
Distributed Ranked Search

Vijay Gopalakrishnan1, Ruggero Morselli2, Bobby Bhattacharjee3, Pete Keleher3, and
Aravind Srinivasan3

1 AT&T Labs – Research
2 Google Inc

3 University of Maryland

Abstract. P2P deployments are a natural infrastructure for building distributed
search networks. Proposed systems support locating and retrieving all results,
but lack the information necessary to rank them. Users, however, areprimarily
interested in the most relevant results, not necessarily all possible results.
Using random sampling, we extend a class of well-known information retrieval
ranking algorithms such that they can be applied in this decentralized setting.
We analyze the overhead of our approach, and quantify how our system scales
with increasing number of documents, system size, document to node mapping
(uniform versus non-uniform), and types of queries (rare versuspopular terms).
Our analysis and simulations show that a) these extensions are efficient, and scale
with little overhead to large systems, and b) the accuracy of the results obtained
using distributed ranking is comparable to that of a centralized implementation.

1 Introduction

Search infrastructures often order the results of a query byapplication-specific notions
of rank. Users generally prefer to be presented with small sets of ranked results rather
than unordered sets of all results. For example, a recent Google search for “HiPC 2007”
matched over 475,000 web pages. The complete set of all results would be nearly use-
less, while a very small set of the top-ranked results would likely contain the desired
web site. Moreover, collecting fewer results reduces the network bandwidth consumed,
helping the system scale up—to many users, hosts, and data items— and down—to
include low-bandwidth links and low-power devices.

Ranking results in a decentralized manner is difficult because decisions about which
results to return are made locally, but the basis of the decisions, rank, is a global prop-
erty. Technically, we could designate one node as being responsible for ranking all the
search results. Such an approach, however, would result in this peer receiving an unfair
amount of load. Further, there are the issues of scalabilityand fault-tolerance with using
just one node.

The main contribution of this paper is the design and evaluation of a decentralized
algorithm that efficiently and consistently ranks search results over arbitrary documents.
Our approach is based on approximation techniques using uniform random sampling,
and the classic centralized Vector Space Model (VSM) [1]. Our results apply to both
structured and unstructured networks.

Our analysis shows that the cost of our sampling-based algorithm is usually small
andremains constant as the size of the system increases. We present a set of simulation

results, based on real document sets from the TREC collection [2], that confirm our
analysis. Further, the results show that the constants in the protocol are low, e.g., the
protocol performs very well with samples from 20 nodes per query on a 5000 node net-
work, and that the approach is robust to sampling errors, initial document distribution,
and query location.

The rest of the paper is organized as follows. We first presentsome background on
ranking in classical information retrieval in Section 2. Wethen discuss our design for
ranking results in Section 3 and analyze its properties. In Section 4, we present exper-
imental results where we compare the performance of the distributed ranking scheme
with a centralized scheme. We discuss other related work in Section 5 before concluding
in Section 6.

2 The Vector Space Model (VSM)

The Vector Space Model (VSM) is a classic information retrieval model for rank-
ing results. VSM maps documents and queries to vectors in aT -dimensional term
space, whereT is the number ofuniqueterms in the document collection. Each term
i in the documentd is assigned a weightwi,d. The vector for a documentd is de-
fined asd = (w1,d, w2,d, . . . , wT,d). A query is also represented as a vectorq =
(w1,q, w2,q, . . . , wT,q), whereq is treated as a document.

Vectors that are similar have a small angle between them. VSMuses this intuition to
compute the set of relevant documents for a given query; relevant documents will differ
from the query vector by a small angle while irrelevant documents will differ by a large
angle. Given two vectorsX andY , the angleθ between them can be computed using
cos θ =

P

n

i=1
xiyi√

P

n

i=1
x2

i

√
P

n

i=1
y2

i

. This equation is also known as the cosine similarity, and

has been used in traditional information retrieval to identify and rank relevant results.

2.1 Generating Vector Representation

The vector representation of a document is generated by computing theweightof each
term in the document. The key is to assign weights such that terms that capture the
semantics in the document and therefore help in discriminating between the documents
are given a higher weight.

Effective term weighting formulae have been an area of much research (e.g., [3,4]),
unfortunately with little consensus. While any of the commonly used formulae can be
used with our scheme, we use the weighting formula used in theSMART [5] system as
it has shown to have good retrieval quality in practice:

wt,d = (ln ft,d + 1) · ln
(

D

Dt

)

(1)

wherewt,d is the weight of termt in documentd, ft,d is the raw frequency of termt in
documentd, D is the total number of documents in the collection, andDt is the number
of documents in the collection that contain termt.

3 Distributed VSM Ranking

In this section, we present our distributed VSM ranking system for keyword-based
queries. There are three main components needed for ranking: generating a vector rep-
resentation for exported documents, storing the document vectors appropriately, and
computing and ranking the query results. We first describe our assumed system model
and then discuss each of these components in detail.

3.1 System Model

Our ranking algorithm is designed for both structured and unstructured P2P systems.
Our algorithm constructs an inverted index for each keywordand these indexes are dis-
tributed over participating nodes (which are assumed to be cooperative). Aninverted
index of a keyword stores the list of all the documents having the keyword. We as-
sume that the underlying P2P system provides alookupmechanism necessary to map
indexes to nodes storing them. While APIs for lookup are available in all structured
systems, we rely on approaches such as LMS [6] and Yappers [7]for lookup over un-
structured systems. The underlying P2P system dictate how the indexes are mapped to
nodes; structured P2P systems store indexes at a single location, while an index may
be partitioned over many locations in unstructured systems. Each nodeexportsa set of
documents when it joins the system. A set of keywords (by default, all words in the
document) is associated with the document. The process of exporting a document con-
sists of adding an entry for the document in the index associated with each keyword.
When querying, users submit queries containing keywords andmay specify that only
the highest rankedK results be returned. The system then computes theseK results in
a distributed manner and returns the results to the user.

3.2 Generating Document Vectors

Recall that to generate a document vector, we need to assign weights to each term of
the document. Also recall Equation (1), which is used to compute the weight of each
termt in a document. The equation has two components: a local component,ln ft,d +1,
which captures the relative importance of the term in the given document, and a global
component,ln(D/Dt), which accounts for how infrequently the term is used acrossall
documents. The local component can be easily obtained by counting the frequency of
the word in the document. The global component is stated in terms of the number of
documentsD in the system, and the number of documentsDt that have the termt. We
use random sampling to estimate these measures.

Let N be the number of nodes in the system, andD andDt be as above. We choose
k nodes uniformly at random. This can be done either with random walks, in unstruc-
tured systems [6], or routing to a random point in the namespace in structured sys-
tems [8]. We then compute the total numberD̃ of documents and̃Dt of documents
with termt at the sampled nodes. For simplicity, we accept that the samenode may be
sampled more than once. It is easy to see thatE[D̃] = k D

N andE[D̃t] = k Dt

N where
E indicates expectation of a random variable. The intuition is that, if we take enough

samples,̃D andD̃t are reasonably close to their expected value. If that is the case, then
we can estimateD/Dt as D

Dt

≈ D̃
D̃t

To derive a sufficient condition for this approximation, we introduce two new quan-
tities. LetM andMt be the maximum number of documents and maximum number of
documents with the termt, respectively, on a node. We call the estimateD̃ (resp.D̃t)
“good”, if it is within a factor of(1±δ) of its expected value. The estimate can be “bad”
with a small probability (ǫ).

Theorem 1. LetD, N , k, M be as above. For any0 < δ ≤ 1 andǫ > 0, if

k ≥ 3

δ2

M

D/N
ln(2/ǫ) (2)

then the random variablẽD (as defined above) is very close to its mean, except with
probability at mostǫ (see [9] for proof). Specifically:

Pr[(1 − δ)
kD

N
≤ D̃ ≤ (1 + δ)

kD

N
] > 1 − ǫ (3)

If we replaceD, M , D̃ with Dt, Mt, D̃t, the theorem also implies that if

k ≥ 3

δ2

Mt

Dt/N
ln(2/ǫ) (4)

then the random variablẽDt is also a good estimate.
The following observations follow from Theorem 1:

– Theorem 1 tells us that for a good estimate, the number of samples needed does not
depend onN directly, but on the quantitiesD/N andDt/N and, less importantly,
on M andMt. This means that as the system size grows, we donot need more
samples as long as the number of exported documents (with term t) also increases.

– If the number of documentsD is much larger than the system sizeN and queries
consist of popular terms (Dt = Ω(N)), then our algorithm provides performance
with ideal scaling behavior: Sampling a constant number of nodes gives us provably
accurate results,regardless of the system size.

– In practice, documents and queries will contain rare (i.e.,not popular) terms, for
which ln(D/Dt) may be estimated incorrectly. However, we argue that such esti-
mation error is both unimportant and inevitable. The estimation is relatively unim-
portant because if the query contains rare terms, then the entire set of results is
relatively small, and ranking a small set is not as important. In general, sampling
is a poor approach for estimating rare properties and alternate approaches are re-
quired.

– The number of samples is proportional to the ratios between the maximum and the
average number of documents stored at a node (i.e.,M

D/N and Mt

Dt/N). This means
that, as the distribution of documents in the system becomesmore imbalanced,
more samples are needed to obtain accurate results.

Note that in the special case where the documents are distributed uniformly at ran-
dom, the cost of sampling is significantly decreased becausethe number of samples
need not be proportional to the maximum numberM of documents at any node. Please
refer to the companion technical report [9] for more details.

Export_Document(d)

k1
k2
k3

Index k1
.

.

.

d w

.

.

.

d w

Index k3

.

.

.

d w

Index k2Insert(d,)wEstimate_Global_Weight()

Random Sampling

Fig. 1: Various steps in exporting documents and their vector representation

3.3 Storing Document Vectors

Document vectors need to be stored such that a query relevantto the document can
quickly locate them. We store document vectors in distributed inverted indexes. As
mentioned previously, aninverted indexfor a keywordt is a list of all the documents
containingt. For each keywordt, our system stores the corresponding inverted index
like any other object in the underlying P2P lookup system. This choice allows us to
efficiently retrieve vectors of all documents that share at least one term with the query.

Figure 1 shows the process of exporting a document. We first generate the corre-
sponding document vector by computing the term weights, which uses the procedure
described in section 3.2. Next, using the underlying storage system API, we identify the
node storing the index associated with each term in the document and add an entry to
the index. Such entry includes a pointer to the document and the document vector.

The details of storing document vectors in inverted indexesdepend on the underly-
ing lookup protocol. In structured systems, given a keywordt, the index fort is stored
at the node responsible for the key corresponding tot. The underlying protocol can
be used to efficiently locate this node. A similar approach using inverted indexes has
previously been used by [10–13] for searching in structuredsystems. In unstructured
networks, indexes would need to be partitioned or replicated [6,7].

Reducing storage costSo far, we have assumed that each word in the document is a
keyword. Hence an entry is added for the document in the indexes of all the words in the
document. A document, however, will not appear among the topfew results when its
weights for the query terms are low. Hence, not having these low-weight entries in the
index does not reduce the retrieval quality of the top few results. We use this intuition to
reduce the cost of propagating and storing vectors in indexes. We assume that there is
a constant thresholdwmin, that determines if the document entry is added to an index.
The vector is not added to the index corresponding to the termt if the weight oft is
below the thresholdwmin. Note that the terms with weights below this threshold are
still part of the vector. This heuristic has also been successfully used in eSearch [10].

3.4 Evaluating Query Results

A query is evaluated by converting it into a vector representation, and then comput-
ing the cosine similarity with respect to each “relevant” document vector. We compute
query vectors using the same techniques used to generate thedocument vector. The next

step is to locate the set of relevant documents. For each keyword in the query, we use
the lookup functionality provided by the underlying systemto identify the node storing
the index of that keyword. We then compute the cosine similarity between the query
and each of the document vectors stored in the index. This gives us a ranking of the
documents available in this index. Finally, we fetch the top-K results computed at each
of the indexes and compute theunionof these result sets. The top-K documents in this
union, sorted in the decreasing order of cosine similarities, give us our final result set.

4 Evaluation

In this section, we validate our distributed ranking systemvia simulation. We measure
performance by comparing the quality of the query results returned by our algorithm
with those of a centralized implementation of VSM.

Experimental setupWe use the TREC [2] Web-10G data-set for our documents. We
used the first 100,000 documents in this dataset for our experiments. These 100K doc-
uments contain approximately 418K unique terms. Our default system size consists of
1000 nodes. We use two different distributions of documentsover nodes: a uniform
distribution to model the distribution of documents over a structured P2P system and a
Zipf distribution to model distribution in unstructured systems.

Since our large data set (100K documents) did not have queries associated with it,
we generated queries of different lengths. Our default query set consists exclusively
of terms that occur in approximately 5000 documents. We denote this query set as the
Q5K query set in our experiments. The intuition behind picking these query terms is
that they occur in a reasonable number of documents, and are hence popular. At the
same time, they are useful enough to discriminate documents. We also use query sets
that exclusively contain keywords that are either very popular (occur in more than 10K
documents) or those that are very rare (occur in less than 200documents). We denote
these query sets asQpop and Qrare respectively. Each result presented (except for
details from individual runs) is an average of 50 runs.

We use three metrics to evaluate the quality of distributed ranking:

1. CoverageWe define coverage as the number of top-K query results returned by
the distributed scheme that are also present in the top-K results returned by a cen-
tralized VSM implementation for the same query. For example, if we’re interested
in the top3 results, and the distributed scheme returns the documents(A,C,D)
while the centralized scheme returns(A,B,C), then the coverage for this query is
2.

2. FetchWe define fetch as the minimum numberR′ such that, when the user obtains
the set ofR′ results as ranked by the distributed scheme,R′ contains all the top-K
results that a centralized implementation would return forthe same query. In the
previous example, if the fourth result returned by the distributed case had beenB,
then the fetch forK = 3 would be 4.

3. Consistency:We define consistency as the similarity in the rank of results, for the
same query, for different runs using different samples.

Network Number of Top-K results
Setup Samples 10 20 30 40 50

10 8.49 (1.08)16.99 (1.20)25.30 (1.55)33.68 (2.07)42.28 (2.01)1000
20 8.90 (0.99)17.81 (1.04)26.44 (1.26)35.23 (1.87)44.30 (1.82)uniform
50 9.28 (0.82)18.63 (0.82)27.66 (1.04)36.08 (1.45)46.30 (1.46)
10 6.78 (1.39)13.58 (1.74)20.43 (2.39)27.35 (2.99)34.59 (3.40)5000
20 7.74 (1.29)15.41 (1.46)22.92 (1.96)30.50 (2.47)38.49 (2.58)uniform
50 8.52 (1.09)16.96 (1.18)25.20 (1.56)33.59 (2.11)42.34 (1.98)
10 8.27 (1.15)16.52 (1.26)24.66 (1.71)32.82 (2.21)41.20 (2.27)1000
20 8.82 (0.99)17.63 (1.06)26.22 (1.35)34.83 (1.93)43.70 (1.88)Zipf
50 9.26 (0.80)18.54 (0.88)27.52 (1.12)36.71 (1.49)46.12 (1.56)
10 6.09 (1.54)12.29 (1.97)18.58 (2.68)25.01 (3.39)31.67 (3.97)5000
20 7.34 (1.31)14.71 (1.62)21.89 (2.10)29.34 (2.64)36.93 (2.90)Zipf
50 8.41 (1.13)16.73 (1.22)24.92 (1.61)33.22 (2.08)41.71 (2.03)

Table 1: Mean and Std. Deviation of coverage with the distributed ranking scheme.

We do not explicitly present network overhead measures since the cost of the rank-
ing (without counting the cost to access the indexes) is always equal to the number of
nodes sampled.

4.1 Coverage

In the first experiment, we measure the coverage of the distributed retrieval scheme. We
show that by sampling only a few nodes even on a reasonably large system, our scheme
produces results very close to a centralized implementation

In our base result, we use a 1000 node network. The documents are mapped uni-
formly to nodes. To compute the global weight of termt, we sample 10, 20 and 50
nodes in different runs of the experiment. The queries consist of keywords from the
Q5K query set, i.e. the keywords occur in approximately 5000 documents.

The results are presented in Table 1. It is clear from Table 1 that the distributed
ranking scheme performs very similar to the centralized implementation. On a 1000
node network with documents distributed uniformly, the mean accuracy for the top-K
results is close to 93% with 50 random samples. Even with 10 random samples, the
results are only slightly worse at 85% accuracy.

With 5000 nodes, the retrieval quality is not as high as a network with 1000 nodes.
With 20 random samples, the mean accuracy is 77% for top-K results. There is a 8%
increase in mean accuracy when we increase the sampling level and visit 1% (50) of the
nodes. This result is a direct consequence of Theorem 1. Here, the number of documents
has remained the same, but the number of nodes has increased.Hence, higher number
of nodes sampled leads to better estimates.

Table 1 also shows the retrieval quality for documents mapped to nodes using a
Zipf distribution with parameter 0.80. With 1000 nodes and 50 samples, the retrieval
quality is similar to that of the uniformly distributed case. With 10 samples, however,
the mean accuracy drops a few percentage points to between 82–83%. With 5000 nodes
and 50 samples, we see similar trends. While the quality is notas good as it is with

 0

 20

 40

 60

 80

 100

 50 40 30 20 10 0

of

 r
es

ul
ts

 to
 b

e
fe

tc
he

d

top-K centralized results

Optimal

10 Samples
20 Samples
50 Samples

Fig. 2: Average fetch of the distributed rank-
ing scheme with 1000 nodes. The error bars
correspond to 95% confidence interval.

 0

 20

 40

 60

 80

 100

 50 40 30 20 10 0

of

 r
es

ul
ts

 to
 b

e
fe

tc
he

d

top-K centralized results

Optimal

10 Samples
20 Samples
50 Samples

Fig. 3: Average fetch of the distributed rank-
ing scheme with 5000 nodes. The error bars
correspond to 95% confidence interval.

the uniformly distributed data, it does not differ by more than 2%. With 10 samples,
the results worsen by about much as 7%. Hence, we believe our scheme can be applied
over lookup protocols on unstructured networks without appreciable loss in quality.

4.2 Fetch

Given the previous result, an obvious question to ask is how many results need to be
fetched before all the top-K results from the centralized implementation are available
(we called this measure Fetch). We experiments with both 1000 and 5000 nodes with
the documents uniformly distributed. We used theQ5K query set for our evaluation. We
plot the result in Figures 2 and 3. The x-axis is the top-K of results from the centralized
implementation, while the y-axis represents the corresponding average fetch.

With a 1000 node network, we see that fetch is quite small evenif only ten nodes
are sampled. For instance, sampling 10 nodes, we need 13 results to match the top-10
results of the centralized case. With samples from 50 nodes,fetch is minimal even for
less relevant documents: we need 11 entries to match the desired top-10 results and 63
to match the top-50 results from the centralized implementation.

As expected, with increasing network size, but same document set, the fetch in-
creases. When we sample 1% of the 5000 nodes, we need 13 resultsto cover the top-10
and 88 to cover the top-50. With lesser sampling, however, weneed to fetch a lot more
results to cover the top-K. This behavior, again, is predicted by Theorem 1: when the
number of nodes increases without a corresponding increasein the number of docu-
ments, the samples needed to guarantee a bound on sampling error also increases.

Other experiments indicate similar results when the document distribution is skewed.
We merely summarize those results here. With a 1000 node network and 10 random
samples, the fetch increases by 10% compared to the network where documents are
mapped uniformly to nodes. In a 5000 node network, this increases by 35% compared
to the uniform case. The results in both the network sizes with 50 random samples,
however, are comparable to the uniform case.

 50 45 40 35 30 25 20 15 10 5

run 5
run 4
run 3
run 2
run 1

run 5
run 4
run 3
run 2
run 1

run 5
run 4
run 3
run 2
run 1

di
st

rib
ut

ed
 r

es
ul

t

centralized result rank

Q
ue

ry
 1

Q
ue

ry
 2

Q
ue

ry
 3

Fig. 4: Consistency of top-50 results in dis-
tributed ranking for three different queries
from Q5K set

Network Top-K results
Setup 10 20 30 40 50

500 nodes7.7516.1125.0833.6242.24
1000 nodes7.9916.3324.5832.9841.59
2000 nodes7.6715.8523.9632.0040.11
5000 nodes6.9515.2122.9930.6638.85

Table 2: Mean coverage when the number of
nodes and documents scale proportionally.

4.3 Consistency

In our system, a new query vector is generated each time a query is evaluated. This
leads to different weights being assigned to the terms during different evaluations of the
same query. This can increase the variance in ranking, and potentially lead to different
results for different evaluations of the query. In this experiment, we show that is not the
case, and that the results are minimally affected by the different samples.

We use a network of 1000 nodes with documents mapped uniformly to these nodes.
We sample 20 random nodes while computing the query vector. We useQ5K and record
the top-50 results for different runs and compare the results against each other and
against the centralized implementation.

Figure 4 shows the results obtained during five representative runs for three repre-
sentative queries each. For each run, the figure includes a small box corresponding to
a document ranked in the top-50 by centralized VSM if and onlyif this document was
retrieved during this run. For example, in Figure 4, query 1,run 2 retrieved documents
ranked1 . . . 25, but did not return the document ranked 26 in its top 50 results. Also,
note that the first 25 centrally ranked documents need not necessarily be ranked exactly
in that order, but each of them were retrieved within the top-50.

There are two main observations to be drawn: first, the sampling does not adversely
affect the consistency of the results, and different runs return essentially the same re-
sults. Further, note that these results show that the coverage of the top results is uni-
formly good, and the documents that are not retrieved are generally ranked towards the
bottom of the top-50 by the centralized ranking. In fact, a detailed analysis of our data
shows that this trend holds in our other experiments as well.

4.4 Scalability

In this experiment, we evaluate the scalability of our scheme with increasing system
size. Theorem 1 states that the number of samples required isindependent of the sys-
tem size, under the condition that the size of the document set grows proportionally to
the number of nodes. We demonstrate this fact by showing thatcoverage remains ap-

Weight Q5K Qpop Qrare

Threshold 10 30 50 10 30 50 10 30 50
0.0 (0.0) 8.90 26.44 44.308.32 26.31 44.498.59 26.01 44.47

0.05 (55.5)8.90 26.44 44.348.33 26.32 44.408.50 26.01 44.47
0.10 (85.0)8.90 26.40 44.228.32 26.17 43.878.59 26.01 43.54
0.20 (97.2)7.64 20.43 30.976.39 17.90 26.708.46 21.41 28.43
0.30 (99.3)4.53 7.98 8.882.79 6.84 9.906.66 9.78 9.99

Table 3: The mean coverage of distributed ranking for different weight thresholds. The numbers in
parenthesis show the reduction in the size of the indexes corresponding tothe different thresholds.

proximately constant as we increase the system size ten-fold (from 500 to 5000), while
sampling the same number of nodes (20).

The number of documents in each experiment is 20 times the number of nodes in
the system. For all the configurations, the terms used in queries occur in more than 10%
of the total documents. For the 5000 node network, this corresponds to theQpop query
set. In each case, we sample 20 random nodes to estimate the global weights.

Table 2 shows the mean coverage of our distributed scheme. Asthe table shows, the
coverage of the distributed retrieval is very similar in most cases. This result confirms
that our scheme depends almost entirely on the density of thenumber documents per
node, and that it scales well as long as the density remains similar.

4.5 Reducing storage cost

Recall our optimization to store document vectors only in the indexes of keywords
whose weights are greater than a thresholdwmin. In this experiment, we quantify the
effect of this optimization. For this experiment, we used a network of 1000 nodes with
documents distributed uniformly at random over the nodes. We use all the three query
sets and sample 20 nodes to estimate the weights. Note that wenormalize the vectors; so
the term weights range between 0.00 and 1.00. We present results for thresholds ranging
from 0.00 to 0.30. We compare the results retrieved from the centralized implementation
with wmin = 0.00.

The results of this experiment are tabulated in Table 3. Coverage of distributed rank-
ing is not adversely affected when the threshold is set to 0.05 or 0.10. However, larger
thresholds (say 0.20 and above) discard relevant entries, and consequently decrease rank
quality appreciably. In order to understand the reduction obtained by using the thresh-
old, we recorded the total number of index entries in the system for each threshold.
The total number of index entries in our system is 15.9M when the threshold is 0.0.
Our experiments show a reduction of 55.5% entries when we usea threshold of 0.05.
Increasing the threshold to 0.1 leads to an additional 30% reduction in index size. A
threshold value of 0.1 seems to be a reasonable trade-off between search quality and
decreased index size.

5 Related Work

Work related to ours can be broadly classified into work that has been done in the
realm of classic information retrieval and more recently inthe area of search over P2P

systems. We present a brief description (for lack of space) here but refer the reader to
the companion Technical Report [9] for an extended discussion of related work.

Classic Information RetrievalCentralized information retrieval and automatically or-
dering documents by relevance has long been an area of much research. We discussed
the Vector Space Method [1] in Section 2. Latent Semantic Indexing (LSI) [14] is an ex-
tension to VSM that attempts to eliminate the issues of synonyms and polysemy. While
there are techniques to implement PageRank [15] in a distributed setting (e.g., [16]), it
cannot be applied on an arbitrary document set because of thelack of hyper-links. Fagin
et al.’s Threshold Algorithm (TA) [17] can also be used to compute the top-K results.

Distributed Search over P2P systemsThe idea of using Vector Space Methods has
been applied previously in the context of P2P search. PlanetP [18] is a content-based
search scheme that uses VSM. Nodes store vectors locally, but gossip digests of their
local content. Queries are evaluated by ranking thenodesfirst and then evaluating the
query using VSM at the top-ranked nodes. pSearch [19] uses VSM and LSI to gen-
erate document and query vectors, and maps these vectors to ahigh-dimension P2P
system. Bhattacharya et al. [20] use similarity-preserving hashes (SPH) and the cosine
similarity to compute similar documents overanyDHT. Odissea [21], a P2P distributed
search infrastructure, proposes to make use of TA to rank search results. None of these
schemes, however, discuss how to compute the vectors, whichis bulk of our work.

6 Conclusions

In this paper, we have presented a distributed algorithm forranking search results. Our
solution demonstrates that distributed ranking is feasible with little network overhead.
Unlike previous work, we do not assume that the document vectors are provided to
the system. Instead, our algorithm computes such vectors byusing random sampling
to estimate term weights. Through simulations and formal analysis, we show that the
retrieval quality of our approach is comparable to that of a centralized implementation
of VSM. We also show that our approach scales well under the reasonable condition
that the size of the document set grows with the number of nodes.

7 Acknowledgments

We thank Divesh Srivastava for his comments and suggestions. This work was partially
supported by NSF awards CCR-0208005, CNS-0626636, and NSF ITR Award CNS-
0426683. Bobby Bhattacharjee was also supported in part by afellowship from the
Sloan Foundation.

References

1. Salton, G., Wong, A., Yang, C.: A vector space model for information retrieval. Journal of
the American Society for Information Retrieval18(11) (1975) 613–620

2. TREC: Text REtrieval Conference. http://trec.nist.gov/ ()
3. Dumais, S.T.: Improving the retrieval of information from externalsources. Behavior Re-

search Methods, Instruments, and Computers23(2) (1991) 229–236
4. Salton, G., Buckley, C.: Term-weighting approaches in automatic textretrieval. Information

Processing and Management24(5) (1988) 513–523
5. Buckley, C.: Implementation of the SMART information retrieval system. Technical report,

Dept. of Computer Science, Cornell University, Ithaca, NY, USA (1985)
6. Morselli, R., Bhattacharjee, B., Srinivasan, A., Marsh, M.A.: Efficient lookup on unstruc-

tured topologies. In: Proceedings of the 24th symposium on Principles ofdistributed com-
puting (PODC’05), New York, NY, USA (2005) 77–86

7. Ganesan, P., Sun, Q., Garcia-Molina, H.: Yappers: A peer-to-peer lookup service over ar-
bitrary topology. In: 22nd Annual Joint Conf. of the IEEE Computer and Communications
Societies (INFOCOM), San Francisco, USA (2003)

8. King, V., Saia, J.: Choosing a random peer. In: Proceedings of the 23rd symposium on
Principles of distributed computing (PODC ’04), New York, NY, USA (2004) 125–130

9. Gopalakrishnan, V., Morselli, R., Bhattacharjee, B., Keleher, P.,Srinivasan, A.: Ranking
search results in peer-to-peer systems. Technical Report CS-TR-4779, University of Mary-
land, College Park, MD (2006)

10. Tang, C., Dwarakadas, S.: Hybrid global-local indexing for efficient peer-to-peer information
retrieval. In: Proceedings of USENIX NSDI ’04 Conference, San Fransisco, CA (2004)

11. Gopalakrishnan, V., Bhattacharjee, B., Chawathe, S., Keleher,P.: Efficient peer-to-peer
namespace searches. Technical Report CS-TR-4568, Universityof Maryland, College Park,
MD (2004)

12. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Proceedings of
IFIP/ACM Middleware. (2003)

13. Loo, B.T., Hellerstein, J.M., Huebsch, R., Shenker, S., Stoica, I.: Enhancing P2P file-sharing
with an internet-scale query processor. In: Thirtieth International Conference on Very Large
Data Bases (VLDB ’04), Toronto, Canada (2004) 432–443

14. Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Harshman, R.: Indexing by latent
semantic analysis. Journal of the American Society for Information Science41(6) (1990)
391–407

15. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation algorithm: bringing
order to the web. Technical report, Dept. of Computer Science, Stanford University (1999)

16. Wang, Y., DeWitt, D.J.: Computing PageRank in a distributed internet search engine sys-
tem. In: Thirtieth International Conference on Very Large Data Bases (VLDB ’04), Toronto,
Canada (2004) 420–431

17. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms formiddleware. Journal of
Computer and System Sciences (JCSS)66(4) (2003) 614–656

18. Cuenca-Acuna, F.M., Peery, C., Martin, R.P., Nguyen, T.D.: PlanetP: Using Gossiping to
Build Content Addressable Peer-to-Peer Information Sharing Communities. In: Proceedings
of the 12th Symposium on High Performance Distributed Computing (HPDC-12), IEEE
Press (2003)

19. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-organizing
semantic overlay networks. In: Proceedings of ACM SIGCOMM ’03, Karlsruhe, Germany,
ACM Press (2003) 175–186

20. Bhattacharya, I., Kashyap, S.R., Parthasarathy, S.: Similarity searching in peer-to-peer
databases. In: Proceedings of the 25th International Conference onDistributed Computing
Systems (ICDCS’05). (2005) 329–338

21. Suel, T., Mathur, C., Wu, J., Zhang, J., Delis, A., Kharrazi, M., Long, X., Shanmugasun-
daram, K.: Odissea: A peer-to-peer architecture for scalable web search and information
retrieval. In: 6th International Workshop on the Web and Databases (WebDB). (2003)

