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Abstract—The recent advent of multi-core computing en-
vironments increases both the heterogeneity and complexity
of managing desktop grid resources, making efficient load
balancing challenging even for a centralized manager. Even
with good initial job assignments, dynamic scheduling is still
needed to adapt to dynamic environments, as well as for
applications whose running times are not known a priori.

In this paper, we propose new decentralized scheduling
schemes that backfill jobs locally and dynamically migrate
waiting jobs across nodes to leverage residual resources,
while guaranteeing bounded waiting times for all jobs. The
methods attempt to maximize total throughput while balancing
load across available grid resources. Experimental results via

and/or stale global state. Moreover, a job profile often
hasmultiple resource requirements; a simple job migration
mechanism considering only CPU usage cannot be applied
to in such situations. In addition, we would also like to
guarantee progress for all jobs, i.e., no job starvation.

Our contribution in this paper is a novel dynamic schedul-
ing scheme for multi-core desktop grids. The scheme
includes (1)local scheduling a form of backfiling on
a single node, (2)internode schedulingfor backfilling
across multiple nodes, and (ueue balancingwhich pro-
actively balances wait queue lengths. Our approach is a

simulation show that our scheduling scheme has performance

0 : _ f completely decentralized scheme that balances load and
competitive with an online centralized scheduler.

improves throughput when scheduling jobs with multiple
constraints across a distributed system. We demonstrate th
effectiveness of our algorithms via simulations that show

Modern desktop machines now use multi-core CPUsghat the decentralized approach performs competitivethh wi
to enable improved performance. However, achieving higtan online centralized scheduler.
performance on multi-core machines without optimized The rest of this paper is structured as follows. Section |
software support is still difficult [1], because contention discusses related work on various parallel job scheduling
for shared resources can make it hard to exploit multipleand dynamic job migration techniques for desktop grids.
computing resources efficiently. Moreover, desktop gridsSection Il describes the basic architecture of our peer-
that contain multi-core machines are becoming increaginglto-peer desktop grid system and a decentralized resource
diverse and heterogeneous, so that efficient load balancinmanagement method for multi-core machines. We present
for the overall system is becoming a very challenging prob-our scheduling approach in Section IV, and show simulation
lem even with global status information and a centralizedresults in Section V. We conclude in Section VI.
scheduler.

Our previous research on decentralized resource man-
agement for desktop grids has developed and evaluated Backfilling [3], [4] is a commonly used scheduling
efficient initial job assignment algorithms for multi-core method for parallel jobs, because it is straightforwardias
resources [2]. However, dynamic scheduling via migrationbeen shown to be more effective than a first-come, first-serve
of waiting jobs is still required for the best performance (FCFS) scheduler. Backfilling opportunistically reordiedss
because 1) stale load information propagated between m@ the scheduling queue when a large job (meaning one
chines can lead to poor initial job assignments, 2) un-with high resource requirements) at the front of the queue is
predictable job completion times can change the currentinable to run immediately. The general goal of backfilling
load situation, and 3) initial job assignment is done in aalgorithms is to allow a job to bypass jobs ahead of it in
probabilistic manner, and so can be improved with additionathe queue to be able to exploit current residual resources,
information. but also should not delay either any other jobs (called

The performance of distributed scheduling in such multi-conservativebackfilling in the literature), or only the first
core environments can be improved by starting waiting jobgob in the queue (calleBASYbackfilling). Both backfilling
immediately, through use of residual resources on otheschemes require the job running time, which is given by the
nodes (if the job is moved) or on the same node (if theuser or estimated, and inaccurate estimation is closelyee!
local schedule is changed). However, efficient decengdliz to scheduling performance [5]. However, this assumption is
job migration can be difficult to achieve because of limitednot applicable to our heterogeneous decentralized desktop
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grid, where good estimates of job running times may beother information with nodes whose zones abut its own
very difficult to acquire. (called neighbor$. The following steps describe how jobs
While most previous research takes only CPU utilizationare submitted and executed in the grid system.

into account, Leinberger et al. suggest a backfilling scheme 1) A client (user) inserts a job into the system through

within a single machine that allows for multiple resource an arbitrary node called thiejection node
requirements, such as CPU and memory [6]. That work 2) The injection node initiates CAN routing of the job to
proposed two backfilling techniques for selecting backdille the owner node

jobs, to maximize total utilization as well as to balance 3) The owner node initiates the process to find a lightly
utilization across resources. However, those are based on  |oaded node r(in nodd that meets all of the job’s

the EASY backfilling criterion, which requires accurate resource requirements (callesatchmakiny
information about job running times, therefore we cannot 4) The run node inserts the job into an internal FIFO
apply those techniques in a straightforward manner. queue for job execution. Periodic heartbeat messages
Leinberger et al. also proposed a load balancing scheme  petween the run node and the owner node ensure that
via job migration in computational grids, and allowed mul- both are still alive. Missing multiple consecutive heart-
tiple resource constraints [7]. As they did for a single beats invoke a (distributed) failure recovery procedure.
machine [6], they tried to balance load locally across K- 5) After the job completes, the run node delivers the
resources by exchanging jobs with different resource re-  results to the client and informs the owner node that

guirements among machines to enhance throughput. How- the job has completed.

ever, they assumed a near-homogeneous environment, andrhe owner node monitors a job’s execution status until

did not consider backfilling. _ the job finishes and the result is delivered to the client. To
For dynamic job migration techniques, much work hasepaple failure recovery, the owner node and the run node

been done on dynamic load distribution for d'St“bUtedperiodically exchange soft-state heartbeat messagesdotde

systems [8] and on thread migration in multiprocessor mayade failures (or a graceful exit from the system). More

chines [9]. WaveGrid [10] is & peer-to-peer based deskioRetajls about the basic system architecture can be found in
grid computing system that adopts a timezone-aware jolkim et al. [12].

migration technique. Once a job is assigned to a host that is
in a night-time zone but busy, the job is migrated to anotheB- Matchmaking Procedure
(presumably idle) host in the night-time zone [11]. However Matchmaking is the initial job assignment to a node that
WaveGrid does not allow specifying resource requirementsatisfies all the resource requirements of the job, and also
for jobs, so it is a simpler model than for our desktopdoes load balancing to find a (relatively) lightly loaded
computing platform, to be described in Section IlI-A. node. A good matchmaking algorithm has several desirable
properties: expressiveness, load balance, parsimony; com
) pleteness, and low overhead. The matchmaking framework
A. Overall System Architecture should beexpressivenough to specify the essential resource
In prior work, we have developed a completely decen-requirements of the job as well as the capabilities of the
tralized peer-to-peer (P2P) desktop grid system that iB botnodes. It shouldbalance loadacross nodes to maximize
resilient to single-point failures, and provides good ab#d  total throughput and to obtain the lowest job turnaround
ity [12]. A desktop grid system may contain heterogeneougime. However, over-provisioning can decrease total syste
nodes with different resource types and capabilities, e.gthroughput, therefore the matchmaking shouldplesimo-
CPU speed, memory size, disk space, number of coresiousso as not to waste resourc&€mpletenesmeans that
Jobs submitted to the grid also can have multiple resourcas long as the system contains a node that satisfies a job’s
requirements, limiting the set of nodes on which they carrequirements, the matchmaker should find that node to run
be run. We assume that every job is independent, meanintye job. Finally, the overall matchmaking process should no
that there is no communication between jobs. To buildincur significant costs, to minimizeverhead
the P2P grid system, we employ a variant of a Content- Our CAN-based decentralized matchmaking framework
Addressable Network (CAN) [13] distributed hash tabledirectly supports expressiveness and completeness with lo
(DHT), which represents a node’s resource capabilitie®verhead. Our previous efforts to enhance load balancing
(and a job’s resource requirements) as coordinates dn a performance but be parsimonious are two-fold - employing
dimensional space. Each dimension of the CAN represents virtual dimensionand usingprobabilistic pushingof jobs.
the amount of that resource, so that nodes can be sortéthe basic CAN mechanisms do not allow the multiple nodes
according to the values for each resource. A node occupie® have the same coordinates in the multidimensional space.
a hyper-rectangular zone that does not overlap with any otheHowever, the coordinates in our CAN are determined by the
node’s zone, and the zone contains the node’s coordinatesnount of each resource a node has, so multiple nodes with
within the d-dimensional space. Nodes exchange load anddentical resource capabilities can conflict. We addreis th
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problem by adding another dimension (called Wmtual di- contains only Residue-nodes. The number of nodes in the
mension), which has a random value assigned to differentiatSecondary CAN is typically much fewer than in the Primary
multiple nodes with the same capabilities. The random valu€€AN (composed of Max-nodes), so the additional overhead
in the virtual dimension also helps distribute jobs acrosfor managing the Dual-CAN is not high. However, maintain-
nodes evenly, so improves load balance. However, usining an additional CAN is not free, so we can also incorporate
the virtual dimension does not always achieve good loadResidue-nodes into a single Primary CAN in a simple
balance. form, called a Balloon. A Balloon represents the currently

We have improved the basic matchmaking algorithm toavailable amount of resources for a node as a point in the
improve load balance bpushingjobs into less loaded re- CAN, and is associated with the zone that contains that point
gions in the CAN in a probabilistic way. We aggregate globalin the CAN. Therefore, the addition or removal of a Balloon
load information along each dimension by piggybackingdue to resource availability changes for the node the Balloo
load data onto the periodic heartbeat messages sent betwe@presents affects at most 2 nodes in the CAN, minimizing
neighbors that are used to maintain the CAN structure. Aftechanges to the Primary CAN. Using both static and dynamic
a job is routed to the node that meets its minimum resourceode information in the two management schemes, a job
requirements, that node chooses a dimension and a target assigned to an appropriate node capable of running the
node among its neighbors, to try to find a path to a morgob, preferably a node not currently running any other jobs
lightly loaded region in the CAN. The decision process to(a free node). The initial job matchmaking and information
push the job employs the periodically updated aggregatk loaaggregation schemes are similar to what was described for
information along each dimension. However, before pushing single-core environment in Section IlI-B, except that the
the job, the node computes a stopping probability based oalgorithms require information on core utilization ratliean
known load information in outer regions of the CAN, to on the number of free nodes. Once a run node is determined,
determine whether the job is to be pushed or not. If a jolthe job is inserted into the local queue of the node to wait to
stops at a node, that node will pick as the run node the leaste run. The default queuing policy is first-come first-serve
loaded node among itself and its neighbors. Otherwise, thé~CFS), based on the time the job arrived in the system, but
job continues to be pushed to a node with higher resourca node tries to run as many jobs as possible simultaneously
capability farther out in some dimension in the CAN. This to utilize all its available resources.
probabilistic approach can balance load effectively, asvsh
in our previous work, but also minimizes over-provisioning
More details on our previous work for initial job placement In this section we discuss the new dynamic scheduling
can be found in Kim et al.[14]. techniques in detail. After successful initial job assigmt)
as described in Section lll, we can still improve performanc
if we exploit residual resources by reordering jobs in the

Multi-core nodes may be capable of running multiple jobsqueue or by migrating jobs across nodes. After step 4, but
simultaneously, so that the number of currently availablebefore step 5 in the job submission and execution procedure
cores and the available amount of other shared resourcefescribed in Section IllI-A, a job redistribution algorithm
can vary over time for each node in the grid. Jobs also mapased on current dynamic load status is invoked periogicall
request more than one core to express the requirements wf each node to try to improve job placement. We do
a multi-threaded application. However, a structured DHTnot allow preemptive scheduling as in Condor [15], which
like our CAN can have problems with frequent changescauses the system to stop the currently running job and to
to its structure, because it works best in a low-churn enilater resume execution. Therefore there is no cost in terms
vironment. To express the dynamically changing amounbf job turn-around time for job migration between nodes,
of available resources in each node, and to minimize thaince we only move jobs that have not started yet. There is
changes required to our existing CAN mechanisms, weome communication cost to send a job profile to a different
represent dynamic resource availability by employing twonode, but that is negligible because a job profile is not very
logical nodes for each physical one: one that models théig. The following three sections describe in detail oueér
maximum resource available for that nodéaik-nodg@, and  methods: (1) local scheduling, (2) internode schedulingl, a
a second that models the currently unused amount of thgB) queue balancing.
resource Residue-node[2]. )

We have designed two resource management schemds, Local Scheduling
namedBalloon-Modeland Dual-CAN that employ two log- Local schedulingaddresses selecting a waiting job from
ical nodes per physical node. Dual-CAN uses two separatthe job queue of a local node, regardless of its arrival grder
CANs, one for each logical node type, so that dynamicconstrained by the remaining available resources on the nod
effects due to resource changes (e.g., jobs starting ongnhdi (some resources may already be used by currently running
in a multi-core node affect only the Secondary CAN, whichjobs).

IV. A TRI-PRONGEDAPPROACH

C. Resource Management in a Multi-core Grid
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Figure 1. Local Scheduling: Changing the Backfilling Cour{&C)

A key difference from other approaches is that we do notwhere K is the number of resources (or requiremenss),
rely on job descriptions to provide running time informatio is normalized utilization for resourcé (1 < k < K,
which earlier backfilling algorithms use to prevent backtlll 0 < S¥ < 1), andR§ is job j's normalized requirement for
jobs from delaying other waiting jobs. We are left with resourcek ( 0 < Rf < 1). BM measures unevenness across
the problem of preventing unconstrained backfilling fromutilization of multiple resources, and FM measures how
starving jobs with high resource requirements. much resources are under-utilized on average. Therefore,

To avoid job starvation or unreasonably long waiting lower BM and FM imply better balanced resource utilization
times, we employ a backfilling counter (BC) value for every and better average utilization, respectively.
job, with an initial value of zero. We then allow only a
job with a BC equal to or greater than that of the job atB. Internode Scheduling
the head of the queue to backfill. After backfilling a job, Internode schedulings an extended version of local
all other jobs that were ahead of the backfilled job in thescheduling; the target node for backfilling can be the neigh-
queue have their BC incremented. Therefore, the BC for @ors in the CAN. A node backfilling counter (NBC), which
job is the number of jobs that have bypassed the job in thgs the BC of the job at the head of the node’s waiting queue,
waiting queue. This BC does not allow unlimited backfilling is used to prevent jobs with large resource requirements fro
from jobs behind a given job in the queue, so that every jollong waits in the queue and from starvation. Only jobs whose
can begin execution without waiting too long, as will be BC is equal to or less than the NBC of the target node can
shown in the experiments in Section V. Figure 1 showshe migrated. Figure 2 shows how BC works with NBC for
how backfilling occurs and how the backfilling counters of internode scheduling. Jol, in the center node can be run
jobs change after backfilling. In Figure 1, the shaded slotn a free core either in the left or in the right node, bt
show the number of required cores for jobs on the quad-corgannot be migrated to the left node because the NBC of the
machine, and Job’; is backfilled to use two free cores in |eft node is greater than the BC df. However,.J, can be

the machine. moved to the right node because the NBC of the right node
If multiple jobs are candidates to be backfilled, we mustjs |ess than the BC of;.

choose the best job to run for better utilization. We use the while local scheduling is only a change to the job execu-

Backfill Balancedalgorithm [6] to rank jobs, and choose the tion order within the queue on a node, internode scheduling
one whose product dbalance measur¢BM) and fullness  must decide 1) which node initiates job migration (are jobs
measureg(FM) is the minimum. BM and FM are defined as pushedaway from a heavily loaded node qulled to a

follows: lightly loaded node), 2) which node should be the sender
maxy(S* + R?) MazximumUtilization (or receiver) of a job, and 3) which job should be migrated.

BM = S K (SE+RY) = AverageUtilization (1) In the PUSH scheduling model the job sender initiates
K the migration process. First the sender node tries to match

Zk{l(sk + RY) o every job in its queue with residual free resources in its
FM=1- % =1— AverageUtilization — neighbor nodes in the CAN. That is possible because every

(2) node knows its neighbor nodes’ resource capabilities and
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Figure 2. Internode Schedulings cannot be moved to the left node becausd3af

recent load information. If a job can be run on multiple more pro-activequeue balancingcheme may improve load
neighbors, the sender sends it to the node that has minimudistribution, and overall throughput, across heterogaseo
objective function value as follows. nodes.
Our grid model allows for multiple resource types to
1 - _n .
- (3) be specified for a node, therefore defining and measuring
CPUsprED load is more complex than for a single resource type.

To prefer the fastest node among neighbors, the objectivEirst, we set the maximally loaded resource amongKhe
function also includes an inverse term for CPU speed. Beforavailable resources as thead of a node, and our algorithm
sending a job profile, there is a simple confirming handshakeninimizes the total sum of theoadsamong neighbors, and
process between a sender and a potential receiver to avoadso balancesoad across the nodes [7]. We definelig”,
inappropriate job migration because the potential receivenormalized loadfor Resourcek of Node: by:
information may not be up-to-date at the sender.

On the other hand, for the PULL model, a receiver WE =31 couene, (B 1<k <K (4)
node tries to obtain a job from its CAN neighbors so as . ) . :
not to waste its availajble resources. However, the nodgvher_e Jj 1s Job j, R§ s the k'th nqrmallzed resource
does not have all information on the queued jobs' resourck€duirement for/;, and Queue; is the job queue for node
requirements in its neighbors to minimize neighbor updaté" The normalized loadof Nodes, L; is given by
message sizes, so the node invok@4Ji L -Requesimessage
to the node with maximum queue size among its neighbors. L= Max(WF), 1<k < K ®)
When a node receives a PULL-Request message, it checksThe PUSH and PULL job migration models can be used
whether any of its waiting job can be backfilled onto thefor queue balancing, as they were for internode scheduling.
requesting node, and if the job’s BC is equal to or less thafror PUSH, a nodé computes normalized load.() for itself
the NBC of the pulling node. If so, the job is migrated and for its neighbors. IfZ; is the locally maximum value
to the receiver and starts running. If there are multipleamong all its neighbors, then nodehecks its queue to find
candidate jobs in the waiting queue, then the job that hasandidate jobs for migration that reduteif the (candidate)
minimum objective function valueKM - FM, as above), job is moved. When there are multiple candidate jobs, the
is selected. If there is no candidate job, then the requestinalgorithm selects the job and the receiver node that midmiz
node gets #ULL-Rejectmessage and continues to look for an objective function if the job is moved to the neighbor. The
another potential sender with maximum queue length amongbjective function is defined by:

neighbors not contacted recently. f TLL . MLL ©6)
QB—PUSH = :

C. Queue Balancing TLL — Z L, 7
The local scheduling and internode scheduling algorithms i€ Neighbors

find and execute a job using residual free resources in a _ B ,

node, meaning that only jobs that can start running imme- MLL = Mazx(L:),i € neighbors (8)

diately will be moved. However, if the load across nodeswhereT LL is the total local load and/ . L is the maximum

is skewed, meaning that job queue lengths vary greatly, écal load. This policy is used to minimize total load in

frnter—pusg = BM - FM -



neighbors as well as to balance load across neighbors with 200
the goal of maximizing system throughput through efficient 180
utilization of node resources. 160
The PULL model is similar to the PUSH model, except
that the node with a locally non-zero minimum normalized
load among equal or less capable neighbors will initiate the
PULL process from the most loaded node among its neigh-
bors. Since zero local load means a free node, internode® 8o
scheduling handles that case. The reason that we conside o
only equal or less capable neighbors is the following. If a 20
highly capable node (which has a large amount of resources)
is locally minimum-loaded, the node is likely to pull a large
job, so small jobs cannot get benefits from this algorithm. 5 22 24 26 28 3
On the other hand, if a node that has a relatively small Job Inter-arrival Time (s)
amount of resources is locally minimum-loaded, calNit
the potential sender may not have a job that the pulling node
is capable of running. In this case, nodecannot obtain a

job to run, and other less loaded nodes also cannot pull {51 . : _
job because nodal is still the locally minimally loaded Ime with average valud’, uniformly distributed between
) 0.5 and 1.9°, with 7" = 3600 seconds, running on a

node. Therefore, P.ULL requests may not occur frequentlXf:anonical node with a normalized CPU speed of 1. The
enough to help with load-balancing as compared to the. . . . )
il‘mulated job running time is then scaled up or down by

| hl
Vanilla —<—
L —x—

LI-PUSH —8—
LI-PULL —=—
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Wait Time (s)

Figure 3. Average Job Wait Time: Clustered Nodes/Clusteobd J

PUSH scheme. Thus, to pull small jobs as well as to attemp e node CPU speed relative to the canonical node.

frequent pull requests, we choose the PULL node as the Ieats W h ¢ d i wralized
loaded node among equal or less capable neighbors. € compare our scnemes 1o a greedy online centralize
scheduler, which has a single queue and assigns jobs based
V. EXPERIMENTS on the complete global grid load information. Such a scheme
A. Experimental Setup would be very expensive in a real system, but gives some
indication of the best possible performance for our decen-

W nthetic workl model ical gri . . .
e used a sy t_etc orkload to model a typ ca g OItrallzed system. The centralized scheduler is used only to
resource configuration and a heterogeneous set of jobs. Our

simulation scenario contains 1000 multi-core nodes (eacgnea?;;;rLol?:iCg?:)anr;c(':ggtsfgfgg?a&i‘mgé dazfat?jg?ﬁfc;(;:;;t?gur
with 1, 2, 4 or 8 cores), and 5000 jobs submitted to thos y

nodes. Each node and each job is given multiple resourc(:?éom all nodes. .
To measure the performance of a long running desktop

capabilities or requirements, respectively, for CAN reseu id svstem. and to avoid start nd clean nomalies. w
dimension such as CPU speed, memory size, disk spaé’g system, and o avold startup and cleanup anomales, we

and the number of cores. A high percentage of the noden the simulations in a steady-state environment. Steady-

(and jobs) have relatively low resource capabilities (regu S_tat_? meant:; tth?; the {Ob arrlr\]/_al and ddepar_ture rz_;\Ing_ are
ments), and a low percentage of nodes (jobs) have high res-'tmt' a;, SO t?w € S)I/st_em ac _|zve ath )t/rr:amlctequu _r;Em
source capabilities (requirements). Moreover, we sinedlat state during the simulation period, wi € system neither

both clusteredand mixed workloads and node capabilities _h|gh|3_/ overlpaded, nor very underloadled. Therefore, the
to cover a wide range of grid scenarid@lusteredmeans inter-job arrival rate effectively determines averagealtot

that a small number of distinct sets of computing nodes (0|sys:em Iosd. Howizr\]/er, we d'dt not t(_astt ver%{ I|gfhtly Ioadeql
jobs) with the same resource capabilities (requiremenmts) azys ems, er(]:a(;Jsl_e osefare not very interesting for magsuri
available (submitted), while mixedenvironment has various ynamic scheduling performance.

sets of nodes (jobs) with randomly assigned capabilitiegs Experimental Results

(requirements). In addition, job requirements can be @ahitt ]

by users. If users do not specify a requirement for a Figure 3 compares the performance of our proposed
resource, the matchmaking process does not take resouréi¥namic scheduling schemes with the centralized scheduler
requirements into account, so that the number of nodefor varying job inter-arrival times. To see the effects of
capable of running the job can be large. We definedvie  the different schemes, we run the simulation with various
Constraint Ratioas the probability that each resource typeCcombinations of our methods as follows:

for a job is specified. 1) L: local scheduling only
The interval between individual job submissions follows 2) LI: local scheduling + internode scheduling
a Poisson distribution, with varying average inter-jolvalr 3) LIQ: all three methods (local scheduling + internode

times in the experiments. Each job has an expected running  scheduling + queue balancing).
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Figure 4. Costs - Messages per minute per node

In each scenario for LI and LIQ, the PUSH and PULL between our local scheduling algorithm and a conservative
mechanism are both tested (denoted by LI(Q)-PUSH/PULL)backfilling algorithm.
Vanilla denotes the scenario with only the initial job  Figure 4 shows the cost for each scenario, measuring
matchmaking described in Section [II-C and no dynamicthe number of messages and the total bandwidth (volume)
scheduling, whileCENT denotes the results of the greedy of messages per minute per node. Note that the Y-axis in
centralized scheduler. each figure in Figure 4 does not start at zero, to better

In Figure 3, the average job wait time is shown, tosee the differences between the scenarios. In Figure 4(a),
measure overall load balancing performance. LIQ-PULLLocal scheduling and the two PUSH-based methods do
shows the best performance (shortest average wait time)ot generate significant additional messages compared to
among our schemes, and has performance competitive witfanilla. On the other hand, despite the improved load
the centralized scheduler. balance performance, PULL has a higher cost than PUSH,

In general, the PULL mechanisms are better than thd&cause PULL requires more messages to search its neigh-

PUSH ones in a highly loaded system, because in the pyL_pors iteratively for jops to' run. Eyen though PULL generates
schemes idle nodes more aggressively try to find jobs t6NOre€ messages, it |s_st|II desirable compa_red to the other
run. On the other hand, in experiments not shown, weschemes because of its better load balancing performance,
have seen that PUSH shows better performance in a Iightl?ince the absolute number of messages is still very I.ow (o_nly
loaded system. However, the initial matchmaking algorithm@P0Ut one message per node every three seconds, in a highly
balances load well enough to handle light loads, so thdoaded system). Moreover, the volume of messages in each
PUSH-based job migration technique does not outperform §cenario is very similar to that of Vanilla, because the size
PULL-based scheme when dynamic load balancing is reallj"€ssages for job migration is small (See Figure 4(b)). The
needed to improve throughput. This result is consisterti wit W0 PULL schemes also do not increase the message volume
the observations on the characteristics of PUSH and PULIMUCh, because the iterative PULL trials require only small
load balancing schemes described by Demers et al. [18]'€SSages. Therefore, the additional cogt for our migration
that suggest using pull (or a combination of push and pully>chémes is very small compared to Vanilla.

over push to spread information across distributed daeabas We have run various combinations of scenarios with clus-
systems. Moreover, the performance of LI is similar to thattered and mixed nodes and jobs, but we show only the results
of LIQ, i.e. internode scheduling provides major benefits infor clustered nodes and clustered jobs, because the results
performance, and queue balancing provides some additionéperformance competitive to the centralized scheduleg) ar
benefit. We vary the job inter-arrival time from a heavily to a basically similar for other combinations and we believet tha
lightly loaded system (from 2 to 3 seconds), but the resultghis is the most common scenario for many desktop grids.
do not vary much, except in one case — local scheduling Figure 5 presents the average wait time when the job
shows worse performance than Vanilla for the 2 second intereonstraint ratio is varied from 20%-80%. In this experiment
arrival time. Local scheduling cannot guarantee increasethe average job inter-arrival time is 3 seconds, and we model
performance because it cannot guarantee that it does nbbth clustered nodes and clustered jobs. The results are gen
increase the wait time of other jobs - that is the differenceerally similar to the previous experiment, regardless @f th
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L —*— 4 that from previous work described in the literature.
700 | LI-PUSH —8— . .
LI-PULL —=— In future work, we will extend our decentralized re-
600 I LIQ-PUSH —e— ~ .
~ LIQ-PULL —e— source management scheme to accommodate asymmetric
5 so0 ) CENT —= i multiprocessors (e.g. multi-core machines equipped with
£ GPGPUs (General Purpose Graphics Processing Units)), to
S 400 - extend into even more heterogeneous environments. We are
% 400l L also implementing our schemes in a real testbed grid to
z characterize its behavior and performance, in cooperation
200 1 . with researchers from the Maryland Astronomy department.
100 | £
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