
Decentralized Dynamic Scheduling across Heterogeneous Multi-core Desktop Grids

Jaehwan Lee, Pete Keleher and Alan Sussman
UMIACS and Department of Computer Science

University of Maryland
College Park, MD, USA

{jhlee, keleher, als}@cs.umd.edu

Abstract—The recent advent of multi-core computing en-
vironments increases both the heterogeneity and complexity
of managing desktop grid resources, making efficient load
balancing challenging even for a centralized manager. Even
with good initial job assignments, dynamic scheduling is still
needed to adapt to dynamic environments, as well as for
applications whose running times are not known a priori.

In this paper, we propose new decentralized scheduling
schemes that backfill jobs locally and dynamically migrate
waiting jobs across nodes to leverage residual resources,
while guaranteeing bounded waiting times for all jobs. The
methods attempt to maximize total throughput while balancing
load across available grid resources. Experimental results via
simulation show that our scheduling scheme has performance
competitive with an online centralized scheduler.

I. I NTRODUCTION

Modern desktop machines now use multi-core CPUs
to enable improved performance. However, achieving high
performance on multi-core machines without optimized
software support is still difficult [1], because contention
for shared resources can make it hard to exploit multiple
computing resources efficiently. Moreover, desktop grids
that contain multi-core machines are becoming increasingly
diverse and heterogeneous, so that efficient load balancing
for the overall system is becoming a very challenging prob-
lem even with global status information and a centralized
scheduler.

Our previous research on decentralized resource man-
agement for desktop grids has developed and evaluated
efficient initial job assignment algorithms for multi-core
resources [2]. However, dynamic scheduling via migration
of waiting jobs is still required for the best performance
because 1) stale load information propagated between ma-
chines can lead to poor initial job assignments, 2) un-
predictable job completion times can change the current
load situation, and 3) initial job assignment is done in a
probabilistic manner, and so can be improved with additional
information.

The performance of distributed scheduling in such multi-
core environments can be improved by starting waiting jobs
immediately, through use of residual resources on other
nodes (if the job is moved) or on the same node (if the
local schedule is changed). However, efficient decentralized
job migration can be difficult to achieve because of limited

and/or stale global state. Moreover, a job profile often
hasmultiple resource requirements; a simple job migration
mechanism considering only CPU usage cannot be applied
to in such situations. In addition, we would also like to
guarantee progress for all jobs, i.e., no job starvation.

Our contribution in this paper is a novel dynamic schedul-
ing scheme for multi-core desktop grids. The scheme
includes (1) local scheduling, a form of backfilling on
a single node, (2)internode scheduling, for backfilling
across multiple nodes, and (3)queue balancing, which pro-
actively balances wait queue lengths. Our approach is a
completely decentralized scheme that balances load and
improves throughput when scheduling jobs with multiple
constraints across a distributed system. We demonstrate the
effectiveness of our algorithms via simulations that show
that the decentralized approach performs competitively with
an online centralized scheduler.

The rest of this paper is structured as follows. Section II
discusses related work on various parallel job scheduling
and dynamic job migration techniques for desktop grids.
Section III describes the basic architecture of our peer-
to-peer desktop grid system and a decentralized resource
management method for multi-core machines. We present
our scheduling approach in Section IV, and show simulation
results in Section V. We conclude in Section VI.

II. RELATED WORK

Backfilling [3], [4] is a commonly used scheduling
method for parallel jobs, because it is straightforward buthas
been shown to be more effective than a first-come, first-serve
(FCFS) scheduler. Backfilling opportunistically reordersjobs
in the scheduling queue when a large job (meaning one
with high resource requirements) at the front of the queue is
unable to run immediately. The general goal of backfilling
algorithms is to allow a job to bypass jobs ahead of it in
the queue to be able to exploit current residual resources,
but also should not delay either any other jobs (called
conservativebackfilling in the literature), or only the first
job in the queue (calledEASYbackfilling). Both backfilling
schemes require the job running time, which is given by the
user or estimated, and inaccurate estimation is closely related
to scheduling performance [5]. However, this assumption is
not applicable to our heterogeneous decentralized desktop

grid, where good estimates of job running times may be
very difficult to acquire.

While most previous research takes only CPU utilization
into account, Leinberger et al. suggest a backfilling scheme
within a single machine that allows for multiple resource
requirements, such as CPU and memory [6]. That work
proposed two backfilling techniques for selecting backfilled
jobs, to maximize total utilization as well as to balance
utilization across resources. However, those are based on
the EASY backfilling criterion, which requires accurate
information about job running times, therefore we cannot
apply those techniques in a straightforward manner.

Leinberger et al. also proposed a load balancing scheme
via job migration in computational grids, and allowed mul-
tiple resource constraints [7]. As they did for a single
machine [6], they tried to balance load locally across K-
resources by exchanging jobs with different resource re-
quirements among machines to enhance throughput. How-
ever, they assumed a near-homogeneous environment, and
did not consider backfilling.

For dynamic job migration techniques, much work has
been done on dynamic load distribution for distributed
systems [8] and on thread migration in multiprocessor ma-
chines [9]. WaveGrid [10] is a peer-to-peer based desktop
grid computing system that adopts a timezone-aware job
migration technique. Once a job is assigned to a host that is
in a night-time zone but busy, the job is migrated to another
(presumably idle) host in the night-time zone [11]. However,
WaveGrid does not allow specifying resource requirements
for jobs, so it is a simpler model than for our desktop
computing platform, to be described in Section III-A.

III. B ACKGROUND

A. Overall System Architecture

In prior work, we have developed a completely decen-
tralized peer-to-peer (P2P) desktop grid system that is both
resilient to single-point failures, and provides good scalabil-
ity [12]. A desktop grid system may contain heterogeneous
nodes with different resource types and capabilities, e.g.
CPU speed, memory size, disk space, number of cores.
Jobs submitted to the grid also can have multiple resource
requirements, limiting the set of nodes on which they can
be run. We assume that every job is independent, meaning
that there is no communication between jobs. To build
the P2P grid system, we employ a variant of a Content-
Addressable Network (CAN) [13] distributed hash table
(DHT), which represents a node’s resource capabilities
(and a job’s resource requirements) as coordinates in ad-
dimensional space. Each dimension of the CAN represents
the amount of that resource, so that nodes can be sorted
according to the values for each resource. A node occupies
a hyper-rectangular zone that does not overlap with any other
node’s zone, and the zone contains the node’s coordinates
within the d-dimensional space. Nodes exchange load and

other information with nodes whose zones abut its own
(called neighbors). The following steps describe how jobs
are submitted and executed in the grid system.

1) A client (user) inserts a job into the system through
an arbitrary node called theinjection node.

2) The injection node initiates CAN routing of the job to
the owner node.

3) The owner node initiates the process to find a lightly
loaded node (run node) that meets all of the job’s
resource requirements (calledmatchmaking)

4) The run node inserts the job into an internal FIFO
queue for job execution. Periodic heartbeat messages
between the run node and the owner node ensure that
both are still alive. Missing multiple consecutive heart-
beats invoke a (distributed) failure recovery procedure.

5) After the job completes, the run node delivers the
results to the client and informs the owner node that
the job has completed.

The owner node monitors a job’s execution status until
the job finishes and the result is delivered to the client. To
enable failure recovery, the owner node and the run node
periodically exchange soft-state heartbeat messages to detect
node failures (or a graceful exit from the system). More
details about the basic system architecture can be found in
Kim et al. [12].

B. Matchmaking Procedure

Matchmaking is the initial job assignment to a node that
satisfies all the resource requirements of the job, and also
does load balancing to find a (relatively) lightly loaded
node. A good matchmaking algorithm has several desirable
properties: expressiveness, load balance, parsimony, com-
pleteness, and low overhead. The matchmaking framework
should beexpressiveenough to specify the essential resource
requirements of the job as well as the capabilities of the
nodes. It shouldbalance loadacross nodes to maximize
total throughput and to obtain the lowest job turnaround
time. However, over-provisioning can decrease total system
throughput, therefore the matchmaking should beparsimo-
niousso as not to waste resources.Completenessmeans that
as long as the system contains a node that satisfies a job’s
requirements, the matchmaker should find that node to run
the job. Finally, the overall matchmaking process should not
incur significant costs, to minimizeoverhead.

Our CAN-based decentralized matchmaking framework
directly supports expressiveness and completeness with low
overhead. Our previous efforts to enhance load balancing
performance but be parsimonious are two-fold - employing
a virtual dimensionand usingprobabilistic pushingof jobs.
The basic CAN mechanisms do not allow the multiple nodes
to have the same coordinates in the multidimensional space.
However, the coordinates in our CAN are determined by the
amount of each resource a node has, so multiple nodes with
identical resource capabilities can conflict. We address this

problem by adding another dimension (called thevirtual di-
mension), which has a random value assigned to differentiate
multiple nodes with the same capabilities. The random value
in the virtual dimension also helps distribute jobs across
nodes evenly, so improves load balance. However, using
the virtual dimension does not always achieve good load
balance.

We have improved the basic matchmaking algorithm to
improve load balance bypushing jobs into less loaded re-
gions in the CAN in a probabilistic way. We aggregate global
load information along each dimension by piggybacking
load data onto the periodic heartbeat messages sent between
neighbors that are used to maintain the CAN structure. After
a job is routed to the node that meets its minimum resource
requirements, that node chooses a dimension and a target
node among its neighbors, to try to find a path to a more
lightly loaded region in the CAN. The decision process to
push the job employs the periodically updated aggregate load
information along each dimension. However, before pushing
the job, the node computes a stopping probability based on
known load information in outer regions of the CAN, to
determine whether the job is to be pushed or not. If a job
stops at a node, that node will pick as the run node the least
loaded node among itself and its neighbors. Otherwise, the
job continues to be pushed to a node with higher resource
capability farther out in some dimension in the CAN. This
probabilistic approach can balance load effectively, as shown
in our previous work, but also minimizes over-provisioning.
More details on our previous work for initial job placement
can be found in Kim et al.[14].

C. Resource Management in a Multi-core Grid

Multi-core nodes may be capable of running multiple jobs
simultaneously, so that the number of currently available
cores and the available amount of other shared resources
can vary over time for each node in the grid. Jobs also may
request more than one core to express the requirements of
a multi-threaded application. However, a structured DHT
like our CAN can have problems with frequent changes
to its structure, because it works best in a low-churn en-
vironment. To express the dynamically changing amount
of available resources in each node, and to minimize the
changes required to our existing CAN mechanisms, we
represent dynamic resource availability by employing two
logical nodes for each physical one: one that models the
maximum resource available for that node (Max-node), and
a second that models the currently unused amount of that
resource (Residue-node) [2].

We have designed two resource management schemes,
namedBalloon-ModelandDual-CAN, that employ two log-
ical nodes per physical node. Dual-CAN uses two separate
CANs, one for each logical node type, so that dynamic
effects due to resource changes (e.g., jobs starting or ending)
in a multi-core node affect only the Secondary CAN, which

contains only Residue-nodes. The number of nodes in the
Secondary CAN is typically much fewer than in the Primary
CAN (composed of Max-nodes), so the additional overhead
for managing the Dual-CAN is not high. However, maintain-
ing an additional CAN is not free, so we can also incorporate
Residue-nodes into a single Primary CAN in a simple
form, called a Balloon. A Balloon represents the currently
available amount of resources for a node as a point in the
CAN, and is associated with the zone that contains that point
in the CAN. Therefore, the addition or removal of a Balloon
due to resource availability changes for the node the Balloon
represents affects at most 2 nodes in the CAN, minimizing
changes to the Primary CAN. Using both static and dynamic
node information in the two management schemes, a job
is assigned to an appropriate node capable of running the
job, preferably a node not currently running any other jobs
(a free node). The initial job matchmaking and information
aggregation schemes are similar to what was described for
a single-core environment in Section III-B, except that the
algorithms require information on core utilization ratherthan
on the number of free nodes. Once a run node is determined,
the job is inserted into the local queue of the node to wait to
be run. The default queuing policy is first-come first-serve
(FCFS), based on the time the job arrived in the system, but
a node tries to run as many jobs as possible simultaneously
to utilize all its available resources.

IV. A T RI-PRONGEDAPPROACH

In this section we discuss the new dynamic scheduling
techniques in detail. After successful initial job assignment,
as described in Section III, we can still improve performance
if we exploit residual resources by reordering jobs in the
queue or by migrating jobs across nodes. After step 4, but
before step 5 in the job submission and execution procedure
described in Section III-A, a job redistribution algorithm
based on current dynamic load status is invoked periodically
in each node to try to improve job placement. We do
not allow preemptive scheduling as in Condor [15], which
causes the system to stop the currently running job and to
later resume execution. Therefore there is no cost in terms
of job turn-around time for job migration between nodes,
since we only move jobs that have not started yet. There is
some communication cost to send a job profile to a different
node, but that is negligible because a job profile is not very
big. The following three sections describe in detail our three
methods: (1) local scheduling, (2) internode scheduling, and
(3) queue balancing.

A. Local Scheduling

Local schedulingaddresses selecting a waiting job from
the job queue of a local node, regardless of its arrival order,
constrained by the remaining available resources on the node
(some resources may already be used by currently running
jobs).

Running Job BackfillingJ
R

Head of

Queue 0

BC

J
1

0

0

0

J
2

J
3

J
4

Queue

(a) Before Local Scheduling

Running Job Backfilled JobJ
R

J
3

Head of

Queue 1

BC

J
1

1

0

J
2

J
4

Queue

(b) After Local Scheduling

Figure 1. Local Scheduling: Changing the Backfilling Counter (BC)

A key difference from other approaches is that we do not
rely on job descriptions to provide running time information,
which earlier backfilling algorithms use to prevent backfilled
jobs from delaying other waiting jobs. We are left with
the problem of preventing unconstrained backfilling from
starving jobs with high resource requirements.

To avoid job starvation or unreasonably long waiting
times, we employ a backfilling counter (BC) value for every
job, with an initial value of zero. We then allow only a
job with a BC equal to or greater than that of the job at
the head of the queue to backfill. After backfilling a job,
all other jobs that were ahead of the backfilled job in the
queue have their BC incremented. Therefore, the BC for a
job is the number of jobs that have bypassed the job in the
waiting queue. This BC does not allow unlimited backfilling
from jobs behind a given job in the queue, so that every job
can begin execution without waiting too long, as will be
shown in the experiments in Section V. Figure 1 shows
how backfilling occurs and how the backfilling counters of
jobs change after backfilling. In Figure 1, the shaded slots
show the number of required cores for jobs on the quad-core
machine, and JobJ3 is backfilled to use two free cores in
the machine.

If multiple jobs are candidates to be backfilled, we must
choose the best job to run for better utilization. We use the
Backfill Balancedalgorithm [6] to rank jobs, and choose the
one whose product ofbalance measure(BM) and fullness
measure(FM) is the minimum. BM and FM are defined as
follows:

BM =
maxk(Sk + Rk

j)
∑

K

k=1
(Sk+Rk

j
)

K

=
MaximumUtilization

AverageUtilization
(1)

FM = 1 −

∑K

k=1(S
k + Rk

j)

K
= 1 − AverageUtilization

(2)

whereK is the number of resources (or requirements),Sk

is normalized utilization for resourcek (1 ≤ k ≤ K,
0 ≤ Sk ≤ 1), andRk

j is job j’s normalized requirement for
resourcek (0 ≤ Rk

j ≤ 1). BM measures unevenness across
utilization of multiple resources, and FM measures how
much resources are under-utilized on average. Therefore,
lower BM and FM imply better balanced resource utilization
and better average utilization, respectively.

B. Internode Scheduling

Internode schedulingis an extended version of local
scheduling; the target node for backfilling can be the neigh-
bors in the CAN. A node backfilling counter (NBC), which
is the BC of the job at the head of the node’s waiting queue,
is used to prevent jobs with large resource requirements from
long waits in the queue and from starvation. Only jobs whose
BC is equal to or less than the NBC of the target node can
be migrated. Figure 2 shows how BC works with NBC for
internode scheduling. JobJ4 in the center node can be run
on a free core either in the left or in the right node, butJ4

cannot be migrated to the left node because the NBC of the
left node is greater than the BC ofJ4. However,J4 can be
moved to the right node because the NBC of the right node
is less than the BC ofJ4.

While local scheduling is only a change to the job execu-
tion order within the queue on a node, internode scheduling
must decide 1) which node initiates job migration (are jobs
pushedaway from a heavily loaded node orpulled to a
lightly loaded node), 2) which node should be the sender
(or receiver) of a job, and 3) which job should be migrated.

In the PUSH scheduling model the job sender initiates
the migration process. First the sender node tries to match
every job in its queue with residual free resources in its
neighbor nodes in the CAN. That is possible because every
node knows its neighbor nodes’ resource capabilities and

Running

Job

J
BRunning

Job

J
A

Running

Job

J
R

J
3

Job

0

0

BC

J
1

J

2

2

BC

J
1

J

1

1

BC

J
1

J

NBC : 2 NBC : 0

0

0

Queue

J
2

J
3

2

0

Queue

J
2

J
3

1

0

Queue

J
2

J
4

QueueQueue Queue

Figure 2. Internode Scheduling:J4 cannot be moved to the left node because ofBC

recent load information. If a job can be run on multiple
neighbors, the sender sends it to the node that has minimum
objective function value as follows.

fInter−PUSH = BM · FM ·
1

CPUSPEED

(3)

To prefer the fastest node among neighbors, the objective
function also includes an inverse term for CPU speed. Before
sending a job profile, there is a simple confirming handshake
process between a sender and a potential receiver to avoid
inappropriate job migration because the potential receiver
information may not be up-to-date at the sender.

On the other hand, for the PULL model, a receiver
node tries to obtain a job from its CAN neighbors so as
not to waste its available resources. However, the node
does not have all information on the queued jobs’ resource
requirements in its neighbors to minimize neighbor update
message sizes, so the node invokes aPULL-Requestmessage
to the node with maximum queue size among its neighbors.
When a node receives a PULL-Request message, it checks
whether any of its waiting job can be backfilled onto the
requesting node, and if the job’s BC is equal to or less than
the NBC of the pulling node. If so, the job is migrated
to the receiver and starts running. If there are multiple
candidate jobs in the waiting queue, then the job that has
minimum objective function value (BM · FM , as above),
is selected. If there is no candidate job, then the requesting
node gets aPULL-Rejectmessage and continues to look for
another potential sender with maximum queue length among
neighbors not contacted recently.

C. Queue Balancing

The local scheduling and internode scheduling algorithms
find and execute a job using residual free resources in a
node, meaning that only jobs that can start running imme-
diately will be moved. However, if the load across nodes
is skewed, meaning that job queue lengths vary greatly, a

more pro-activequeue balancingscheme may improve load
distribution, and overall throughput, across heterogeneous
nodes.

Our grid model allows for multiple resource types to
be specified for a node, therefore defining and measuring
load is more complex than for a single resource type.
First, we set the maximally loaded resource among theK
available resources as theLoadof a node, and our algorithm
minimizes the total sum of theLoadsamong neighbors, and
also balancesLoad across the nodes [7]. We define aW k

i ,
normalized loadfor Resourcek of Node i by:

W k
i =

∑
Jj∈Queuei

(Rk
j), 1 ≤ k ≤ K (4)

where Jj is Job j, Rk
j is the k-th normalized resource

requirement forJj , andQueuei is the job queue for node
i. The normalized loadof Nodei, Li is given by

Li = Max(W k
i), 1 ≤ k ≤ K (5)

The PUSH and PULL job migration models can be used
for queue balancing, as they were for internode scheduling.
For PUSH, a nodei computes normalized load (Li) for itself
and for its neighbors. IfLi is the locally maximum value
among all its neighbors, then nodei checks its queue to find
candidate jobs for migration that reduceLi if the (candidate)
job is moved. When there are multiple candidate jobs, the
algorithm selects the job and the receiver node that minimize
an objective function if the job is moved to the neighbor. The
objective function is defined by:

fQB−PUSH = TLL · MLL (6)

TLL =
∑

i∈Neighbors

Li (7)

MLL = Max(Li), i ∈ neighbors (8)

whereTLL is the total local load andMLL is the maximum
local load. This policy is used to minimize total load in

neighbors as well as to balance load across neighbors with
the goal of maximizing system throughput through efficient
utilization of node resources.

The PULL model is similar to the PUSH model, except
that the node with a locally non-zero minimum normalized
load among equal or less capable neighbors will initiate the
PULL process from the most loaded node among its neigh-
bors. Since zero local load means a free node, internode
scheduling handles that case. The reason that we consider
only equal or less capable neighbors is the following. If a
highly capable node (which has a large amount of resources)
is locally minimum-loaded, the node is likely to pull a large
job, so small jobs cannot get benefits from this algorithm.
On the other hand, if a node that has a relatively small
amount of resources is locally minimum-loaded, call itN,
the potential sender may not have a job that the pulling node
is capable of running. In this case, nodeN cannot obtain a
job to run, and other less loaded nodes also cannot pull a
job because nodeN is still the locally minimally loaded
node. Therefore, PULL requests may not occur frequently
enough to help with load-balancing as compared to the
PUSH scheme. Thus, to pull small jobs as well as to attempt
frequent pull requests, we choose the PULL node as the least
loaded node among equal or less capable neighbors.

V. EXPERIMENTS

A. Experimental Setup

We used a synthetic workload to model a typical grid
resource configuration and a heterogeneous set of jobs. Our
simulation scenario contains 1000 multi-core nodes (each
with 1, 2, 4 or 8 cores), and 5000 jobs submitted to those
nodes. Each node and each job is given multiple resource
capabilities or requirements, respectively, for CAN resource
dimension such as CPU speed, memory size, disk space
and the number of cores. A high percentage of the nodes
(and jobs) have relatively low resource capabilities (require-
ments), and a low percentage of nodes (jobs) have high re-
source capabilities (requirements). Moreover, we simulated
both clusteredand mixed workloads and node capabilities
to cover a wide range of grid scenarios.Clusteredmeans
that a small number of distinct sets of computing nodes (or
jobs) with the same resource capabilities (requirements) are
available (submitted), while amixedenvironment has various
sets of nodes (jobs) with randomly assigned capabilities
(requirements). In addition, job requirements can be omitted
by users. If users do not specify a requirement for a
resource, the matchmaking process does not take resource
requirements into account, so that the number of nodes
capable of running the job can be large. We define theJob
Constraint Ratioas the probability that each resource type
for a job is specified.

The interval between individual job submissions follows
a Poisson distribution, with varying average inter-job arrival
times in the experiments. Each job has an expected running

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 2.2 2.4 2.6 2.8 3

A
v

er
ag

e
W

ai
t

T
im

e
(s

)

Job Inter-arrival Time (s)

Vanilla
L

LI-PUSH
LI-PULL

LIQ-PUSH
LIQ-PULL

CENT

Figure 3. Average Job Wait Time: Clustered Nodes/Clustered Jobs

time with average valueT , uniformly distributed between
0.5T and 1.5T , with T = 3600 seconds, running on a
canonical node with a normalized CPU speed of 1. The
simulated job running time is then scaled up or down by
the node CPU speed relative to the canonical node.

We compare our schemes to a greedy online centralized
scheduler, which has a single queue and assigns jobs based
on the complete global grid load information. Such a scheme
would be very expensive in a real system, but gives some
indication of the best possible performance for our decen-
tralized system. The centralized scheduler is used only to
measure load balancing performance, and does not incur
any (communication) costs to obtain load status information
from all nodes.

To measure the performance of a long running desktop
grid system, and to avoid startup and cleanup anomalies, we
run the simulations in a steady-state environment. Steady-
state means that the job arrival and departure rates are
similar, so that the system achieve a dynamic equilibrium
state during the simulation period, with the system neither
highly overloaded, nor very underloaded. Therefore, the
inter-job arrival rate effectively determines average total
system load. However, we did not test very lightly loaded
systems, because those are not very interesting for measuring
dynamic scheduling performance.

B. Experimental Results

Figure 3 compares the performance of our proposed
dynamic scheduling schemes with the centralized scheduler,
for varying job inter-arrival times. To see the effects of
the different schemes, we run the simulation with various
combinations of our methods as follows:

1) L : local scheduling only
2) LI : local scheduling + internode scheduling
3) LIQ : all three methods (local scheduling + internode

scheduling + queue balancing).

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 2 2.2 2.4 2.6 2.8 3

N
u
m

b
er

 o
f

M
es

sa
g
es

Job Inter-arrival Time (s)

Vanilla
L

LI-PUSH
LI-PULL

LIQ-PUSH
LIQ-PULL

(a) Number of messages (per minute per node)

 270

 272

 274

 276

 278

 280

 282

 2 2.2 2.4 2.6 2.8 3

V
o
lu

m
e

o
f

M
es

sa
g
es

 (
k
b
y
te

s)

Job Inter-arrival Time (s)

Vanilla
L

LI-PUSH
LI-PULL

LIQ-PUSH
LIQ-PULL

(b) Volume (total bandwidth) of messages (per minute per node)

Figure 4. Costs - Messages per minute per node

In each scenario for LI and LIQ, the PUSH and PULL
mechanism are both tested (denoted by LI(Q)-PUSH/PULL).
Vanilla denotes the scenario with only the initial job
matchmaking described in Section III-C and no dynamic
scheduling, whileCENT denotes the results of the greedy
centralized scheduler.

In Figure 3, the average job wait time is shown, to
measure overall load balancing performance. LIQ-PULL
shows the best performance (shortest average wait time)
among our schemes, and has performance competitive with
the centralized scheduler.

In general, the PULL mechanisms are better than the
PUSH ones in a highly loaded system, because in the PULL
schemes idle nodes more aggressively try to find jobs to
run. On the other hand, in experiments not shown, we
have seen that PUSH shows better performance in a lightly
loaded system. However, the initial matchmaking algorithm
balances load well enough to handle light loads, so the
PUSH-based job migration technique does not outperform a
PULL-based scheme when dynamic load balancing is really
needed to improve throughput. This result is consistent with
the observations on the characteristics of PUSH and PULL
load balancing schemes described by Demers et al. [16]
that suggest using pull (or a combination of push and pull)
over push to spread information across distributed database
systems. Moreover, the performance of LI is similar to that
of LIQ, i.e. internode scheduling provides major benefits in
performance, and queue balancing provides some additional
benefit. We vary the job inter-arrival time from a heavily to a
lightly loaded system (from 2 to 3 seconds), but the results
do not vary much, except in one case – local scheduling
shows worse performance than Vanilla for the 2 second inter-
arrival time. Local scheduling cannot guarantee increased
performance because it cannot guarantee that it does not
increase the wait time of other jobs - that is the difference

between our local scheduling algorithm and a conservative
backfilling algorithm.

Figure 4 shows the cost for each scenario, measuring
the number of messages and the total bandwidth (volume)
of messages per minute per node. Note that the Y-axis in
each figure in Figure 4 does not start at zero, to better
see the differences between the scenarios. In Figure 4(a),
Local scheduling and the two PUSH-based methods do
not generate significant additional messages compared to
Vanilla. On the other hand, despite the improved load
balance performance, PULL has a higher cost than PUSH,
because PULL requires more messages to search its neigh-
bors iteratively for jobs to run. Even though PULL generates
more messages, it is still desirable compared to the other
schemes because of its better load balancing performance,
since the absolute number of messages is still very low (only
about one message per node every three seconds, in a highly
loaded system). Moreover, the volume of messages in each
scenario is very similar to that of Vanilla, because the sizeof
messages for job migration is small (See Figure 4(b)). The
two PULL schemes also do not increase the message volume
much, because the iterative PULL trials require only small
messages. Therefore, the additional cost for our migration
schemes is very small compared to Vanilla.

We have run various combinations of scenarios with clus-
tered and mixed nodes and jobs, but we show only the results
for clustered nodes and clustered jobs, because the results
(performance competitive to the centralized scheduler) are
basically similar for other combinations and we believe that
this is the most common scenario for many desktop grids.

Figure 5 presents the average wait time when the job
constraint ratio is varied from 20%-80%. In this experiment,
the average job inter-arrival time is 3 seconds, and we model
both clustered nodes and clustered jobs. The results are gen-
erally similar to the previous experiment, regardless of the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 30 40 50 60 70 80

A
v

er
ag

e
W

ai
t

T
im

e
(s

)

Percentage of Job Constraint (%)

Vanilla
L

LI-PUSH
LI-PULL

LIQ-PUSH
LIQ-PULL

CENT

Figure 5. Average Job Wait Time, Changing Job Constraint Ratio

percentage of job constraints, i.e. PULL is better than PUSH,
LIQ is similar to LI, and LIQ-PULL is competitive to CENT,
except that LIQ-PULL gets worse when the job constraint
ratio is very high (e.g., 80%). That is because it becomes
difficult to find nodes that are capable of running jobs with
many resource constraints in the local neighborhood of the
node, as jobs get more highly constrained. Because the
number of capable nodes for a specific job becomes smaller
with more constraints, local job migration does not help
much.

Through the simulations, we have confirmed that our
dynamic scheduling and load balancing schemes perform
competitively with the centralized approach, and do not
have a high cost, measuring the number of messages and
the volume of messages needed to perform the dynamic
scheduling.

VI. CONCLUSION

We have proposed three distinct decentralized dynamic
scheduling schemes for P2P desktop grids.Local scheduling
uses a variant of backfilling to leverage residual resources
in a single machine.Internode schedulingextends local
scheduling across machines by migrating jobs when that
will allow a job to run immediately.Queue balancingpro-
actively balances job waiting queues across machines to
avoid highly skewed queues, to overlap job migration with
other system activities.

Our combined approach improves total system through-
put, by improving load balance across heterogeneous nodes
and lowering average job queue wait times. The algorithms
also avoid starvation of large jobs through the backfilling
counter mechanism. Through extensive simulation, we have
confirmed that our proposed schemes show performance
competitive with that of a greedy online centralized algo-
rithm, and do not incur high messaging costs. In addition,
we note that our algorithms based on PUSH and PULL job

migration mechanisms show performance consistent with
that from previous work described in the literature.

In future work, we will extend our decentralized re-
source management scheme to accommodate asymmetric
multiprocessors (e.g. multi-core machines equipped with
GPGPUs (General Purpose Graphics Processing Units)), to
extend into even more heterogeneous environments. We are
also implementing our schemes in a real testbed grid to
characterize its behavior and performance, in cooperation
with researchers from the Maryland Astronomy department.

REFERENCES

[1] S. Moore, “Multicore is bad news for supercomputers,”IEEE
Spectrum, vol. 45, no. 11, pp. 15–15, Nov. 2008.

[2] J. Lee, P. Keleher, and A. Sussman, “Decentralized resource
management for multi-core desktop grids,” inProceedings of
the 24th IEEE International Parallel & Distributed Process-
ing Symposium. Atlanta, Georgia, USA: IEEE Computer
Society Press, 2010.

[3] D. Feitelson and A. Weil, “Utilization and predictability in
scheduling the IBM SP2 with backfilling,” inProceedings
of the International Parallel Processing Symposium (IPPS).
IEEE Computer Society Press, 1998.

[4] J. Skovira, W. Chan, H. Zhou, and D. A. Lifka, “The
EASY – LoadLeveler API project,” inIPPS ’96: Proceedings
of the Workshop on Job Scheduling Strategies for Parallel
Processing. London, UK: Springer-Verlag, 1996, pp. 41–47.

[5] P. Keleher, D. Zotkin, and D. Perkovic, “Attacking the bot-
tlenecks in backfilling schedulers,”Cluster Computing: The
Journal of Networks, Software Tools and Applications, vol. 3,
2000.

[6] W. Leinberger, G. Karypis, and V. Kumar, “Job scheduling in
the presence of multiple resource requirements,” inSupercom-
puting ’99: Proceedings of the 1999 ACM/IEEE conference
on Supercomputing (CDROM). New York, NY, USA: ACM,
1999, p. 47.

[7] W. Leinberger, G. Karypis, V. Kumar, and R. Biswas, “Load
balancing across near-homogeneous multi-resource servers,”
in Proceedings of the 9th Heterogeneous Computing Work-
shop, 2000. (HCW 2000), 2000, pp. 60–71, appears with the
Proceedings of IPDPS 2000.

[8] N. G. Shivaratri, P. Krueger, and M. Singhal, “Load distribut-
ing for locally distributed systems,”IEEE Computer, vol. 25,
no. 12, pp. 33–44, 1992.

[9] M. Becchi and P. Crowley, “Dynamic thread assignment
on heterogeneous multiprocessor architectures,” inCF’06:
Proceedings of the 3rd Conference on Computing Frontiers.
New York, NY, USA: ACM, 2006, pp. 29–40.

[10] D. Zhou and V. Lo, “Wavegrid: a scalable fast-turnaround het-
erogeneous peer-based desktop grid system,” inProceedings
of the 20th International Parallel and Distributed Processing
Symposium (IPDPS 2006). IEEE Computer Society Press,
April 2006.

[11] ——, “Wave scheduler: Scheduling for faster turnaround time
in peer-based desktop grid systems,” inProceedings of the
11th Workshop on Job Scheduling Strategies for Parallel
Processing, June 2005.

[12] J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee,
and A. Sussman, “Resource Discovery Techniques in Dis-
tributed Desktop Grid Environments,” inProceedings of the
7th IEEE/ACM International Conference on Grid Computing
- GRID 2006, Sep. 2006.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A Scalable Content Addressable Network,” in
Proceedings of the ACM SIGCOMM Conference, Aug. 2001.

[14] J.-S. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and
A. Sussman, “Using Content-Addressable Networks for Load
Balancing in Desktop Grids,” inProceedings of the 16th IEEE
International Symposium on High Performance Distributed
Computing (HPDC-16), Jun. 2007.

[15] A. Roy and M. Livny, “Condor and Preemptive Resume
Scheduling,”Grid Resource Management: State of the Art
and Future Trends, pp. 135–144, 2003.

[16] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epidemic
algorithms for replicated database maintenance,” inPODC
’87: Proceedings of the sixth annual ACM Symposium on
Principles of Distributed Computing. New York, NY, USA:
ACM, 1987, pp. 1–12.

AUTHOR BIOGRAPHIES

Jaehwan Lee is a Ph.D. student in the Computer Science
Department at the University of Maryland, College Park.
His current research interests include high performance
computing, peer-to-peer Grid computing for multi-core and
heterogeneous environments, and general distributed sys-
tem related to network and security. Before his study in
Maryland, he was a researcher at Korea Telecom (KT)
Labs for five years. His research focused on public wire-
less network based on IEEE 802.11/16, such as Quality
of Service (QoS) enhancement, fast hand-off, nation-wide
network management and AAA/security issues. He received
his B.S.(1998) and M.S.(2000) in Electrical Engineering
from Seoul National University, Korea. He was a recipient
of the General Electric (GE) Scholarship and the Korean
Government Scholarship for Electric Power Industry during
1996-1998 and 2005-2007, respectively.

Pete Keleher received a Ph.D. in computer science from
Rice University in 1995. He is currently an Associate Pro-
fessor in the Computer Science Department at the University
of Maryland. Professor Keleher’s primary interests are in the
design and analysis of distributed computing infrastructure,
distributed security infrastructure, and communication per-
formance.

Alan Sussman is an Associate Professor in the Com-
puter Science Department at the University of Maryland.
His research interests include Grid computing, Peer-to-Peer
(P2P) systems, high performance database and I/O sys-
tems, coupled multiphysics simulations, and compilers and
runtime environments for distributed and parallel systems.
He received his Ph.D. in computer science from Carnegie
Mellon University and his B.S.E. in Electrical Engineering
and Computer Science from Princeton University.

