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ABSTRACT
Desktop grids have evolved to combine Peer-to-Peer and Grid com-
puting techniques to improve the robustness, reliability and scala-
bility of job execution infrastructures. However, efficiently match-
ing incoming jobs to available system resources and achieving good
load balance in a fully decentralized and heterogeneous computing
environment is a challenging problem. In this paper, we extend our
prior work with a new decentralized algorithm for maintaining ap-
proximate global load information, and a job pushing mechanism
that uses the global information to push jobs towards underutilized
portions of the system. The resulting system more effectively bal-
ances load and improves overall system throughput. Through a
comparative analysis of experimental results across different sys-
tem configurations and job profiles, performed via simulation, we
show that our system can reliably execute Grid applications on a
distributed set of resources both with low cost and with good load
balance.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Design

Keywords
Load Balancing, Desktop Grid, Peer-to-Peer System

1. INTRODUCTION
The recent growth of the Internet and the CPU power of per-

sonal computers and workstations enablesdesktop gridcomputing
to achieve tremendous computing power with low cost, through
opportunistic sharing of resources [1, 2, 6]. However, traditional
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server-client grid architectures have inherent problems in robust-
ness, reliability and scalability. Researchers have therefore recently
turned to Peer-to-Peer (P2P) algorithms in an attempt to address
these issues [5, 7, 9, 13].

Our goal is to design and build a highly scalable infrastructure
for executing Grid applications on widely distributed sets of re-
sources. Such infrastructure must bedecentralized, robust, highly
availableandscalable, while effectively mapping application in-
stances to available resources throughout the system (calledmatch-
making). By employing P2P services, our techniques allow users
to submit jobs to the system, and the jobs to be run on any avail-
able resources in the system that meet or exceed the minimum
job resource requirements (e.g., memory size, disk space, etc.).
The overall system, from the point of view of a user, can be re-
garded as a combination of a centralized, Condor-like grid system
for submitting and running arbitrary jobs [14], and a system such
as BOINC [1] or SETI@HOME [2] for farming out jobs from a
server to be run on a potentially very large collection of machines
in a completely distributed environment.

However, efficiently matching heterogeneous jobs to heteroge-
neous computational resources becomes more challenging as such
systems scale to large configurations and heavy workloads. Our
previous work [12] addressed these issues and showed the trade-
offs between efficient matchmaking and good load balancing through
a comparative analysis of three different matchmaking algorithms.

In this paper, we extend our previous work and describe algo-
rithms and techniques that achieve both efficient matchmaking of
jobs and good load balancing in decentralized and heterogeneous
computational environments. The contributions of the paper are:

1. An intelligent matchmaking algorithm that is guaranteed to
find a resource that meets the multiple requirements of a job,
if such a resource exists somewhere in the system

2. Parsimonious resource usage that avoids wasting resources
that are over-provisioned with respect to the jobs

3. Adapting the current load of the system to use more capable
resources when the overall system is lightly loaded

4. Both efficient matchmaking and good load balancing with
low cost

The rest of the paper is structured as follows. Section 2 discusses
the context and overall goals of the work. Section 3 presents related
work, while Section 4 describes the algorithms and optimization
criteria for matching jobs to resources. Finally, Section 5 contains
our evaluation, and Section 6 concludes.



2. ASSUMPTIONS AND GOALS
A general-purpose desktop grid system must accommodate het-

erogeneous clusters of nodes running heterogeneous batches of jobs.
The implication is that a matchmaking algorithm must incorporate
both node and job information into the process that eventually maps
a job onto a specific node.

Our expected environment and usage make this problem easier in
some ways and more difficult in others. A large fraction of nodes
in the system might belong to one of a small number of equiva-
lence classes in terms of their resource capabilities. For example,
many organizations buy clusters of identical machines all at once,
whether to create compute farms or just to replace an entire de-
partment’s machines. Node clusters make the problem more diffi-
cult by removing the notion of a single best match for a given job.
The underlying matchmaking algorithm must be able to cope with
many similar nodes and perform some intelligent load balancing
across them. However, node clustering can also simplify the prob-
lem by reducing the set of possible choices for the matchmaking
algorithm. Similarly, job profiles might show clustering in terms of
their minimum resource requirements. Sets of similar jobs can re-
sult from running the same application code with slightly different
parameters or input datasets. For example, researchers often per-
form parameter sweeps to optimize algorithmic settings or explore
the behavior of physical systems. Similarly, the same computation
may be performed on different input regions, such as n-body or
weather calculations that differ only in spatial coordinates.

Therefore, the overall problem space for Grid computing envi-
ronments can be divided along two axes, measuring the degree to
which the nodes and jobs are eitherclusteredor mixed. Systems
such as Condor [14] mainly target mixed jobs in clustered nodes,
while systems like BOINC [1] or SETI@Home [2] deal with clus-
tered jobs in mixed nodes. Our intent is to effectively support all of
these scenarios.

To summarize, the goals of any matchmaking algorithm must
include the following:

1. Capability- The matchmaking framework should allow users
to specify minimum requirements for any type of resource
(CPU speed, memory, etc.).

2. Load balance- Load (jobs) must be distributed across the
nodes capable of performing them.

3. Precision- Resources should not be wasted. All other issues
being equivalent, a job should not be assigned to a node that
is over-provisioned with respect to that job.

4. Completeness- A valid assignment of a job to a node must
be found if such an assignment exists.

5. Low overhead- The matchmaking must not add significant
overhead to the cost of executing a job. This may be chal-
lenging, given that the matchmaking is done in a completely
decentralized fashion.

3. RELATED WORK
Peer-to-Peer research has shown that a robust, reliable system

for storing and retrieving files can be built upon unreliable ma-
chines and networks. The most popular algorithms for object loca-
tion and routing in P2P networks (calledDistributed Hash Tables
or DHTs [18, 19]) are capable of scaling to very large numbers
of peers and simultaneous requests for service. A system can build
upon these basic services to allow users to place idle computational
resources into a general pool and draw upon the resources provided
by others when needed.

Research such as [4, 9, 16] proposed a P2P architecture to lo-
cate and allocate resources in the Grid environment by employing
aTime-To-Live(TTL) mechanism. TTL-based mechanisms are rel-
atively simple but effective ways to find a resource (that meets the
job requirements) in a widely distributed environment without in-
curring too much overhead in the search. However, such mecha-
nisms may fail to find a resource capable of running a given job,
even though such a resource exists somewhere in the network (lack
of Completeness).

Studies on encoding static or dynamic information about com-
putational resources using a DHT hash function for resource dis-
covery have also been conducted [5, 8, 17]. However, there can
be a load balancing problem for these encoding techniques, since a
small fraction of the nodes can end up containing a large fraction
of the resource capabilities of the nodes if there are many that have
very similar (or identical) capabilities in the system (lack ofLoad
balance). Also, simple encoding of resource information cannot
effectively avoid selecting resources that are over-provisioned with
respect to the jobs (lack ofPrecision).

The CCOF (Cluster Computing on the Fly) project [15, 21] con-
ducted a comprehensive study of generic searching methods in a
highly dynamic P2P environment to locate idle computer cycles
throughout the Internet. More recent work from the CCOF re-
searchers, on a peer-based desktop grid system called WaveGrid,
constructed atimezone-awareoverlay network based on a Content-
Addressable Network (CAN) [18] to use idle night-time cycles ge-
ographically distributed across the globe [22]. However, the host
availability model in these work is not based on the resource re-
quirements of the jobs (lack ofCapability).

Awan et al. [3] proposed a distributed cycle sharing system that
utilizes a large number of participating nodes to achieve robustness
through redundancy on top of an unstructured P2P network (which
cannot achieve the efficiency of a DHT). By employing efficient
uniform random sampling using random walks, probabilistic guar-
antees on the performance of the system could be achieved. How-
ever, as for the CCOF project, the job allocation model in this work
does not consider the requirements of the jobs nor the varying re-
source capabilities of nodes in the system (lack ofCapability).

4. MATCHMAKING ALGORITHMS
We begin by defining terminology and the basic framework of

our approach to matchmaking, and then describe the details of the
improvements we have made in ourCAN-based matchmaking frame-
work.

4.1 Overall System Architecture
All of the work described assumes an underlying distributed hash

table (DHT) infrastructure [18, 19]. DHTs use computationally se-
cure hashes to map arbitrary identifiers to random nodes in a sys-
tem. This randomized mapping allows DHTs to present a simple
insertion and lookup API that is highly robust, scalable, and effi-
cient. We insert both nodes and jobs into a single DHT, performing
matchmaking by mapping a job to a node via the insertion process,
and then relying on that node to find candidates that are able and
willing to execute the job. By using such an architecture, we effec-
tively reformulatethe problem of matchmaking to one of routing in
the P2P network.

A job in our system is the data and associated profile that de-
scribes a computation to be performed. A job profile contains sev-
eral characteristics about the job, such as the client that submitted
it, its minimum resource requirements, the location of input data,
etc. All jobs in the system areindependent, which implies that no
communication is needed between them. This is a typical scenario
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Figure 1: Overall System Architecture

in a desktop grid computing environment, enabling many indepen-
dent users to submit their jobs to a collection of node resources in
the system.

Figure 1 shows the overall system architecture and flow of job
insertion and execution in the P2P network. The steps of job exe-
cution are as follows:

1. A client inserts a job into a node in the system (injection
node). The DHT provides an external mechanism that can
find an existing node in the system [18, 19].

2. The injection node assigns aGlobally Unique IDentifier(GUID)
to the job by using its underlying hash function and routes the
job to theowner node.

3. The owner node initiates a matchmaking mechanism to find
a run nodecapable of running the job.

4. Once the matchmaking mechanism finds a run node for the
job, the owner node sends the job to the run node.

5. The job is inserted into the job queue of the run node, which
processes jobs in FIFO order. While processing the jobs, the
run node periodically sendsheartbeatmessages to the owner
node, which can relay the message to the client that initiated
the job

6. When the job is finished, the run node returns the results to
the client.

An owner node is responsible for monitoring the execution of
the job and ensuring that its results are returned to the client. Heart-
beats are communicated directly between run nodes and owner nodes,
rather than through DHT routing. This soft-state message plays an
important role in failure recovery during the processing of jobs in
our system, as job profiles are replicated on both the owner and run
nodes. If either the owner node or the run node fails, the other will
detect the failure and initiate a recovery protocol so that the job can
continue to make progress. If both fail before the recovery protocol
completes, the client must resubmit the job.

4.2 Basic Mechanisms
In this section, we briefly describe our basic approach to perform

matchmaking based on a Content-Addressable Network (CAN) [18].
A CAN is a DHT that maps GUIDs of nodes and data to points

in a d-dimensional space so that each node divides up the CAN

space into rectangularzonesand maintainsneighborinformation.
The conventional use of CAN is to map a GUID into the space
by applyingd different hash functions, one for each dimension.
However, positions in the CAN space need not be created through
randomized hashes. For example, Tang et al. [20] map documents
and queries into a CAN space where each dimension measures the
relevance of a particular index term, executing queries via a blind
local search centered on a query’s mapping.

Similarly, we can formulate the matchmaking problem as a rout-
ing problem in a CAN space. By treating eachresource typeas a
distinct dimension, nodes and jobs can be mapped into the CAN
space by using their capabilities or requirements on each resource
type, respectively, to determine their coordinates. As a simple ex-
ample, if the resource types consist of CPU speed, memory size,
and disk space, we might map a 3.6GHz workstation, with 2GB of
memory and 500GB of disk space, to the point{360, 2000, 500}.
A job requiring at least a 1GHz machine, 100MB of memory, and
200 MB of disk space would map to{100, 100, 0.2}, clearly some
distance from the node just described. With this approach, mapping
a job to a node might seem to consist merely of mapping the job
into the CAN space and finding the nearest node. However, the se-
mantics of matching jobs to nodes are different than that of merely
finding the closest matching node. Most importantly, job require-
ments representminimumacceptable quantities. Any node meeting
a job’s requirements can run the job, but a node whose coordinate in
any dimension is less than that specified by the job’s requirements,
even if very close in the CAN space, is not a viable choice to run
the job. Hence our matchmaking/routing procedure must search
for the closest node whose coordinates in all dimensions meet or
exceed the job’s requirements.
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Figure 2: Matchmaking Mechanism in Basic CAN

Figure 2 shows the procedure for matching a jobJ to the Node
G in a system with two resource types, CPU speed and Memory
size, through routing in the CAN space. A job is inserted into the
system using its requirements as coordinates ({CJ , MJ} for JobJ)
and defining the owner of the resulting zone as the owner node of
the job (Node D). The owner node creates a list of candidate run
nodes, and chooses the (approximately) least loaded among them
(Node G) based on load information periodically exchanged be-
tween neighboring nodes. The candidate nodes are drawn from the
owners of neighboring zones, such that each candidate is at least as
capable as the original owner node in all dimensions (capabilities),
but more capable in at least one dimension (Nodes G and L).

The above procedure works in all cases, but may cause some



problems for the CAN mechanisms when many nodes have sim-
ilar or even identical resource capabilities. Since the coordinates
of a node are defined by its resource capabilities, identical nodes
are mapped to the same place in the CAN volume (New Node and
Node A in the figure). The best way to distribute ownership of a
zone across multiple such nodes is not immediately obvious. Con-
versely, many jobs might have very similar requirements. For ex-
ample, many jobs will likely be inserted into the system with no
requirements at all specified. In this case, all of those jobs will be
mapped to a single node that owns the zone containing the mini-
mum point in the CAN volume (Node C in the figure).

We address this problem by supplementing the “real” dimensions
(those corresponding to node capabilities) with avirtual dimen-
sion. Coordinates in the virtual dimension are generateduniformly
at random. Whenever a new node joins the system, a representa-
tive point for the new node is generated by combining the resource
capabilities of the node and a randomly generated virtual dimen-
sion value. Therefore, even when multiple identical nodes join the
system, they are mapped to distinct locations, and CAN zone split-
ting is straightforward. Similarly, when a new job is inserted into
the system, the new job’s coordinates become a combination of
the job’s requirements and a randomly assigned virtual dimension
coordinate. In combination, the randomly assigned node and job
coordinates act to break up clusters and spread load more evenly
over nodes. More details can be found in our previous work [12].

4.3 Improvements
In previous work, we showed that the CAN-based matchmaking

mechanism can achieve good load balancing among the multiple
candidate run nodes with low matchmaking cost in most scenarios.
However, we found that in certain circumstances the CAN-based
algorithm works very poorly due to serious load imbalance when
jobs with few requirements are run on nodes with heterogeneous
(mixed) resource capabilities. For example, suppose we have a hy-
pothetical CAN with only a single real dimension, CPU speed. If
most jobs do not specify CPU requirements, their CPU speed coor-
dinates will have the minimum value in that dimension. The jobs
can still be mostly distributed (via the virtual dimension) along a
line at a single CPU coordinate. However if most nodes have dis-
tinct CPU speeds (mixed node profiles), the slowest node ends up
covering the bulk of the virtual dimension at low CPU speed, and
will become the owner of a disproportionate number of the jobs,
resulting in load imbalance [12].
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We now describe how we have improved the basic CAN-based
matchmaking mechanism to address this problem bypushingjobs
into underloaded regions of the CAN space based ondynamic ag-
gregated load information.

Figure 3 shows the basic concepts of our improvements. When
a new job is inserted into the system and routed to the owner node
(Node A), the job ispushedinto an underloaded region in the CAN
space. To determine whether to initiate pushing of a job, a fixed
amount of current system load information is propagated along
each dimension in the CAN space. If the overall system is lightly
loaded, the job can be pushed into the upper regions of the CAN
space (farther from the origin) and utilize the more capable nodes in
the system (Node B). We cannot push jobs to lower regions (closer
to the origin) in the CAN space, because the nodes occupying those
regions will likely not be able to satisfy the jobs’ requirements. It
is very important that each node in the pushing path of a job be
able to make the decision whether to continue pushing the job in a
completely decentralized fashion, based only on local information.
Therefore, the amount of information maintained by each node for
pushing jobs should remainconstantwith respect to the number of
jobs.

4.4 Enhanced CAN Mechanism Details
To enable the pushing of a job to an underloaded region in the

CAN, we have to propagate a fixed amount of current load informa-
tion through the nodes in the CAN space. Since each node cannot
maintain an accurate global picture of the system load, the load in-
formation must be properlyaggregated. Also, the load information
should bedynamicso that it can reflect the current distributed state
of the system. For this dynamic aggregated load information we
use the following measures alongeachdimension in a CAN space:

• Number of Nodes

• Sum of the Job Queue Sizes

We add this aggregated load information to theperiodical neigh-
bor state updatemechanism of the original CAN DHT maintenance
algorithm [18], to avoid generating additional messages in the P2P
network. By using the two aggregated load statistics, for a given
nodeN we can estimate the current load (e.g., average job queue
size) along each dimension of the CAN for the nodes that own
CAN regions with greater values than that of nodeN in that dimen-
sion. However, it is not easy to accurately compute the aggregated
load information, since the overall CAN space can beirregularly
partitioned. To build a regularly partitioned CAN space, the rep-
resentative points for all nodes in the system should be distributed
uniformly. In our CAN, the point for a node consists of its resource
capabilities and an additional virtual dimension coordinate. There-
fore we cannot assume that the resource capabilities of the nodes
in the system have a uniform distribution since in the real system,
only a small portion of the nodes are likely to have high resource
capabilities, with the majority of the nodes having relatively lower
capabilities [22].

To deal with aggregation of load information in the irregular
CAN space, the algorithm uses anoverlap fraction-based computa-
tion, as shown in Figure 4. Figure 4 shows the process for aggregat-
ing load information along the Memory dimension in a CAN space.
AggrInfo(N) is the computed aggregated load information from
nodes with Memory values greater than that of nodeN (Number
of Nodes or Sum of the Job Queue Sizes). Info(N) is
the current load information for nodeN (e.g., job queue size ofN).
Whenever a nodeN computes its aggregated load information, it
only carries somefraction of the information from its neighbors
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with larger Memory values, depending on how muchN’s bound-
ary overlaps with those neighbors. Note that the information about
the neighbors is propagated through the periodical CAN neighbor
state update mechanism. More generally, for each dimensiond in a
CAN space, nodeN can compute the aggregated load information
along the dimensiond (denoted byAId(N)) as follows:

AId(N) =
X

u∈UNd

(AId(u) + I(u)) × OFd(N, u) (1)

OFd(N, u) =

Q

i6=d OverlapEdge(u, N, i)
Q

i6=d
Edge(u, i)

(2)

In Equation 1,UNd is the set of nodes adjacent toN with which
it shares a border alongN ’s upper edge in dimensiond. For Node
D in Figure 4, and considering the Memory dimension, this would
be the set{Node A, Node B}. For each nodeu in UNd, N adds the
local and aggregated information fromu and multiplies it by a fac-
tor OFd(N, u). This factor reflects the fact that nodes other thanN
might haveu as a neighbor in dimensiond (for example, Node C
also has Node A as a neighbor), so without the multiplieru’s infor-
mation will be included more than once (when Node E aggregates
information from both Node C and Node D). In particular, ifLNd

are the lower neighbors ofu at dimensiond (thusN ∈ LNd), then
it must hold that

X

v∈LNd

OFd(v, u) = 1

in order foru’s load information to be aggregated in full along di-
mensiond (Node A’s information must be split between Node C
and Node D).

The aggregation multiplierOFd(N, u) is theoverlap fractionof
N andu along dimensiond, from the perspective of nodeu. That
is, if N andu control adjacenthyper-volumesin the CAN space,
it is the fraction ofu’s hyper-areaat its lower bound in dimension
d that intersects withN ’s hyper-area at its upper bound ind. In
two dimensions, it is the length of the line segment describingN
andu’s shared border divided by the full length ofu’s bordering
edge. For example,OFMemory(D, A) = LAD/(LAC + LAD),
whereL is the length of the line segment. In higher dimensions, the
orthogonality of the dimensions means that we can compute each
of these linear fractions for the dimensions other thand, and take
their product to obtain the overlap fraction. This is what is shown

in Equation 2, whereOverlapEdge(u, N, i) is the overlap ofu
andN in dimensioni (LAD for Node D and Node A in the CPU
dimension) andEdge(u, i) is the length ofu’s edge in dimension
i (LAC + LAD for Node A in the CPU dimension).

Once the aggregated load information is propagated through the
entire CAN space, all the way to the nodes near the origin, the sys-
tem is able to push the incoming jobs into underloaded regions for
better load balancing and to utilize more capable nodes in the sys-
tem. To initiate the job pushing we have to address several issues
as follows:

1. Target Node- Where should a job be sent?

2. Stopping Criteria- When should pushing be stopped?

3. Criteria for the Best Run Node- Which candidate run node
should be selected?

To determine thetarget node, first we want to push the jobs into
lightly loaded regions of the CAN space. Likely the best way to
determine the load of the system is to use theaggregated average
job queue size. Since each node has aggregated load information
about each upper neighbor locally, it can calculate the aggregated
average job queue size for each upper neighbor by usingNumber
of Nodes andSum of the Job Queue Sizes carried by
the load propagation mechanism. However, the shortest average
job queue size does not always give the best choice. A node with
a slightly longer aggregated average queue size might also enable
access to a larger number of potential run nodes than the node with
the smallest aggregated average queue size. This larger number of
nodes makes it more likely that when a pushed job reaches one of
the nodes believed to be lightly loaded, that node will still be lightly
loaded. Therefore, we want to push jobs to the upper neighbor node
that has both a small aggregated load (average job queue size) and
a large number of available nodes above that neighbor node, to in-
crease the number of candidate run nodes. To summarize, we can
determine the target node based on the following objective func-
tion:

Fd(u) =
AId(u).SumOfJobQueueSizes

(AId(u).NumberOfNodes)2
(3)

Whenever a node chooses a target node from among its upper
neighbors, it calculatesFd(u) for eachu ∈ UNd and picks the one
that has the minimum objective function value across all dimen-
sions.

By using the objective function in Equation 3, each node in the
path of a pushed job can decide where to push the job based only
on local information. The question then is thestopping criteria–
whenshould pushing be stopped? We must avoid pushing jobs to
the extreme edges of the CAN space, because that will result in load
imbalance. The stopping criteria for pushing a job should reflect
the current (but distributed) load of the system and be computed
based only on each node’s local information. The very first condi-
tion for stopping should be whenever the matchmaking mechanism
finds afreenode that meets the resource requirements of a job; then
matchmaking can stop pushing the job and assign the free node as
the run node. Note that each node can determine whether there is a
free node in its neighborhood based only on its local neighbor state
information, which is updated periodically. In a relatively lightly
loaded system, this mechanism works well, since every time the
matchmaking is performed, it can find a free node in the system.
However, in a heavily loaded system where most, if not all, of the
nodes are already busy processing jobs, it is not clear how we stop
pushing a job without causing severe load imbalance. A simple



way to do this is for each node to estimate the current load (average
job queue size) of its surrounding neighbors, and if the load is be-
low a predefinedthreshold, then it can stop pushing and assign the
job to one of its neighbor nodes. However, to determine a threshold
that is insensitive to the characteristics of various workloads is not
trivial. Therefore, we employprobabilistic stoppingaccording to
the following formula:

PS(N) =
1

(1 + AITD(N).NumberOfNodes)SF
(4)

In Equation 4,PS(N) shows the probability to stop pushing
a job from nodeN, andSF is thestopping factor, which greatly
affects the shape of the probability function. As the number of
nodes above nodeN in the target dimensionTD (determined by the
neighbor minimizing Equation 3) becomes smaller, the probability
of stopping becomes greater. This means that if a job approaches
the edges of the CAN space, with high probability the pushing will
stop and a run node chosen based on local information. This fea-
ture avoids pushing incoming jobs to the edges of the CAN space,
which would overload the nodes near the edges. We can adjust the
probability function by changingSF (higherSF means a higher
probability of pushing the job). We tested three differentSF values
from 1 to 3 and show the experimental results in Section 5.

We have shown (1) how to aggregate the dynamic load infor-
mation in a CAN space (Equations 1 and 2), (2) based on that
information how to choose a target node for a job (Equation 3), and
(3) when to stop pushing a job (Equation 4). The final step in the
matchmaking algorithm is to choose thebestrun node among the
multiple candidates. Pushing of incoming jobs can be stopped ei-
ther because the matchmaking mechanism found a free node or due
to the probabilistic stopping function. In the former case, the node
where the pushing stopped (we call this node thematching node)
creates a list of capable candidates using its local neighbor state
information. It is possible that there might be multiple free nodes
among the candidates, in which case the matchmaking algorithm
selects thefastestcandidate run node (measuring CPU speed), since
that can speed up the overall processing of a job. However, if the
pushing process stopped because of the probabilistic stopping func-
tion, this means that there are not enough free nodes in the system.
To choose the best run node from among the candidates, but with
no available free nodes, we use the following score function for
ranking the candidates:

F (C) =
C.JobQueueSize

C.SpeedOfCPU
(5)

In Equation 5,F (C) is the score function for a candidate run
nodeC. The candidate node with the minimum score will be se-
lected as the best run node: the algorithm prefers a node with a
smaller job queue and a faster CPU. Using only the set of candi-
date run nodes built by the matching node may not be sufficient,
since we are pushing the jobs across multiple nodes in the sys-
tem. Therefore, we still consider the candidate run nodes found
in the process of pushing, in addition to the candidate run nodes
around the matching node, for better load balancing. To summa-
rize, at each step of pushing a job, the matchmaking mechanism
keeps the best candidate run node based on the score function in
Equation 5, and considers it in the list of candidates created by the
matching node whenever the matchmaking mechanism cannot find
a free node in the system.

5. EVALUATION
In this section, we evaluate our matchmaking algorithms in de-

centralized and heterogeneous environments through a comparative
analysis of experimental results obtained via simulations. To com-
pare against our CAN-based approach, we evaluate two additional
matchmaking algorithms, aRendezvous Node Tree-based approach
and aCentralized Matchmaker, that were described in detail in our
previous work [10, 12].

5.1 The Rendezvous Node Tree
We briefly introduce the Rendezvous Node Tree (RNT), which

uses a distributed data structure built on top of an underlying Chord
DHT [19]. An RNT contains all participating nodes in the desktop
grid. Each node determines its parent node based only on local
information, which enables building the tree in a completely de-
centralized manner. Due to the uniform distribution of GUIDs of
the nodes in the system, the overall height of the RNT is likely to be
O(log N) whereN is the total number of live nodes in the system
(see details in Kim et al. [10]). Once the parent-child relationship
in the RNT is determined, each node periodically sends local sub-
tree resource information (for the subtree rooted by that node) to its
parent node, and this information isaggregatedat each level of the
RNT (hierarchical aggregation)

We inject jobs into the system by mapping each to a randomly-
chosen node that becomes the job’s owner node, which achieves
a good initial load balancing by spreading the jobs across the sys-
tem. The owner node initiates a search for a node on which to
run the job. The search first proceeds through the subtree rooted at
the owner node, only searching up the tree into subtrees rooted at
the ancestors of the owner node if the subtree does not contain any
satisfactory candidates. The search isprunedusing themaximal
amount of each resource availableup and down the tree carried by
the hierarchical aggregation mechanism. Rather than stopping at
the first candidate capable of executing a given job, the search pro-
ceeds until at leastk capable nodes are found for better load bal-
ancing (extended search). If any of the capable nodes has an empty
queue, the empty node with the fastest CPU is selected. Otherwise,
the candidate node chosen is the one with the smallest value of the
score function shown in Equation 5.

The RNT-based approach has a different underlying rationale
than that of the CAN-based mechanisms [12]. Specifically, the
RNT copes with dynamic load balance issues by performing a tree
traversal after the initial mapping, and addressesCompletenessby
passing information describing the maximal amount of each re-
source available up and down the tree (matchmaking after load
balancing). Therefore, RNT is a good comparison model for our
CAN-based matchmaking frameworks which employ load balanc-
ing techniques after approximate mapping of jobs to the nodes in
the system (load balancing after matchmaking).

5.2 Centralized Matchmaker
We have designed an online scheduling mechanism, called the

Centralized Matchmaker, that maintains global information about
the current capabilities and load information for all the nodes in the
system, and so can assign a job to the node that both satisfies the
job requirements and has the lightest current load across all nodes
in the entire system. In our simulation environment, the Centralized
Matchmaker does not incur any cost for gathering the global infor-
mation about the nodes in the system and performing the match-
making (since the simulator can maintain global information about
all the nodes in the system). Even though the matchmaking per-
formed by the Centralized Matchmaker is not always optimal (since
it is an online algorithm), it should provide good load balancing and



is a good comparison target for other matchmaking algorithms (as
in Oppenheimer et al. [17] and Zhou et al. [21]).

We can view the Centralized Matchmaker algorithm as the ex-
treme case of the RNT or CAN based search algorithm, since it
first findsall candidate run nodes that meet the job requirements
and picks the one with the lightest load. However, such a scheme
would not be feasible in a completely decentralized system imple-
mentation, since the algorithm would incur a large overhead to find
all nodes in the P2P system that meet the job requirements, and the
node performing the centralized algorithm would be a single point
of failure for the system.

5.3 Experimental Setup
We use synthetic job and node mixes to simulate the behavior

and measure the performance of our improved CAN-based match-
making algorithm. Our intent is to model a P2P desktop grid envi-
ronment with a heterogeneous set of nodes and jobs. We therefore
generated a variety of workloads, each describing a set of nodes
and events. Events include node joins, node departures (graceful
or from a failure), and job submissions. The events are generated
using a Poisson distribution with an arrival rate of1/τ (τ is the
average event inter-arrival time). Jobs can specify constraints for
three different resource types: CPU speed, memory, and disk space.
We generated node profiles using aclustering modelto emulate re-
sources available in a heterogeneous environment, where a high
percentage of nodes have relatively small values for their avail-
able resources and a small fraction of nodes have larger amounts
of available resources (as in Zhou et al. [22]).

Our test traffic workloads differ on two axes. Workloads are cat-
egorized as eitherclusteredor mixed(as described in Section 2).
The former divides all nodes and jobs into a small number of equiv-
alence classes, where all items in a given equivalence class are
identical. The latter assigns node capabilities and job constraints
randomly. Workloads are also distinguished by whether the jobs
are “lightly” or “heavily” constrained. For a given job, each type of
resource has a fixed independent probability of being constrained:
“lightly-constrained” jobs have an average of 1.3 constraints (out of
the 3) and “heavily-constrained” jobs have an average of 2.4. As a
job has more minimum resource requirements (heavily-constrained
workloads), it is likely to be harder to match the job since fewer
nodes in the system can meet those multiple constraints.

In this paper, we only present results frommixedworkloads since
in the clustered workloads, the CAN-based matchmaking mecha-
nism already has shown better performance than the RNT-based
approach and is close to that of the Centralized Matchmaker [12].

The amount of workW for a job j is generated uniformly at ran-
dom from a predefined set of work ranges (40 minutes on average),
and means that to run the jobj a node must execute forW time units
if it hasexactlythe same node specification as does the jobj’s con-
straints. To model the actual running time of a job, we divideWby
the node CPU speed (relative to some baseline node CPU speed),
to get a run time on the node a job is assigned to. Finally, for the
network communication cost, the latency of a packet between any
two nodes in the system is modeled by an exponential distribution
with a mean of 50 milliseconds.

Our metrics arematchmaking cost(the amount of time between
when a job is injected and when it is assigned to a run node in
the system),wait time (the amount of time between when a job
is injected and when it actually starts running) andaverage queue
length (the length of the non-preemptive job queue seen by a job
when it is finally assigned to a run node). Matchmaking cost di-
rectly quantifies the overhead needed to perform the matchmaking
in a decentralized manner. Wait time includes the time to perform

the matchmaking algorithmand the time spent waiting in the job
queue of a run node before a job is executed. Wait time reflects both
protocol overhead and the quality of the matchmaking results, i.e.,
load balancing. Finally, the distribution of queue lengths provides
a direct measurement of the load balance seen by injected jobs.

We test the original CAN approach (Section 4.2) (CAN) and
the improved CAN approach employing dynamic aggregated load
information (Section 4.3 and 4.4) with different stopping factors
from 1 to 3 (CAN-P1,2,3). To compare against CAN-based match-
making mechanisms, we also tested the RNT-based approach (Sec-
tion 5.1) (RNT) and the idealized centralized approach (Section 5.2)
(CENTRAL ). We do not include matchmaking cost for the central-
ized approach because it incurs no cost for matchmaking.

5.4 Performance Results
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Figure 5: Utilization of Resources for Lightly-Constrained
Workloads

We begin by discussing the experimental results obtained from
relatively static workloads with lightly and heavily-constrained jobs,
respectively. In the static workloads, no nodes join or leave the
system during the course of the experiments. There are six differ-
ent workloads for the lightly-constrained jobs, which have differ-
ent values ofτ from 15 seconds to 20 seconds. Similarly, for the
heavily-constrained workloads, we variedτ from 25 seconds to 30
seconds.

The important characteristic of these workloads is that all of
them reach asteady stateduring the simulation period. For exam-
ple, the percentage ofactivenodes (nodes currently running jobs)
when the last job is injected into the system for lightly-constrained
workloads is depicted in Figure 5. Figure 5 shows that for values
of τ from 18 down to 16 seconds, the utilization of the overall sys-
tem resources remains low, indicating lightly loaded environments,
while from 14 seconds down almost 100% of the nodes are busy
processing other jobs when the last job is inserted into the system.
This means the system has reached its maximum throughput. In-
terestingly, the utilization of CENTRAL is smaller than all other
matchmaking mechanisms in lightly loaded environments (from 18
to 16 seconds). This is because CENTRAL is the global algorithm
that can assign a job to the fastest idle node in the system, which
accelerates the rate at which jobs are processed.

In the steady state, the rate for incoming jobs and finishing jobs
is approximately the same, and we want to show the performance
of each matchmaking mechanism in this steady state, to avoid the
transient effects of earlier jobs that see a largely empty system. We
can inject more jobs with smallerτ to increase the system load,
which will eventually saturate the system and result in indefinite
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Figure 6: Experimental Results for Lightly-Constrained Workloads

growth of job queues. However, this will not be feasible in a real
system, since when the overall system becomes too heavily loaded
the system canrefuseto receive more jobs until it becomes stabi-
lized. The desire to measure steady state behavior explains why we
choose different ranges forτ for lightly and heavily-constrained
jobs. In the heavily-constrained workloads, many jobs have mul-
tiple resource requirements, and this reduces the number of nodes
that are legal matches for a job in the system. Therefore to make the
workloads reach steady states, we increaseτ for these jobs relative
to the lightly-constrained workloads. The workloads belonging to
either the lightly or heavily-constrained sets haveexactly the same
job and node profiles, respectively, so that we can directly compare
across different values ofτ .

In this paper, we only present results fromlightly-constrained
workloads since for the heavily-constrained ones we verified that
most of the behaviors and performance of the CAN-based match-
making algorithms are similar to those in our previous work [12].
We refer interested readers to our extended version of this paper [11].

Figure 6(a) shows the performance results for the matchmaking
mechanisms, measuring job wait time for lightly-constrained work-
loads. We omitted the results for average queue lengths since they
show similar behavior to the job wait time metric [11]. This is be-
cause a majority of the job wait time consists of waiting time in
the job queues, which shows the importance of load balancing. We
only plot the improved CAN-based matchmaking mechanism with
stopping factor 2 (CAN-P2) since it shows relatively stable per-
formance for both lightly and heavily-constrained workloads (in-
sensitive to the characteristics of the workloads). The results im-
ply that our improved CAN-based matchmaking mechanism shows
very competitive performance even compared to CENTRAL and
improves the quality of load balancing dramatically from the orig-
inal CAN algorithm (CAN). More specifically, CAN-P1 has 2.1
times the average job wait time of CENTRAL across all the lightly-
constrained workloads, CAN-P2 is a factor of 1.5 worse and CAN-
P3 is a factor of 1.4 worse, while the RNT is a factor of 4.6 worse
and CAN is 21.2 times worse. The main reason CAN has poor
load balancing is that for the lightly-constrained workloads, a ma-
jority of the jobs has few or no constraints, so that many jobs are
mapped to a comparatively small region of the CAN space near the
origin. More specifically, if a job does not specify any requirement
for a specific resource type, the corresponding coordinate for the
job is mapped to the minimum constraint value (in our case, 0),
and this results in ahot spotcausing load imbalance. However, by

pushing jobs to underloaded regions of the CAN space, CAN-P2
can disperse the jobs in the different dimensions from the original
hot spot, which results in superior load balancing (as seen in Fig-
ure 6(a)). Additionally, CAN-P2 can utilize more capable nodes
whenever needed, which can accelerate overall job processing so
that CAN-P2 also outperforms the RNT.

However, pushing jobs in the CAN space may cause additional
overhead for matchmaking, since each job must traverse the CAN
space from its owner node to find an appropriate run node. Fig-
ure 6(b) shows that CAN-P2 has worse matchmaking performance
than CAN. Also, as we increase the stopping factor (SF), the match-
making cost increases accordingly, since with higher SF the prob-
ability for stopping decreases. However, all of the CAN-based
matchmaking mechanisms (CAN and CAN-P2) still show better
matchmaking performance than RNT. This is because the CAN-
based matchmaking mechanism inserts each job into the right place
in the DHT for matchmaking (the owner node), where surround-
ing neighbor nodes can already meet the resource requirements of
the job. However, in the RNT approach each job starts from a
completely random place in the DHT and must find an appropri-
ate run node for the job through searching up and down the RNT.
Another interesting result in Figure 6(b) is that all of our match-
making algorithms (including CAN, CAN-P2 and RNT) show very
low cost for performing matchmaking in distributed and heteroge-
neous environments. Compared to the wait time of jobs shown in
Figure 6(a), the cost for matchmaking is negligible. This could
be because of our assumption about the average packet delay for a
message, which is set to 50 milliseconds. However, ignoring the
packet delay, the results show that all of our matchmaking mech-
anisms find an appropriate run node with a very small number of
P2P network hops to achieve good load balancing. Hence, we can
concentrate on the load balancing issue whenever the average run-
ning time of jobs (in our case, 40 minutes) is significantly longer
than the network communication speed, which is a typical scenario
in a desktop grid computing environment.

Costs and Benefits of SF.
Different stopping factor values can affect the behavior of the

CAN-P algorithm, as measured by the number of jobs pushed, as
seen in Figure 7(a). With higher SF, more jobs will be pushed into
the upper regions of the CAN space due to the decreased stop-
ping probability, so that CAN-P3 shows the highest percentage
of pushed jobs among the three different CAN-Ps. Increasing the
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Figure 7: Costs and Benefits of CAN-P for Lightly-Constrained Workloads

stopping factor increases the overall matchmaking cost, since jobs
are pushed farther in the CAN space to find appropriate run nodes.
However, that does provide benefits from better load balancing, as
seen in Figure 7(b), since more capable nodes end up being used
for some jobs in the system. As the overall system becomes lightly
loaded (increasingτ ), the percentage of pushed jobs decreases,
since the matchmaking mechanism is more likely to encounter an
empty node (as seen from Figure 7(a)). The decrease is less for
heavily-constrained workloads since there are not as many nodes
in the system that can run the incoming jobs, which means that the
jobs start pushing from relatively near the edges of the CAN space.

Dynamic Workloads.

Average Wait Time of Jobs (Dynamic)

500

1000

1500

2000

2500

3000

10 20 30

Percentage of Node Departures

W
a
it

 T
im

e 
o
f 

J
o
b

 (
s)

CAN

CAN-P2

RNT

CENTRAL20,057 20,931 17,048

Figure 8: Experimental Results for Lightly-Constrained Dy-
namic Workloads

Figure 8 shows wait times for threelightly-constrained mixed
workloads, where between 10% and 30% of the nodes leave during
the course of simulation, and shows that node departures can affect
CAN-P’s ability to match CENTRAL’s performance. The value of
τ for all of the dynamic workloads is set at 17.5 seconds. Note that
in Figure 8, results from the basic CAN are truncated since they
have very large values compared to the other matchmaking frame-
works. Node departures include graceful departures, where a node
informs its neighbors before leaving, and failures, where the neigh-
bors learn of the departure from missing P2P network heartbeat

messages. All of the dynamic workloads have the same number of
jobs and the same job profiles, but have different sets of available
nodes in the system at different times, so that we cannot directly
compare across workloads.

In the dynamic workloads, because existing nodes depart the sys-
tem the information carried by the CAN- and RNT-based mecha-
nisms can be more stale compared to the information maintained
for static workloads, and there can also be some overhead for P2P
network recovery (unlike for CENTRAL). More specifically, CAN-
P2 shows 1.6 times the job wait time of CENTRAL on average
across all the workloads, and RNT is a factor of 5.2 worse. Al-
though we cannot directly compare these results with Figure 6,
clearly there are some load balancing issues for both the CAN-P
and RNT algorithms, that keep them from approaching the wait
time performance of CENTRAL. The dynamic behavior of the nodes
in the system seems to have a much larger impact on basic CAN
compared to CAN-P2 or RNT. Since all of the dynamic workloads
are based on mixed sets of nodes and jobs, a load imbalance prob-
lem similar to the one that we saw for the basic CAN earlier, due
to a hot spot in the CAN space, can occur as the jobs are enter-
ing the system and being assigned to run nodes. However if one
of the nodes in the hot spot leaves the system or fails, that can
be disastrous for wait time performance, since all of the jobs that
were running or waiting in the departed node must be re-assigned
to other live nodes in the system. Since each node in the hot spot
has a disproportionate number of assigned jobs, this causes even
more severe load imbalances. However, by employing the pushing
mechanism based on dynamic aggregated load information, CAN-
P2 can spread the jobs away from the hot spot and achieve more
reliable load balancing compared to CAN and still outperforms the
RNT, which is based on random initial load balancing.



6. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a matchmaking framework for

desktop grid systems that can effectively match incoming jobs and
balance the load across multiple candidate nodes, without central-
izing information or control. By extending our previous work [12],
we have improved the CAN-based matchmaking mechanism to em-
ploy dynamic aggregated load information and to push jobs to un-
derloaded regions of the CAN space. Through a comparative anal-
ysis of the experimental results obtained via simulations, we have
shown that our system can reliably execute Grid applications on a
widely distributed set of resources with good load balancing and
low matchmaking cost.

Our work up to now has mainly consideredcontinuousconstraints
for a job, such as minimum required CPU speed and memory size.
However, we must also deal withdiscreteconstraints for a job, such
as operating system type and version. These kinds of discrete con-
straints can make the matchmaking process more difficult, since
we have to find both exact matches for discrete constraints, and
approximate matches for continuous constraints in a single proto-
col. Addressing this problem is a subject of future work. We are
also in the process of building a prototype system based on CAN-P
matchmaking, and will characterize its behavior on real workloads,
via consultation with our application-area collaborators in physics
and astronomy. In the future, we will measure and report on the be-
havior of our system for heterogeneous environments running real
applications.
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