. These delta encodings only include new data,
and hence are often smaller than a file’s size. We currently
only perform delta encodings against previous versions of
the same file, but more sophisticated approaches are possi-
ble (e.g., LBFS [29]).

The MFS server consists of a small set of tables (one each
for snapshots, open sessions, mount points, etc.) and a set of
logs, one for each file and directory.

A read operation on a file mounted from a snapshot may
be thought of as a search for a query consisting of the file’s
inode, the server time when the snapshot was taken, and the
snapshot’s ID. The inode identifies the per-file log, which
contains a record of all modifications to the file sorted by
server time. We use a binary search to get close to the last rel-
evant record, followed by a linear search backward until we
find the last version created before the target time in an ac-
ceptable context. An acceptable context is either the query’s
snapshot, or one if its ancestors. The number of entries that
have to be scanned linearly is likely to be small, assuming
that the number of concurrent writes to the same file inode
on different snapshots is small.

We do not currently garbage-collect server logs, but the
mechanisms for doing so are straightforward because the
primitive snapshot mechanism only names state on a single
server. Defining appropriate policies, however, is more diffi-
cult [36].

6 Performance

We designed MFS to provide both new functionality and
better performance than existing systems in the wide area.
These two goals conceivably conflict, but we provide both
micro-benchmarks and application benchmarks to show that

Server Host

\ 3. MFS read request (ﬁ
—

MFS

Client Host
-
User app. MFS
(e.g., emacs) Client
° [o 3 ®
3 £]
- | . - . §| _space
2 @ 2] @
o 2 S 3 o
H] 2 3 <] »
- ot 2 3 Z
o H : .
- - L o
L kernel ™

6. MFS read response
-———

4. ext3 read request
5. ext3 response

Figure 3: System structure, and anatomy of a read miss

the new features do not come at a significant cost. On the
contrary, MFS performs quite well compared to a representa-
tive local-area file system, NFS version 3 running on top of
TCP, and a representative wide-area file system, Coda.

We used Coda 6.0.8, configured with a 90MB file for
RVM data, a 22MB file for the RVM log, and 256,000 in-
odes. We present results for Coda’s client operating in each
of the strongly connected (Coda-sc) and write-disconnected
(Coda-wd) modes. The latter mode disables all writebacks
until connectivity improves. Coda uses UDP for its traffic,
and does not offer a TCP option.

File systems differ on whether they require the server to
wait until a write has reached stable storage before return-
ing an acknowledgment. Waiting is the default for most file
systems, but we test MFS and NFS variants with both ap-
proaches. System names with a “-a” suffix refers to the asyn-
chronous approach, where the server responds immediately
rather than waiting on stable storage. A “-nd” suffix signifies
that delta encoding of writebacks has been turned off. Delta
encoding is generally a disadvantage in the local area due to
CPU overhead, but can be beneficial when communication
costs increase.

We conducted all our experiments on a pair of identi-
cal machines, each with two Athlon MP 1.66GHz proces-
sors, 1GB of RAM, a 7200RPM disk, and running the 2.6.10
Linux kernel. The disk transfer rate as measured by hdparm
peaks at 46MB/second on these drives.

The machines were connected by a 100Mb Ethernet
switch. We used the Linux traffic control tool tc to simu-
late ADSL-like bandwidth (768 Kb downstream and 128 Kb
upstream), and wide-area latencies (100 msec round trip, but
with the full 100 Mb bandwidth).

Finally, MFS can use TLS to provide message integrity
and encryption, though neither is needed for correct opera-
tion. However, we disabled both for message payloads, using
TLS only to establish a shared key used to encrypt capability
secrets.

We ran an extensive set of LAN micro-benchmarks to
determine the overhead of the MFS abstractions. Although
space limitations do not let us present the results here, our
results indicate that the overhead of the abstractions is min-
imal. The primary overhead is due to MFS’s current imple-
mentation as a user-level server.

We also conducted a series of application-level bench-

marks designed to capture typical workloads of software de-
velopment. The test sequence is loosely inspired by the An-
drew benchmark, but we test some aspects not covered in
that suite. All numbers represent file systems in their syn-
chronous modes, i.e., writes are committed to stable storage
before acknowledgments are sent.

The sequence is centered around a hypothetical user who
downloads and builds the source to a program (MFS in this
case). The user first extracts source from a gzip-compressed
tar file (Table 1), and then builds the binary, taking advan-
tage of the cached sources (Table 2). A patch derived from
an actual CVS commit is then applied against the sources
(Table 3), and the binary is re-built (Table 4). Finally, we
perform a full build with cold caches (Table 5). A table entry
of a dash (“-”) means that the column is not applicable for
that system.

The four systems we discuss are MFS, both versions of
Coda, and NFS. All four are configured to commit writes to
stable storage before returning acknowledgments to clients.
For each of the three environments (“LAN”, “ADSL”, and
“WAN), we show both the user-observable time (“user”), and
the time required to flush the data back to the server (“flush”).
We have split the synchronous and asynchronous compo-
nents of system overhead to gain a better understanding of
system performance. However, the two may overlap consid-
erably in real situations.

Our first finding is that local caching is very important.
This is somewhat obvious, but we were still surprised when
the two wide-area systems, MFS and Coda-wd, performed
better than NFS even in the LAN environment. NFS sends
data directly from the server kernel to the local kernel. This
efficiency is evidently more than offset by the gains from
having a disk-based cache at the client. In the ADSL and
WAN environments, however, the differences were much
more striking: up to two orders of magnitude in some cases.

The second major finding is that MFS is much less
latency-sensitive that Coda. MFS and Coda-wd have simi-
lar user numbers for most of the tests. However, they differ
significantly in the £1ush numbers, especially in the WAN
environment. Considering all of the experiments except the
patch (which has little data to flush), MFS’s flushes always
take less that one fifteenth the time of Coda-wd’s.

Part of this gain in performance is undoubtedly due to op-
timizations that could be used in either system. For exam-

LAN ADSL WAN
‘ user ‘ flush ‘ user ‘ flush ‘ user ‘ flush
NFS 2.0 - | 66.8 - | 140.6 -
Coda-sc 2.3 - | 654 - 66.9 -
Coda-wd 0.4 1.6 04 | 74.1 0.6 | 38.0
MEFES 0.2 0.1 0.3 | 525 1.1 1.9

Table 1: untar, cold cache (seconds))

LAN ADSL WAN
[user [flush [user [flush [user [flush
NFS 12.9 - | 118.6 - | 283.6 -
Coda-sc 13.1 - 74.7 - 36.3 -
Coda-wd | 12.2 1.3 122 | 78.8 122 | 31.3
MFS 124 0.1 124 | 64.1 12.5 1.8

Table 2: Full build, warm cache (seconds)

LAN ADSL WAN
[user [flush [user [flush [user [flush
NFS 0.14 - | 10.07 - | 13.78 -
Coda-sc 0.20 - 9.40 - 3.92 -
Coda-wd | 0.04 | 0.16 0.04 | 9.45 0.04 | 3.25
MEFES 0.04 | 0.03 0.04 | 0.50 0.04 | 0.27

Table 3: Apply source patch, warm cache (seconds)

LAN ADSL WAN
\ user \ flush \ user \ flush \ user \ flush
NFS 13.0 - | 116.6 - | 292.1 -
Coda-sc 13.0 - 72.1 - 39.0 -
Coda-wd | 12.3 0.9 123 | 77.1 122 | 29.1
MFS 12.5 0.3 12.5 12.3 12.5 0.9

Table 4: Incremental build, warm cache (seconds)

ple, MFS aggressively prefetches the attributes of all files in
a directory when one is requested. Coda-wd is also fast be-
cause it does not actually re-validate any files in their cache,
at least for the examples that we have instrumented. As an-
other example, MFS clients choose inode numbers for new
files locally, rather than requesting them from the server.

However, a great deal of this performance gain is due
to optimizations directly enabled by MFS’s abstractions.
Mounting only immutable snapshots allows the protocol
to assume single-writer semantics. While other protocols
have to check for, and handle, conflicts and race conditions,
single-writer semantics allow MFS to use aggressive pipelin-
ing and selective acknowledgments. Both techniques allow
bandwidth to be used more efficiently, but are especially ef-
fective in high-latency environments.

Finally, our results do not include evaluations of the times
required for verifying or delegating credentials. Though the
MFS security architecture is extensive and admits a rich set of
functions (especially using watermarks), all of the functions
are implemented using extremely efficient HMACs. Further,
the HMACs only need to be computed once per mount (when
the client’s access to the requested snapshot is authorized).
The time required to compute the cryptographic hashes one
time is entirely negligible compared to even the latency on

LAN ADSL WAN

‘ user ‘ flush ‘ user ‘ flush ‘ user ‘ flush
NFS 13.0 - | 1295 - | 2919 -
Coda-sc 13.2 - 81.5 - 58.0 -
Coda-wd | 12.6 1.3 189 | 79.1 335 | 31.2
MES 12.5 0.1 189 | 64.3 24.6 2.1
Table 5: Full build, cold cache (seconds)
the LAN.

7 Related Work

Version-control systems Basing a file system on immutable
snapshots is similar to version control systems such as
CVS [5], subversion [3], or ClearCase [7]. The latter is
even based on snapshots, but subversion snapshots describe
the entire state of the repository, and are totally ordered.
Vesta [18] includes the ability to model the entire build en-
vironment, and to recreate any build at a future time. MFS’s
snapshots are significantly more lightweight and flexible, and
as we show in Section 6, integrating snapshots into the file
system admits several performance optimizations. Further,
the security architecture in MFS significantly reduces admin-
istrative overhead compared to these version control systems.

File Systems MFS differs from prior file systems in basing
the user experience around snapshots. Distributed file sys-
tems [20, 23, 31, 8, 35] generally try to make the distribution
transparent through caching and relaxed consistency. These
systems usually support close-to-open consistency, but make
no guarantees across files. MFS also caches aggressively, but
uses snapshots to ensure that mutual consistency is guaran-
teed at all times.

Finally, the MFS file store is similar to versioning file
systems such as Elephant [36], Cedar [14], and 3DFS [34].
Unlike in these systems, however, MFS file versions are not
strictly ordered and version histories may fork. Further, Ele-
phant does not have a concept corresponding to MFS snap-
shots, although related files can be associated together in a
way that causes the garbage collecting algorithms to treat
them as a single unit.

Felix [11] supports serializable transactions on file sets
using two-phase locking. In this respect it has database-like
features, including the possibility of aborted transactions due
to deadlocks. Felix versions files linearly.

Distributed security and authentication Security is the fo-
cus of much work in the field of mobile and distributed
file systems, from work on staging data at untrusted surro-
gates [37], to using untrusted servers [25, 21], to work using
agreement protocols to deal with Byzantine failures [1, 24].
S4 uses such a versioning subsystem to prevent data loss with
untrusted clients.[39, 13]

Most systems perform access control by first authenti-
cating users through trusted certificate authorities [27, 43,
19]. SFS [27] uses self-certifying pathnames to authenti-
cate servers, and trusted certification authorities to authen-
ticate users via public keys. Kerberos [30] is a centralized,

shared-key system that allows access by remote users only
through inter-realm authentication, where the realms must
have pre-existing reciprocity. Kaminsky [22] allows ACLs to
contain chains of indirection, periodically prefetching remote
credentials to allow faster authentication when users connect.

Many file systems have used capabilities of various sorts.
Felix [11] and Swallow [32] use randomly-generated file IDs
as capabilities. Felix also supports file sets, a means of atom-
ically committing updates to an arbitrary set of files at once,
though each file must have its own distinct capability.

Cryptographically-protected capabilities were introduced
in Amoeba’s Bullet file system [42], and were concerned
only with authorization. Rights could be delegated and nar-
rowed without contacting the server by relying on properties
of commutative hash functions.

It was later observed by Gong [15] that Amoeba’s solu-
tion lacked the ability to control the set of principals that a
capability may be given to. Gong introduced an identity-
based capability system [16] by including the user identity in
the hash calculation. Subsequent file systems using crypto-
graphic capabilities offered this feature, at least as option.

CapaFS [33] and DisCFS [28] are two recent systems
based on cryptographic capabilities. CapaFS can encrypt ac-
cess rights, and the intended recipient’s public key, within
the file name. Delegation and narrowing is achieved by ap-
pending to the name new encrypted extensions. Soft links
are used on the clients to map server files into user defined
names. This is clearly cumbersome when many files are in-
volved. In contrast, MFS does not overload file names with
capabilities. CapaFS uses RSA encryption, which imposes
an overhead of one to two orders of magnitude compared to
NFS on a 100Mbit LAN.

DisCFS uses certificate chains based on KeyNote, which
allow more elaborate graph-based inferences of delegation
when compared to CapaFS. DisCFS avoids some of the high
costs of asymmetric cryptography and the logic inference en-
gine by assuming trusted clients, and only verifying a few
operations. MFS does not make this assumption.

Capabilities in the systems discussed above are used to
protect individual files or directories. MFS has more expres-
sive capabilities, allowing both spatially and temporally re-
lated groups of files to be described by a single capability. A
major focus of research in access control has been grouping
suitable rights into named protection domains [2] (or roles),
which are in turn granted to users. MFS may be viewed as an
attempt to automatically provide such groups (albeit without
naming) by exploring the rich structure of a versioning file
system.

8 Summary

This paper has described the design, implementation, and
performance of MFS, a new file system supporting collabo-
ration in the wide area. MFS differs from prior work in its
support for both transparent and non-transparent replication,
its elevation of sessions and snapshots to first-class objects,
and its ability to support mutual dependences in sets of files
via snapshot isolation.

The second primary innovation is the use of a layered se-
curity architecture, which allows a range of policies to be
specified. The base system uses capability-based access con-
trol to allow sharing without cumbersome identity checks
and account management. Capabilities can grant access to
single snapshots, or to a range. Capabilities can be dupli-
cated, watermarked, and weakened by clients without com-
munication with the corresponding servers. “Watermarking”
adds indelible labels, allowing several optional services, in-
cluding audit trails, write quotas, and fine-grained revoca-
tion. Finally, capabilities could be managed by a translation
layer to allow more conventional user authentication, either
with passwords or public keys.

Far from imposing performance costs, these abstrac-
tions enable several performance optimizations that allow
snapshot-based systems to compete with highly optimized
commercial file systems in the local area, and outperform
other systems in the wide area.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and
R. Wattenhofer. FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In Proceed-
ings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI-02), 2002.

[2] R. W. Baldwin. Naming and grouping privileges to simplify
security management in large databases. In IEEE Symposium
on Research in Security and Privacy, pages 116—132, 1990.

[3] B. Behlendorf, C. M. Pilato, G. Stein, K. Fogel, K. Hancock,
and B. Collins-Sussman. Subversion project homepage, 2003.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ansi sql isolation levels. In SIGMOD
'95: Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, pages 1-10, New York,
NY, USA, 1995. ACM Press.

[5] B. Berliner. CVS II: Parallelizing software development. In
Proceedings of the USENIX Winter 1990 Technical Confer-
ence, pages 341-352, Berkeley, CA, 1990. USENIX Associ-
ation.

[6] B. Callaghan and P. Staubach. NFS Version 3 Protocol Spec-
ification. RFC 1813, June 1995.

[71 Web. http://www.ibm.com/software/awdtools/clearcase/.

[8] R. C. Davis, J. A. Landay, V. Chen, J. Huang, and R. B. Lee.
Notepals: Light weight note sharing by the group, for the
group. In Proceedings of CHI 1999, pages 338-345, 1999.

[91 W. K. Edwards and E. D. Mynatt. Timewarp: Techniques
for autonomous collaboration. In Proceedings of ACM Con-
ference on Human Factors in Computing Systems (CHI’97),
pages 218-225, 1997.

[10] A. Fekete, E. O’Neil, and P. O’Neil. A read-only transaction
anomaly under snapshot isolation. SIGMOD Rec., 33(3):12—
14, 2004.

[11] M. Fridrich and W. Older. The Felix file server. In Proceed-
ings of 8th ACM Symposium on Operating Systems Princi-
ples, pages 37-44, 1981.

[12] V. Gaburici and P. Keleher. Distributed file systems, capabili-
ties, and motefs. In preparation, 2006.

[13] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Ze-
lenka. A cost-effective, high-bandwidth storage architecture.

(14]

[15]
(16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

(29]

[30]

(31]

In Proceedings of the Eighth International Conference on Ar-
chitectural Support for Programming Languages and Operat-
ing Systems, pages 92—103, 1998.

D. K. Gifford, R. M. Needham, and M. D. Schroeder. The
Cedar file system. Communications of the Association for
Computing Machinery, 31(3):288-298, 1988.

L. Gong. On security in capability-based systems. Operating
Systems Review, 23(2):56-60, 1989.

L. Gong. A secure identity-based capability system. In /EEE
Symposium on Security and Privacy, pages 56—65, 1989.

J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data,
pages 173-182, 1996.

A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta ap-
proach to software configuration management. Technical Re-
port 168, Compaq Systems Research Center, Mar. 2001.

A. Hisgen, A. Birrell, T. Mann, M. Schroeder, and G. Swart.
Availability and Consistency Tradeoffs in the Echo Dis-
tributed File System. In The 2nd Workshop of Workstation
Operating Systems, pages 4954, Sept. 1989.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and perfor-
mance in a distributed file system. ACM Transactions on
Computer Systems, 6:51-81, 1988.

M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted stor-
age. In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies, 2003.

M. Kaminsky, G. Savvides, D. Mazieres, and M. Kaashoek.
Decentralized user authentication in a global file system. In
Proceedings of the 19th ACM Symposium on Operating Sys-
tems Principles (SOSP ’03),2003.

J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file system. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles, 1991.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An Archi-
tecture for Global-Scale Persistent Storage. In Proceedings of
ASPLOS, 2000.

J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secure un-
trusted data repository (SUNDR). In Proceedings of the 6th
Symposium on Operating Systems Design and Implementa-
tion (OSDI-04), 2004.

D. Mazieres. A toolkit for user-level file systems. In In Proc.
Usenix Technical Conference, pages 261-274, 2001.

D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In Pro-
ceedings of the 17th ACM Symposium on Operating Systems
Principles (SOSP’99), pages 124-139, Dec. 1999.

S. Miltchev, V. Prevelakis, S. Ioannidis, J. loannidis, A. D.
Keromytis, and J. M. Smith. Secure and flexible global file
sharing. In Proceedings of the USENIX 2003 Annual Techni-
cal Conference, 2003.

A. Muthitacharoen, B. Chen, and D. Mazieres. A low-
bandwidth network file system. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP
'01), pages 174-187, October 2001.

B. C. Neuman and T. Ts’o. Kerberos: An authentication ser-
vice for computer networks. IEEE Communications, 32(9),
Sept. 1994.

T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P. Rei-
her, A. Goel, G. H. Kuenning, and G. J. Popek. Perspectives
on optimistically replicated peer-to-peer filing. Software—
Practice and Experience, 28:123—-133, 1998.

10

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

D. P. Reed and L. Svobodova. SWALLOW: a distributed data
storage system for a local network. In International Workshop
on Local Networks, Zurich, Switzerland, 1981.

J. Regan and C. Jensen. Capability file names: Separating
authorisation from user management in an internet file sys-
tem. In Proceedings of the 10th USENIX Security Symposium,
2001.

W. D. Roome. 3DFS: A time-oriented file server. In Proceed-
ings of the Usenix Winter 1992 Technical Conference, pages
405-418, Berkeley, CA, USA, Jan. 1991. Usenix Association.
A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP’01), 2001.

D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir. Deciding when to forget in the Ele-
phant file system. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles (SOSP’99), pages 110-123,
Dec. 1999.

S. Sobti, N. Garg, F. Zheng, J. Lai, Y. Shao, C. Zhang, ,
E. Ziskind, A. Krishnamurthy, and R. Y. Wang. Data staging
on untrusted surrogates. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, 2003.

R. Srinivasan. XDR: External data representation standard.
RFC 1832, Aug. 1995.

J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-Securing storage: Protect-
ing data in compromised systems. In Proceedings of the 4th
Symposium on Operating Systems Design and Implementa-
tion (OSDI-00), pages 165-180, Berkeley, CA, Oct. 23-25
2000. The USENIX Association.

D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer,
M. M. Theimer, and B. B. Welch. Session guarantees for
weakly consistent replicated data. In PDIS "94: Proceedings
of the third international conference on on Parallel and dis-
tributed information systems, pages 140-150, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

P. Tridgell and P. Mackerras. The rsync algorithm. Technical
Report TR-CS-96-05, Australian National University, 1996.
R. van Renesse, A. S. Tanenbaum, and A. Wilschut. The de-
sign of a high-performance file server. In Proceedings of the
9th International Conference on Distributed Computing Sys-
tems (ICDCS), pages 22-27, Washington, DC, 1989. IEEE
Computer Society.

M. A. E. Wobber, M. Burrows, and B. Lampson. Authenti-
cation in the Taos operating system. In Proceedings of the
14th ACM Symposium on Operating System Principles, pages
256-269, Systems Research Center SRC, DEC, Dec. 1993.
ACM SIGOPS, ACM Press.

