
Adaptive Replication in Peer-to-Peer Systems

Vijay Gopalakrishnan, Bujor Silaghi, Bobby Bhattacharjee, and Pete Keleher
Department of Computer Science, University of Maryland, College Park

{gvijay,bujor,bobby,keleher}@cs.umd.edu

Abstract

Peer-to-peer systems can be used to form a low-latency
decentralized data delivery system. Structured peer-to-peer
systems provide both low latency and excellent load bal-
ance with uniform query and data distributions. Under the
more common skewed access distributions, however, indi-
vidual nodes are easily overloaded, resulting in poor global
performance and lost messages.

This paper describes a lightweight, adaptive, and
system-neutral replication protocol, calledLAR, that main-
tains low access latencies and good load balance even un-
der highly skewed demand. We applyLAR to Chord
and show that it has lower overhead and better perfor-
mance than existing replication strategies.

1. Introduction

Peer-to-peer systems can be used to form a low-latency de-
centralized data delivery system. Structured P2P systems pro-
vide both low latency and excellent load balance with query
streams in which all data items are accessed with uniform
probability. However, the distribution of demand for real data
items is often skewed, leading to poor load balancing and
dropped messages. In this paper, we describe and character-
ize a lightweight, adaptive, system-neutral replication proto-
col (LAR) that is efficient at redistributing load in such cir-
cumstances, and which improves query latency and reliability
as well. For purposes of this paper, we define a P2P system as
a distributed system where functionally identical servers ex-
port data items to each other. The defining characteristic of
many such systems is that they are completely decentralized.
There is only one class of server, and all decisions, from rout-
ing to replication, are local.

While P2P systems provide basic services like data loca-
tion, P2Papplicationsprovide high-level functionality (such
as file sharing [22, 10], multimedia streaming, event notifica-
tion [23], etc.) using an underlying P2P system. Much of the
complexity of such systems arises because the environment
of P2P systems is potentially much different than that of tra-
ditional distributed systems, such as those hosted by server

farms. A single P2P system instance might simultaneously
span many different types of participants, such as dedicated
servers, idle workstations, and even non-idle workstations.

Regardless of the underlying system topology, P2P sys-
tems need some form of caching and/or replication to achieve
good query latencies, load balance, and reliability. The work
described in this paper is primarily designed to address the
first two: query latency and load balance. A query is merely
an instance of data location (a lookup) with a fully qualified
name. A number of efficient algorithms [26, 18, 14, 21, 20,
4, 15, 13] provide low average query latency, and we do not
consider it here further.

Distributing load equitably, however, is more difficult. For
example, many recent systems [26, 28, 20, 21] attempt to bal-
ance load by using cryptographic hashes to randomize the
mapping between data item names and locations. Under an
assumption of uniform demand for all data items, the num-
ber of items retrieved from each server (referred hereafter to
as “destination load”) will be balanced. Further,routing load
incurred by servers in these systems will be balanced as well.

However, if demand for individual data items is non-
uniform, neither routing nor destination load will be bal-
anced, and indeed may be arbitrarily bad. The situation is
even worse for hierarchical systems such as TerraDir [4], as
the system topology is inherently non-uniform, resulting in
uneven routing load across servers.

This problem has so far been addressed (e.g. PAST [22],
CFS [10]) in an end-to-end manner by caching at higher lev-
els. Specifically, data is cached on all nodes on the path from
the query destination back to the query source. Routing is not
affected and “hot” items are quickly replicated throughout the
network. However, the resulting protocol layering incurs the
usual inefficiencies and causes functionality to be duplicated
in multiple applications. More importantly, our results show
that while these schemes can adapt well to extremely skewed
query distributions, they perform poorly under even moder-
ate load because of their high overhead.

We describe a lightweight approach to adaptive replica-
tion that does not have these drawbacks. Instead of cre-
ating replicas on all nodes on a source-destination path,
we rely on server load measurements to precisely choose
replication points. Our approach can potentially create repli-
cas for an object on any node in the system, regardless of

whether the original routing protocol would ever direct a
query to the replica hosts. We augment the routing process
with lightweight “hints” that effectively shortcut the original
routing and direct queries towards new replicas (described
in Section 3). This protocol incurs much lower overhead, can
balance load at fine granularities, accommodates servers with
differing capacities, and is relatively independent of the un-
derlying P2P structure.

The main contribution of this paper is to show that a mini-
malist approach to replication design is workable, and highly
functional. We derive a completely decentralized protocol
that relies only on local information, is robust in the face
of widely varying input and underlying system organization,
adds very little overhead to the underlying system, and can al-
low individual server loads to be finely tuned.

This latter point is important because of the potential us-
age scenarios for P2P systems. While P2P systems have been
proposed as the solution to a diverse set of problems, many
P2P system will be used to present services to end users. End
users are often skeptical of services that consume local re-
sources in order to support anonymous outside users. User ac-
ceptance is often predicated on the extent to which end users
feel they have fine-grained control over the intrusiveness of
the service.

The rest of this paper is structured as follows. Section 2
summarizes the related work. Section 3 describes our model
and design goals. Section 3.2 describes the protocol in more
detail. Finally, Section 4 presents our simulation results and
Section 5 summarizes our findings and concludes the paper.

2. Background

This section briefly summarizes related work. We use
Chord as the representative P2P system protocol in the simu-
lations described in Section 4.

2.1. Related work

Chord [26], CAN [20], Pastry [21] and Tapestry [28] are
prototypical hash-based peer-to-peer systems. There are a
number of other recent efforts in this area as well includ-
ing Viceroy [18], Skipnet [14], Koorde [15], Kelips [13], etc.
which provide similar or better latency bounds.

All of these systems use the same approach of mapping
the object space into a virtual namespace where assignment
of objects to hosts is more convenient because of the uni-
form spread of object mappings. In this paper, we use Chord
as the example DHT, and applyLARto a Chord network. The
other systems differ from Chord in important ways, but none
of them should affect the applicability of our approach.

All the hash-based systems perform well when there is
uniformity in query distribution. However studies [2, 5] show
that both spatial and temporal reference locality are present
in requests submitted at web servers or proxies, and that such

requests follow a Zipf-like distribution. Distributed caching
protocols [16] have been motivated by the need to balance
the load and relieve hot-spots on the World-Wide-Web. Sim-
ilar Zipf-like patterns were found in traces collected from
Gnutella [11], one of the most widely deployed P2P systems.
Caching the results of popular Gnutella queries for a short
period of time proves to be effective in this case [25]. Our
path propagation is a generalization of this caching scheme.
Stavrou et.al [3] propose the use of a P2P overlay to handle
hotspots in the Internet. Ours is different in that we are try-
ing to handle hotspots in the P2P network.

Recent work [17, 9] considers static replication in com-
bination with a variant of Gnutella searching usingk ran-
dom walkers. The authors show that replicating objects pro-
portionally to their popularity achieves optimal load bal-
ance, while replicating them proportionally to the square-
root of their popularity minimizes the average search la-
tency. Freenet [8] replicates objects both on insertion and re-
trieval on the path from the initiator to the target mainly for
anonymity and availability purposes. It is not clear how a sys-
tem like Freenet would react to query locality and hot-spots.

A great deal of work addresses data replication in the con-
text of distributed database systems. Adaptive replication al-
gorithms change the replication scheme of an object to reflect
the read-write patterns and are shown to eventually converge
towards the optimal scheme [27]. Concurrency control mech-
anisms need to be specified for data replication to guarantee
replica consistency.

A recent analysis [24] of two popular peer-to-peer file
sharing systems concludes that the most distinguishing fea-
ture of these systems is their heterogeneity. We believe that
the adaptive nature of our replication model would make it a
first-class candidate in exploiting system heterogeneity.

2.2. Existing approaches to Adaptive Load Bal-
ancing

Existing load balancing solutions (and products) such
as the Cisco Local/Global director [7] or even techniques
used in content distribution networks such as Akamai [1]
are simply not applicable in our context. This is because
these systems require too much coordination and coupling
between nodes and often require a centralized coordination
point where global knowledge is available .

DHTs (such as Pastry or Chord) do not have any in-built
mechanism to deal with non-uniform query distributions. In-
stead, distributed file sharing applications, like PAST [22]
and CFS [10], implement their own distributed replication
scheme. Hotspots and dynamic streams are handled by using
caches which are used to store popular objects in the network,
and lookups are considered resolved whenever cache hits oc-
cur along the path. CFS [10] for instance replicates data ink
of its successive neighbors for data availability, and populates
all the caches on the query path with the destination data af-

Original Network. Network with app-cache.

Figure 1. A comparison of the original network and
a network with app-cache . The darkened node
is the “home node” while the shaded nodes are
nodes caching the data.

ter the lookup completes. We will refer to our generalization
of the approach used in these applications asapp-cache in
the following.

app-cache deals with skewed loads through the use of
caches. In a virgin state, this responding server will be the
file’s home. Copies of the requested file are then placed in
the caches of all servers traversed as the query is routed
from the source to whichever server finally replies with the
file. However, subsequent queries for the file may hit cached
copies because the neighborhood of the home becomes in-
creasingly populated with cached copies. As a result, the sys-
tem responds quickly to sudden changes in item popularity.
app-cache is very pro-active in that it distributesk − 1
cached copies of every single query target, wherek is the av-
erage hop count.

Figure 1 depicts a simple network where the darkened dot
represents the “home” server. An edge indicate that the server
knows about the existence of the other end. Figure 1 also
shows howapp-cache handles dynamic query streams by
caching data (represented in shaded dots) in the path of the
query. This leads to the neighbors caching copies of the data
item and then its neighbors and so on.

3. TheLARProtocol

In this section we describe theLARprotocol. We start off
by describing the our goals when we designed the protocol.
We also talk about the approaches we adopt to achieve the
goals. The we discuss the various aspects of the protocol in
detail. Finally, as an example, we describe how we adopt the
protocol to Chord.

3.1. Protocol goals and approach

The design of the replication protocol has been motivated
by a couple of goals. Firstly, we wish to address overload

Lightly
loaded

Balanced Overloaded

load

fr
ac

ti
o

n
 o

f
se

rv
er

s

Figure 2. A CDF of load versus fraction of servers
with a uniform query distribution. The majority
of servers have acceptable load. We concentrate
mainly on alleviating the relative overloading of
those in the long high tail, and to a lesser extent
on identifying lightly-loaded servers.

conditions, which are common during flash crowds or if a
server hosts a “hot” object. Therefore the goal of the replica-
tion protocol is to distribute load over replicas such that re-
quests for hot objects or flash crowds can be handled. The key
to achieving this is to employ Adaptive protocols. Adaptive
protocols can cope efficiently with dynamic query streams,
or even static streams that differ from expected input.

Second, we will attempt to balance load. Figure 2 shows a
cumulative distribution function (CDF) of server loads with a
uniform query distribution. The majority of servers are in an
acceptablerange, but a small subset of server have either very
high or very low load (the two tails of the distribution). We
concentrate on moving the relatively few servers in either tail
into the “balanced” portion of the load curve. Obviously, the
sensitivity, overhead, and effectiveness of the algorithm will
depend on exactly howacceptableis defined and what mech-
anisms are used to shed load. Our approach to achieving the
above goals is to use load-based replication of data and rout-
ing hints and to augment the existing routing mechanism to
use the replicas and routing hints.

Our third goal is to base all decisions on locally available
information. Making local decisions is key to scaling the sys-
tem, as P2P systems can be quite large. For example, the pop-
ular KaZaA file-sharing application routinely supports on the
order of two million simultaneous users, exporting more than
300 million files (as reported by the client). Global decision-
making implies distilling information from at least a signif-
icant subset of the system, and filtering decisions back to
them. Further, there is the issue of consistency. There is a
clear trade-off between the “freshness” of global information
summaries and the amount of overhead needed to maintain
a given level of freshness. Finally, systems using global in-
formation can be too unwieldy to handle dynamic situations,
as both information-gathering and decision-making require

communication among a large subset of servers.
The choice of local decision-making has its implications.

For one, local decisions might be poor if locally available
information is unrepresentative of the rest of the system.
Also, local decision-making makes it difficult or impossi-
ble to maintain the consistency of global structures, such as
replica sets for individual data items. Areplica setis just a
possibly incomplete enumeration of replicas of a given data
item, which are the default unit of replication. Requiring that
the “home” of a data item be reliably informed of all new and
deleted replicas could be prohibitively costly in a large sys-
tem. This difficulty led us to use soft state whenever possi-
ble. For example, instead of keeping summaries of all repli-
cas at a data item’s home, we allow some types of replicas to
be created and deleted remotely without having any commu-
nication with other replicas or the home.

Finally, our protocol is intended to be independent of P2P
structure. We intend our results to be applicable to DHTs [26,
28, 20, 21, 18, 14, 15, 13]; to hierarchical namespaces [4];
and also to unstructured P2P systems like Gnutella [11].

3.2. Protocol description

This section describes the policies thatLARuses for load
re-distribution, replica and cache entry creation/deletion, and
replica-augmented routing. There are three specific issues
that must be addressed:

1) Load measurement and replica creation: The system
must redistribute load relatively quickly in order to handle
dynamic query streams. However, reacting too quickly could
lead the system to thrash. We need to specifywhennew repli-
cas are created, on what nodes, and which items a server
replicates, and how replicas are discarded.

2) Routing using cache hints and replicas: Assume a
server has knowledge of a set of replicas for a desired “next
hop” in the routing process. The overlay routing algorithm
must be augmented such that these replicas are visited in-
stead of only the home node of an item. We need to spec-
ify which of the replicas to choose during routing, and (how)
should the selection process attempt to incorporate knowl-
edge of load at replica locations.

3) Replica information dissemination and management:
New replicas are useless unless other servers know of their
existence1. Information about new replicas must be dissem-
inated, whether eagerly by a separate dissemination sub-
protocol, or lazily by being appended to existing messages.
Allowing remote sites to independently create and destroy
replicas means that the number of system replicas of a given
item is not bounded. The dissemination policy must deter-
mine the amount of replica pointer state that should be kept
at each site, the way that new replica pointer information is

1 This is not precisely true because routing can be short-circuited when-
ever a replica is encountered. However, this is a secondary effect.

l

l

l

rebalance "with prejudice"

rebalance

do not rebalance

max

hi

low

Figure 3. The server capacity is lmax. Load is
sometimes re-balanced if greater than llow, and al-
ways if greater than lhi.

merged with older information, and what state should be ap-
pended to outgoing messages (or pushed eagerly).

In the rest of this section, we specify, in detail, howLAR
addresses each of these issues.

3.2.1. Load Measurement and Replica Creation

Local Load MeasuresOur replication scheme is different
from the existing schemes like [10] in that we introduce the
construct of load in order to perform replication. We assume
that each server has a locally configured resource capacity
and queue length. We also assume that each server defines a
high-load and low-load threshold. By default, the system sets
high-load and low-load thresholds for each server based on
fractions of servers’ capacities. We also assume that we can
keep track of the load due to each object in the server; data
and routing indices.

For this work the capacity indicates the number of queries
that can be routed or handled per second, and the queue
length specifies the number of queries that can be buffered
until additional capacity is available. Any arriving traffic that
can not be either processed or queued by a server is dropped.
The load metric in the protocol is abstract and in practice can
be defined based on any of the factors like CPU load, network
load, I/O load or even a combination of these factors. For ex-
ample, Rabinovich et.al [19] make use of the ready queue,
such as the output of the “uptime” command as a measure of
computational load. Considering that most P2P clients like
KaZaA and Gnutella allow the user to set the maximum up-
load and the download bandwidth, the application could keep
track of the number of bits transferred or received to estimate
the network load. Chawathe et.al. [6] suggest that the capac-
ity should be a function of the server’s processing power, ac-
cess bandwidth, disk speed etc.

As Figure 3 shows, high-load threshold indicates that a
server is approaching capacity and should shed load to pre-
vent itself from reaching its maximum capacity and drop re-
quests. The intent of the low threshold is to attempt to bring
the load of two servers closer to each other. Intuitively, the

difference in the load of two servers being greater than the
low threshold indicates that one of the servers is much less
loaded compared to the other and that it can be used to dis-
tribute the load. We will use the term “load balance” in the
rest of this paper to refer to this sense of distributing load.

Lastly, we assume that the fractions for thresholds are con-
stant across the system in the simulations here, but the pro-
tocol will work unaltered with non- uniform fractions. Also
note that it is relatively straightforward to incorporate load
measures with multiple thresholds into the protocol, or in-
deed to use completely different load measures. In this paper,
we show that the simple two threshold scheme is both robust
and efficient.

Replica creation detailLoad is redistributed according to a
per-node capacity,lmax

i , and high- and low-load thresholds,
lhi
i and llow

i , as in Figure 3. Each time a packet is routed
through serverSi, Si checks whether the current load,li, in-
dicates that load redistribution is necessary. If necessary, load
is redistributed to the source of the message,Sj . The source is
chosen because it is in some sense “fair” (the source added to
the local load), and because load information about the source
can easily be added to all queries. Lastly, creating a replica at
the source is often “cheap”, since the source is likely trans-
ferring a popular object (which would be replicated).

If li > lhi
i , Si is overloaded.Si attempts to create new

replicas onSj if li is greater thanlj by some fixed valueK.
Si then asksSj to create replicas of then most highly loaded
items onSi, such that the sum of the local loads due to these
n items is greater than or equal to the difference in loads be-
tween the two servers. IfSi’s load is merely high, but not in
an overload situation (llow

i ≤ li ≤ lhi
i), load is redistributed

toSj only if li−lj ≥ llow
i . The amount redistributed is calcu-

lated as above. In both cases, there may not be sufficient dis-
tinct replicas. Further, replicas are only made if the local load
due to an item is non-negligible.

3.2.2. Soft State replicas and Replica-augmented rout-
ing We use two forms of soft state: caches and replicas. Both
operate on the granularity of a single data item. A cache en-
try consists of a data item label, the item’s home, the home’s
physical address, and a set of known replica locations. Note
that a cache entry doesnotcontain the item’s data: it is merely
a routing hint that specifies where the data item can be found.

Cache entries are replaced using a Least-Recently-Used
(LRU) policy with an entry being touched whenever it is used
for routing. Caches are populated by loading the path “so far”
into the cache of each server encountered during the rout-
ing process. Both the source and destination cache the entire
path. This form of path propagation not only brings in nearby
items but also a cross-section of remote items from different
regions of the namespace. Our experience is that this mix-
ture of close and far items performs significantly better than
caching only the query endpoints. These cached entries effec-
tively “short-cut” routing when encountered by queries. Our
results show that adding the cache entries for routing signif-

Replica Pointer

CachePointer

Figure 4. Network with LAR

icantly improves system performance and load balance re-
gardless of input query distribution.

Replicas differ in that (i) they contain the item data, and
(ii) new replicas are advertised on the query path. When a
replica is created, we install cache state on the path from
the new replica to the node that created the replica. Figure 4
shows howLAR creates replicas on the source of the query
and adds pointers to the replica in caches along the path in
the same network as Figure 1. Also note that a replica can fur-
ther create replicas as shown in the figure. In this case, point-
ers are added in the path from the new replica to the original
replica only. Also contrast the difference withapp-cache
protocol in Figure 1.

Replicas in our system are “soft” in the sense that they
can be created and destroyed without any explicit coordina-
tion with other replicas or item homes. Hence, idle replicas
consume no system resources except memory on the server
that hosts them. Therefore, identifying and evicting redun-
dant replicas is not urgent, and can be handled lazily via
an LRU replacement scheme. Obviously, cache entries may
point to stale replicas since there is no global coordination on
when replicas are created or destroyed.

Since cache state includes information about multiple
replicas, and during routing, we can choose one of these repli-
cas uniformly at random. Obviously, cache entries can be
used to distribute load among the servers that hold replicas
of the data item being queried. However, they can also be
used to find replicas ofnext hopnodes that are used to route
queries (as in Figure 5). Thus, cache entries balance both data
transfer load and routing load.

3.2.3. Replica-state Management and Dissemina-
tion Once replicas are created, we need to disseminate
information about new replica sets. Rather than intro-
duce extra message traffic, we piggyback replica sets on
existing messages containing cache entries. Servers main-
tain only partial replica set information in order to bound the
state required to store the information. A2/32 dissemina-
tion policy means that a maximum of two replicas locations
are appended to cache insertion messages, while a maxi-
mum of 32 replica locations are stored, per data item, at a
given server.

The merge policy determines how incoming replica loca-
tions are merged into the local store of replica locations, as-
suming both are fully populated. The locations to be retained
are currently chosen randomly, as experiments with different
preferences did not reveal any advantage.

The dissemination policy decides which of the locally
known replica locations to append to outgoing messages.
Random choice works well here also, but we found a heuris-
tic that slightly improves results. If a server has a local replica
and has created others elsewhere, it prefers the replicas it has
created elsewhere most recently. Otherwise, the choice is ran-
dom. The intuition behind this heuristic is that if the existing
load is high enough to cause the server to attempt shedding
load, it is counter-productive to continuing advertising the
server’s own replicas. On the other hand, advertising newly
created replicas helps to shed load.

Note that we have neglected consistency issues. However,
it is highly unlikely that rapidly changing objects will be dis-
seminated with this type of system and we have designed our
protocol accordingly. We also do not address servers joining
and leaving the system. These actions are handled by the un-
derlying system P2P system and should not affect the appli-
cability of the replication scheme.

3.2.4. Summary LARtakes a minimalist approach to repli-
cation. Servers periodically compare their load to local max-
imum and desired loads. High load causes a server to at-
tempt creation of a new replica usually the sender of the last
message. Since servers append load information to messages
that they originate, “downstream” servers have recent infor-
mation on which to base replication decisions. Information
about new replicas is then spread on subsequent messages
that contain requests for the same data item.

In implementation, the replication process only requires a
single RPC between the loaded server and a message origi-
nator. Further, this RPC contains no data because the origina-
tor of a request has already requested it. Even this RPC can
be optimized away if the loaded server is also the server that
responds to the request. However, we retain it in order to al-
low the replication process to proceed asynchronously with
respect to the lookup protocol.

3.3. LARapplied to Chord

In this paper, we present results forLARimplemented over
Chord; analogous results for a hierarchical namespace (Ter-
raDir) are available in a technical report [12].

When adaptingLAR to Chord, the finger list is the default
item of replication. We replicate the data item only if the load
on the server due to the data item is more than that due to the
finger list. However, when we replicate the data item, we also
must replicate the finger list in order for the new replica to be
seen by other servers.

14097

2035

5066

7037

12078

11365

10568, 11342

12078,..., 14097,...

..., 11365, ...

6453, 6789, 7001

13349, 13876, 14025

...,2035,...,5066,..

..., 11365, ...

Data

Fingerlist

Replicated Fingerlist

Data

Fingerlist

Data

FingerList

..., 7037(14097), 12745,...
Fingerlist

Fingerlist

..., 5066,12078,...

12745

Figure 5. LAR routing and replication in Chord

When disseminating this information, we only know the
query’s source and the last sender. We therefore update the
cache with this information rather than the full path.

Figure 5 shows an example using chord for a query of item
ID 10568, initiated at server 2035. Recall that IDs increase in
clockwise direction, and that an item is served by its first suc-
cessor server. Each server is annotated with its data and fin-
gerlist. In the example, item 10568 is served by server 11365.
Server 7037’s fingerlist is replicated at 14097, and this repli-
cation is known to server 5066.

Server 2035 chooses 5066 as the next hop because it has
the highest ID about which 2035 knows, such that the ID is
less than or equal to the item ID. 5066 determines that 7037
is next, but randomly picks 7037’s replica on 14097 instead.
Finally, 14097 forwards to 11365, the final destination.

4. Simulation Results

In this section, we present a comprehensive simulation-
based evaluation ofLAR, and compare its perfor-
mance to app-cache . Our performance results are
based on a heavily modified version of the simu-
lator used in the Chord project, downloaded from
http://www.pdos.lcs.mit.edu/chord/ . The
resulting simulator is discrete time and accommodates
per-server thresholds and capacities.

Simulation DefaultsBy default, simulations run with 1k
servers, 32767 data items, and the server capacitylmax is set
to 10 per second. We ran many experiments with higher ca-
pacities, but found no qualitative differences in the results.
The load thresholdslhi and llow are set to 0.75 and 0.30
timeslmax. The length of a server’s queue is set to the num-
ber of locally homed items, in this case 32. For example, if
an idle server with capacitylmax = 10/second and queue
lengthqmax = 32 receives 50 queries over one second, 8 will
be dropped (10 will be processed, and 32 will be queued).
The default load window size, which controls how quickly

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 q

ue
rie

s
dr

op
pe

d

time (in sec)

Uniform query stream

chord
app-cache

LAR

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 q

ue
rie

s
dr

op
pe

d

time (in sec)

90% queries to 10% data-items

chord
app-cache

LAR

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 q

ue
rie

s
dr

op
pe

d

time (in sec)

90% queries to 1% data-items

chord
app-cache

LAR

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 q

ue
rie

s
dr

op
pe

d

time (in sec)

90% queries to 1 data-item

chord
app-cache

LAR

Figure 6. Number of queries dropped over time for different query locality.

the system can adapt, is set to two seconds. Each network
“hop” takes 25 milliseconds. The dissemination policy is set
to 1/32. By default, 500 queries are generated per second.
The average query path is less than 5 hops, so these default
values correspond to an average node load less than 25%.

In the simulations, query sources were selected uniformly
at random, and the query inter-arrival had a Poisson distri-
bution. The input query distributions ranged from uniform
to heavily skewed. We experimented with extremely heavy
skew90-1 , in which 90% of the input is directed to a single
item (and the rest 10% uniformly distributed over all items).
We also experimented with less skew in which 90% of the in-
puts were directed to 1% (327) or 10% (3276) items.

By default, each message transfer (whether it is a docu-
ment, a query or a control message) contributes identically to
load and congestion. We chose this default to heavily favor
app-cache , which creates and transfers many more doc-
ument replicas. In Section 4.2, we show the effect of docu-
ment transfers costing 2x, 4x, and 10x over control message
transfers. In practice, this cost is likely to be 100 or 1000
times more, so even these values are biased positively towards
app-cache . Lastly, we note that in the simulations, all mes-
sages, including control messages, are dropped when a server
is beyond its capacity.

4.1. Effect of Query Distribution

In Figure 6, we show the effect of input distribution on
LAR, app-cache , and plain Chord. In each figure, we plot
the number of dropped messages over time (added over 10
seconds) for the three different schemes. For each experi-
ment, we ran 10 trials with different random number seeds,
and these results are from a single representative run. In all
experiments, the first 100 seconds of input are uniform, and
then the specific input distribution takes effect.

In these results,app-cache performs better with
skewed query distributions because the hot items quickly
get replicated at essentially all nodes in the network.
This is because there is no penalty for extra data trans-
fer (since document transfer costs the same as control mes-
sages). Note that with even moderate average load (25%),
app-cache drops messages with a uniform query distri-
bution: this is because the blind replication scheme starts to

Input # q served # replicas # hints
dist. Scheme (250K max) creat. evict. creat. evict.

Chord 249.9K - - - -
Unif. AC 242.4K 1.13M 1.09M - -

LAR 249.9K 5K 0 10.8K 5.9K
90% Chord 249.9K - - - -
→ AC 245.7K 994K 962K - -

10% LAR 249.9K 6.6K 0 12.5K 7.5K
90% Chord 248.2K - - - -
→ AC 248.1K 691K 660K - -
1% LAR 249.9K 10.3K 0 17.3K 12.3K
90% Chord 72.1K - - - -
→ AC 244.1K 328K 296K - -
1 LAR 233.4K 2.6K 0 7.2K 2.4K

Table 1. Protocol Overhead of Chord, LAR, and
app-cache (AC).

thrash. As we show in later results, this causes severe prob-
lems with higher load and higher costs for document trans-
fer.

We should note that plain Chord, while better than
app-cache for inputs without significant skew, serves
only about 10% of input queries for heavily skewed in-
puts (Figure 6). Note that they-axis of this figure is
significantly higher than the three other figures. Also no-
tice thatapp-cache drops queries for the first 100 seconds
of all the runs since the input stream is uniform. When the in-
put shows heavy bias (starting at time=100seconds),
app-cache stops dropping packets as the hot item is
quickly replicated at all servers. At the onset of skew,LAR
initially drops a number of queries, but theLAR adapta-
tion reduces drops down to zero as the hot item it replicated
and the routing state set up.

4.1.1. Protocol OverheadsIn Table 1 we show the aver-
age overhead ofLAR compared toapp-cache . These re-
sults are averages of ten runs. First, note that plain Chord does
not create replicas or use routing hints, but loses significant
numbers of queries when the input distribution is skewed. For
skewed inputs,LAR andapp-cache both serve over 93%
of all queries. With 250K queries,app-cache is able to
serve more queries for extremely skewed inputs (because the
hot item is quickly cached everywhere in the system), but it

 0
 2
 4
 6
 8

 10
 12

 95 100 105 110 115

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 90 100 110 120 130 140 150 160

C
um

ul
at

iv
e

nu
m

be
r

of
 it

em
s

re
pl

ic
at

ed

time (in sec)

Hot Data Item
Predecessor Finger

Figure 7. Cumulative number of replicas over time
for the hot item and the predecessor’s routing
hints, when skewed query distribution begins.

should be clear from Figure 6 thatLAR asymptotically ap-
proaches 100% service after the adaption takes effect. For in-
puts with less skew,LAR and even plain Chord outperforms
app-cache .

The major difference in protocol performance is seen in
the replica creation:LAR creates anywhere between 1–3 or-
ders of magnitude less replicas. For example, for uniform
queries,app-cache creates over amillion replicas and
promptly deletes them! The perils of blind replication are
clear; it is relatively easy forapp-cache to thrash even un-
der moderate load. The lower number of replicas created by
LAR directly translates to lower overhead and lower band-
width usage, since replica creation involves transfer of the
document itself. We should note that inLAR, replica creation,
in the majority of cases, doesnot involve transferring the doc-
ument since the source of the query becomes the new replica.

Lastly, the proactive state installed byLAR (the cached
routing hints) are orders of magnitude smaller in size than
the documents transferred byapp-cache ; moreover, in all
cases, the number of hints placed byLAR is 1–2 orders
of magnitude lower than the number of replicas created by
app-cache , and in general, is negligible compared to the
number of queries served. Thus,LARhas extremely low over-
head, and its judicious replication is stable over a wide range
of input distributions.

4.1.2. Dynamics of Replication in ChordConsider the
skewed input case. Intuitively, it seems that the successor of
the hot data item (which holds the data) would be the one
dropping all the queries because of the deluge of queries.
However, lookup requests in Chord are routed to the best
locally knownpredecessoruntil the lookup request reaches
the actual predecessor of the data item. The query is then re-
solved and sent to the successor of this node, which is also
the successor of the data item. The implication of this is that
the first bottleneck in case of skewed inputs is the predeces-
sor of the data item. All the lookup requests need to go to the
predecessor before they can by resolved to the successor.

In Figure 7, we show the dynamics of replication ofLAR
over Chord for a skewed input (90% to 1). The plot shows the
cumulative number of replicas created for the hot data item
and the number of replicas created for its predecessor be-
tween simulation time 90 and 160 secs. In the inset, we show
the actual number of replicas created between the time period
of 95 seconds and 115 seconds for both the hot item and its
predecessor finger. Recall that the input distribution changes
from uniform to skew at simulation time 100 seconds (noted
by vertical line in the plot). In these plots, the replica creation
numbers are computed from the simulation logs once every
second, and the servers themselves recompute load once ev-
ery two seconds. Both from the CDF and the inset plots, it is
clear that the predecessor finger gets replicated at a quicker
rate than the data item itself is replicated. The routing hints
stop replicating at time 150 seconds, while the data is repli-
cated until time 240 seconds (not shown in plot). This is a
somewhat non-intuitive phenomenon, and is a direct result of
the specifics of how Chord resolves its queries.

4.2. Change in Transfer Costs

Cost of data transfer vs. control traffic
scheme 1x 2x 4x 10x

app-cache 4.0K 17.2K 45.5K 106K
LAR 0 0 2 25

Table 2. Transfer Cost: # of queries dropped (250K
queries max.)

Table 2 shows the number of dropped queries when the
cost of transferring a document increases. In these experi-
ments, 90% of the queries went to 3276 items (10% of the in-
put), and the entire experiment ran for 250K queries. Also,
the server capacitylmax for these experiments is 20 per
sec. The average load on any node in the system is approx-
imately 25%. Sinceapp-cache creates an order of mag-
nitude more replicas (and hence transfers correspondingly
more data), as document transfer costs increase, it drops close
to 50% of the queries in the system. In contrast,LARis essen-
tially unaffected by these document transfer costs. As men-
tioned earlier, these experiments are still biased in favor of
app-cache , and in practice, the document transfer cost is
likely to be hundreds of times (or even thousands) more.

4.3. Change in Average System Load

In Table 3, we show howLAR and app-cache react
when the average system load changes. For these experi-
ments, 90% of the input queries went to 3276 items (10% of
the original documents). The figure shows number of unan-
swered queries over time for average load values of 10%,
20%, 33%, and 50%. With a 90-10 input distribution,LAR

Average load on server
scheme 10% 25% 33% 50%

app-cache 0 4K 15.1K 42.7K
LAR 0 0 56 5.4K

Table 3. # of queries dropped (250K queries max)
under different loads

is able to serve more than 97% of all queries even with 50%
average load. Theapp-cache scheme is more sensitive to
system load and loses about 20% of the input queries when
the average system load is 50%.

4.4. Changes in data popularity.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 q

ue
rie

s
dr

op
pe

d

time (in sec)

Figure 8. Worst case hotspot adaptivity: Number
of queries dropped over 900 sec.

Figure 8 shows howLAR reacts to changes in hotspots
over 900 seconds. For these experiments, 90% of the queries
went to a single item. There is a change in the hot item
every 200 seconds (100K queries) and there are 4 such
changes. The first 100 seconds having a uniform query distri-
bution. The vertical lines show time points when the hot item
changes. The drops are computed every 10 secs. As is shown
in Table 1, this scenario is the worst possible case forLAR.
From the plot, we see thatLAR is able to adjust relatively
quickly to these changes (on the order of 2 minutes), and in
all cases the replication is adapted to the change in hot data
item. Obviously, in practice, we do not expect such radical
shifts in data access patterns to occur over such small inter-
vals, but it is clear thatLAR is robust against drastic changes
in input distribution over very short timescales.

4.5. Scalability

Figure 9 shows the fraction of dropped queries with dif-
ferent system sizes. In these experiments, 90% of the queries

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 50 100 150 200

F
ra

ct
io

n
of

 q
ue

rie
s

dr
op

pe
d

time (in sec)

4000 servers
2000 servers
1000 servers

500 servers

Figure 9. Scalability: fraction of queries dropped
for various system sizes.

went to 3276 items (10% of the input). Although the graph
is plotted until 205 seconds, the experiments ran for 400 sec-
onds, with no drops at any size after 205 seconds. Note that
there are no uniformly distributed queries in the beginning. At
each system size, the query stream is adjusted so that the aver-
age load on any server is approximately 25%. Since the num-
ber of data items are the same for all system sizes and the
query rate increases with increase in system size (to main-
tain 25% load), but the individual server capacities remain
the same, the skew in input is heavier for larger system sizes.
Thus, larger system sizes drop correspondingly more queries
while the adaptation takes effect, but in all cases,LAR is able
to control the skew and eventually create sufficient replicas
and reduce drops to zero within about two minutes of simu-
lation time.

4.6. Other results

We have conducted several experiments including, com-
parisons with differentstatic replication techniques, using
different time windows in which servers compute their load
and experiments analyzing the effects of the dissemination
constants. However, we cannot present the results here in de-
tail due to space constraints. These results are available in the
companion technical report [12].

5. Summary and Conclusions

This paper has describedLAR, a new soft-state replica-
tion scheme for peer-to-peer networks.LAR is a replication
framework which can be used in conjunction with almost any
distributed data access scheme. In this paper, we have applied
LAR to a distributed hash-table algorithm (Chord).

Compared to previous work,LAR has an order of magni-
tude lower overhead, and at least comparable performance.
More importantly,LAR is adaptive: it can efficiently track

changes in the query stream and autonomously organize sys-
tem resources to best meet current demands.

We have demonstrated the efficacy ofLARusing a number
of different experiments, all conducted over a detailed packet-
level simulation framework. In our experiments, we show that
LARcan adapt to several orders of magnitude changes in de-
mand over a few minutes, and can be configured to balance
the load of peers within configurable bounds.

References

[1] Akamai home page. http://www.akamai.com/.
[2] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira.

Characterizing reference locality in the WWW. InProceed-
ings of PDIS’96: The IEEE Conference on Parallel and Dis-
tributed Information Systems, Miami Beach, FL, December
1996.

[3] D. R. Angelos Stavrou and S. Sahu. A lightweight, robust
P2P system to handle flash crowds. InProceedings of 10th
IEEE International Conference on Network Protocols (ICNP
2002), Paris, France, November 2002.

[4] B. Bhattacharjee, P. Keleher, and B. Silaghi. The design
of TerraDir. Technical Report CS-TR-4299, University of
Maryland, College Park, MD, October 2001.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implica-
tions. In Proceedings of the INFOCOM ’99 conference,
March 1999.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like P2P systems scalable. In
Proceedings of the ACM SIGCOMM ’03 Conference, August
2003.

[7] Cisco localdirector. http://www.cisco.com/warp/public/751/lodir/.
[8] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A

distributed anonymous information storage and retrieval sys-
tem, 2000.

[9] E. Cohen and S. Shenker. Replication strategies in unstruc-
tured peer-to-peer networks. InThe ACM SIGCOMM’02
Conference, August 2002.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. InProceedings
of the18th ACM Symposium on Operating Systems Princi-
ples, Chateau Lake Louise, Banff, Canada, October 2001.

[11] Gnutella home page. http://gnutella.wego.com.
[12] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Kele-

her. Adaptive replication in peer-to-peer systems. Technical
Report CS-TR-4515, University of Maryland, College Park,
MD, July 2003.

[13] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Re-
nesse. Kelips: Building an efficient and stable P2P DHT
through increased memory and background overhead. In
Proceedings of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS ’03), March 2003.

[14] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with practi-
cal locality properties. InFourth USENIX Symposium on In-

ternet Technologies and Systems (USITS ’03), Seattle, WA,
March 2003.

[15] M. F. Kaashoek and D. R. Karger. Koorde: A simple degree-
optimal distributed hash table. InProceedings of the 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS ’03),
March 2003.

[16] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S.
Levine, and D. Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. InACM Symposium on Theory of Comput-
ing, pages 654–663, May 1997.

[17] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. InPro-
ceedings of the 16th ACM International Conference on Su-
percomputing, New York, USA, June 2002.

[18] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. In21st ACM Sym-
posium on Principles of Distributed Computing (PODC ’02),
Monterey, CA, August 2002.

[19] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggar-
wal. A dynamic object replication and migration protocol for
an internet hosting service. InInternational Conference on
Distributed Computing Systems, pages 101–113, 1999.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. InPro-
ceedings of the ACM SIGCOMM ’01 Conference, San Diego,
California, August 2001.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InProceedings of IFIP/ACM Middleware 2001, Hei-
delberg, Germany, November 2001.

[22] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. InProceedings of the18th ACM Symposium on
Operating Systems Principles, Chateau Lake Louise, Banff,
Canada, October 2001.

[23] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification in-
frastructure. InNetworked Group Communication, pages
30–43, 2001.

[24] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. InProceedings of
Multimedia Computing and Networking 2002 (MMCN ’02),
San Jose, CA, USA, January 2002.

[25] K. Sripanidkulchai. The popularity of Gnutella queries and
its implications on scalability, February 2001.

[26] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. InProceedings of the ACM SIGCOMM
’01 Conference, San Diego, California, August 2001.

[27] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data repli-
cation algorithm.ACM Transactions on Database Systems,
22(2):255–314, 1997.

[28] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for wide-area location and routing. Technical
Report UCB//CSD-01-1141, U.C.Berkeley, Berkeley, CA,
April 2001.

