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Abstract

Software distributed-shared-memory (DSM) systems provide an appealing target for parallelizing compilers due to
their flexibility. Previous studies demonstrate such systems can provide performance comparable to message-passing
compilers for dense-matrix kernels. However, synchronizationand load imbalance are significant sources of overhead.
In this paper, we investigate the impact of compilation techniques for eliminating barrier synchronization overhead in
software DSMs. Our compile-time barrier elimination algorithm extends previous techniques in three ways: 1) we
perform inexpensive communication analysis through local subscript analysis when using chunk iteration partitioning
for parallel loops, 2) we exploit delayed updates in lazy-release-consistency DSMs to eliminate barriers guarding
only anti-dependences, 3) when possible we replace barriers with customized nearest-neighbor synchronization.
Experiments on an IBM SP-2 indicate these techniques can improve parallel performance by 20% on average and by
up to 60% for some applications.

1 Introduction

It is generally agreed that distributed-memory parallel architectures (e.g., IBM SP-2, Cray T3D) come closest to

achieving peak performance when programmed using a message-passing paradigm. However, users are willing write

message-passing programs only for a few important applications because it takes too much time and effort. Compilers

for languages such as High Performance Fortran [15] provide a partial solutionbecause they allow users to avoid writing

explicit message-passing code, but HPF compilers currently only support a limited class of data-parallel applications.

One method for increasing programmability of message-passing machines is to combine powerful shared-memory

parallelizing compilers with software distributed-shared-memory (DSM) systems that provide a coherent shared address

space in software. Scientists and engineers can write standard Fortran programs, rewriting a few computation-intensive

procedures and adding parallelism directives where necessary. The resulting programs are portable since they can be

run on the large-scale parallel machines as well as the low-end, but more pervasive multiprocessor workstations.

Shared-memory parallelizing compilers are easy to use, flexible, and can accept a wide range of applications. Results

from several recent studies [4, 14] indicate they can approach the performance of current message-passing compilers

or explicitly-parallel message-passing programs on distributed-memory machines. However, load imbalance and

synchronization overhead were identified as sources of inefficiency when compared with message-passing programs.

Figure 1 categorizes execution time for five compiler-parallelized applications. Execution times is split into

application processing time, OS overhead, communication cost, load imbalance (idle time spent waiting at barriers),

and barrier overhead (time spent executing barrier code). Measurements demonstrate synchronization overhead can

comprise a large portion of overall execution time across a range of sample applications. While not much time is

spent explicitly executing barriers in these programs, the load imbalance exposed by frequent barriers comprises a
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Figure 1 Breakdown of Execution Time (16 Processor SP-2)

large percentage of total execution time. The compiler-generated code is balanced computationally, but the underlying

DSM and OS effectively add random (and unequal) delays. It is clear from these measurements that reducing load

imbalance caused by synchronization overhead is important for achieving good performance.

In this paper we investigate a number of compiler techniques for reducing synchronization overhead and load

imbalance. Our techniques are evaluated in a prototype system [14] using the CVM [12] software distributed-shared-

memory (DSM) as a compilation target for the SUIF [9] shared-memory compiler. This paper makes the following

contributions:

� eliminate barriers by inexpensively detecting communication using local subscript analysis

� exploiting lazy release consistency to eliminate barriers guarding only anti-dependences

� replacing barriers with customized nearest-neighbor synchronization

� empirical evaluation of compiler synchronization optimizations for software DSMs

We begin by describing the compiler/software DSM framework, then describe each optimization technique. We

present our prototype system, followed by experimental results. We conclude with a discussion of related work.

2 Background

We introduce the two components of our prototype system, the SUIF shared-memory compiler and the CVM software

DSM. We also review previous compiler techniques for reducing synchronization overhead.

2.1 SUIF Shared-Memory Compiler

SUIF is a optimizing and parallelizing compiler developed at Stanford [9]. It has been successful in finding parallelism

in many standard scientific applications. Like most shared-memory parallelizing compilers, SUIF employs a fork-join

programming model, where a single master thread executes the sequential portions of the program, assigning (forking)

computation to additional worker threads when a parallel loop or task is encountered. After completing its portion of

the parallel loop, the master waits for all workers to complete (join) before continuing execution. During the parallel

computation, the master thread participates by performing a share of the computation just like a worker. After each

parallel computation worker threads spin or go to sleep, waiting for additional work from the master thread.



2.2 CVM Software DSM

CVM is a software DSM that supports coherent shared memory for multiple protocols and consistency models [12].

It is written entirely as a user-level library and runs on most UNIX-like systems. Its primary coherence protocol

implements a multiple-writer version of lazy release consistency [13], a derivation of release consistency. Release

consistency allows a processor to delay making modifications to shared data visible to other processors until special

acquire or release synchronizationaccesses occur. Lazy release consistency postpones the propagationof modifications

further; updates to shared data do not have to be made visible to a processor until the next time that processor acquires

a released synchronization variable. Experiments show that lazy-release-consistency protocols generally cause less

communication than release consistency [7]. Consistency information in CVM is piggybacked on synchronization

messages. Multiple updates are also aggregated in a single message where possible.

2.3 SUIF/CVM Interface

SUIF was retargeted to generate code for CVM by providing a run-time interface based on CVM thread creation and

synchronization primitives. Performance was improved by adding customized support for reductions, as well as a

flush update protocol that at barriers automatically sends updates to processors possessing copies of recently modified

shared data [14]. Compiler analysis needed to use the flush update protocol is much simpler than communication

analysis needed in HPF compilers. The identities of the sending/receiving processors do not need to be computed at

compile time, and the compiler does not need to be 100% accurate since the only effect is on efficiency, not correctness.

Instead, the compiler only needs to locate data that will likely be communicated in a stable pattern, then insert calls to

DSM routines to apply the flush protocol for those pages at the appropriate time.

2.4 Compile-time Barrier Elimination

The fork-join model used by shared-memory compilers is flexible and can easily handle sequential portions of the

computation; however, it imposes two synchronization events per parallel loop as shown in Figure 2(A). First, a

broadcast barrier is invoked before the parallel loop body to wake up available worker threads and provide workers

with the address of the computation to be performed and parameters if needed. A barrier is then invoked after the

loop body to ensure all worker threads have completed before the master can continue.

Measurements show synchronization overhead can significantly degrade performance. Barriers are expensive for

two reasons. First, executing a barrier has some run-time overhead that typically grows quickly as the number of

processors increases. Second, executing a barrier requires all processors to idle while waiting for the slowest processor;

this effect results in poor processor utilization when processor execution times vary. Eliminating the barrier allows

perturbations in task execution time to even out, taking advantage of the loosely coupled nature of multiprocessors.

Barrier synchronization overhead is particularly significant as the number of processors increases, since the interval

between barriers decreases as computation is partitioned across more processors.

In previous work, we developed compiler algorithms for barrier elimination [24]. We first generate code for parallel

loops using the single-program, multiple-data (SPMD) programming model found in message-passing programs,

where all threads execute the entire program. Sequential computation is either replicated or explicitly guarded to limit

execution to a single thread, while parallel computation is partitioned and executed across processors. By placing

multiple loops in the same SPMD region, we make barriers explicit and provide opportunities for barrier elimination

or replacement.

Compile-time barrier elimination is made possible by the observation that synchronization between a pair of

processors is only necessary if they communicate shared data. If data dependence analysis can show two adjacent

loop nests access disjoint sets of data, then the barrier separating them may be eliminated, as in Figure 2(B). If
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DOALL I = 1,N
...

ENDDO

DOALL J = 1,N
...

ENDDO
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broadcast
DO I = LB1,UB1

...
ENDDO

barrier
broadcast
DO J = LB2,UB2

...
ENDDO
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DOALL I = 1,N
A(I) =

ENDDO

DOALL J = N+1,2*N

B(J) = A(J)
ENDDO

+

broadcast
DO I = LB1,UB1

A(I) =
ENDDO

DO J = LB2,UB2

B(J) = A(J)
ENDDO

barrier
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DISTRIBUTE (BLOCK) :: A,B
DOALL I = 1,N

A(I) =
ENDDO

DOALL J = 1,N
B(J) = A(J)

ENDDO

+

broadcast
DO I = LB1,UB1

A(I) =
ENDDO

DO J = LB1,UB1

B(J) = A(J)
ENDDO

barrier
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DISTRIBUTE (BLOCK) :: A,B
DOALL I = 1,N

A(I) =
ENDDO

DOALL J = 1,N
B(J) = A(J-1) + A(J+1)

ENDDO

+

broadcast
DO I = LB1,UB1

A(I) =
ENDDO

sync with neighbors
DO J = LB1,UB1

B(J) = A(J-1) + A(J+1)
ENDDO

barrier

(D)

Figure 2 Optimization Examples

two loop nests accesses the same data, but communication analysis proves no remote data is accessed based on

data and computation decomposition information, the barrier may also be eliminated, as in Figure 2(C). Finally,

if communication analysis identifies simple interprocessor sharing patterns, the barrier may be replaced with less

expensive forms of synchronization. In particular, if data is only shared between neighboring processors, the barrier

may be replaced by nearest-neighbor synchronization, as shown in Figure 2(D).

3 Reducing Synchronization Overhead

Later in this paper, we will examine the impact of barrier elimination algorithms on the performance of SUIF-

parallelized programs for CVM. In this section we discuss novel extensions to compiler techniques for reducing

synchronization overhead.

3.1 Communication Analysis Using Local Subscripts

Previous communication analysis relied on compile-time information on the data and computation decomposition

selected for a program to precisely determine whether interprocessor communication takes place [24]. We find that an

alternative communication analysis technique based on local subscript analysis can yield good results with much less

complex analysis. The Local subscript analysis algorithm is shown in Figure 3.

We assume dependence analysis has already eliminated all array reference pairs between loop nests proven to access

disjoint memory locations. Local subscript analysis relies on the compiler selecting a consistent chunk partitioning of

parallel loop iterations. Consistent iteration partitioning of loops with identical loop bounds will then always assign

the same loop iterations to each processor. If all subscript pairs are identical, each processor will only access local

data. If the subscripts differ by only a constant, then each processor will access remote data a constant number of

processors away. Since constant differences in subscripts are usually small, processors will end up accessing remote



for each pair of parallel loop nests
if loop bounds are identical

for each dependence crossing loop nests
examine array reference pair at endpoints
for each subscript pair

if differs by constant
sync neighbor needed

else if differs
barrier needed

else
barrier needed

if barrier needed for any dependence crossing loop nests
insert barrier

else if sync neighbor needed for any dependence
insert nearest-neighbor synchronization

else
no barrier needed between loop nests

Figure 3 Local Subscript Analysis Algorithm

data on neighboring processors, allowing barriers to be replaced by nearest-neighbor synchronization.

Local subscript analysis is designed to complement full communication analysis. It has two advantages, efficiency

and applicability. Because it only relies on local symbolic information, local subscript analysis can quickly eliminate

simple array reference pairs that do not require synchronization. More expensive communication analysis may be

applied if the local test fails. Local subscript analysis can also potentially be applied in more cases than standard

communication analysis, since it relies only on local program information and a consistent chunk iteration partitioning.

Communication analysis, in comparison, relies on knowing the compile-time computation and data decomposition.

Additionally, local subscript analysis only needs to ensure every subscript expression pair is identical. Communication

analysis must calculate what data is communicated, and can be disabled by a single complex array subscript. For

instance, in Figure 4(A), local subscript analysis does not need to fully analyze f1() or f2() before eliminating the

barrier, unlike communication analysis. Similarly, local subscript analysis can determine that only nearest-neighbor

synchronization is needed even if some subscripts are too complex to analyze, as shown in Figure 4(B).

3.2 Exploiting Lazy Release Consistency

A second enhancement to our compile-time barrier elimination algorithm is made possible by the underlying semantics

of lazy-release-consistency software DSMs. In a traditional shared-memory model, synchronization is needed between

two loop nests if two processors access shared data, with at least one of the processors performing a write to the shared

data. However, in a lazy-release-consistency software DSM, if the shared reference is a read in the first loop and a

write in the second loop, no synchronization is needed because writes from the second loop will not become visible to

the read in the first loop until synchronization is encountered. In other words, anti-dependences (write-after-read) do

not need to be synchronized.

To see how the compiler can use this property, consider the example shown in Figure 4(c). The first loop nest

reads nonlocal values of B which are defined in the second loop nest. The cross-processor dependence caused by B is

thus a loop-independent anti-dependence. Normally, synchronization is needed to ensure the old values of B are read

before the new values of B are written. However, with lazy release consistency the software DSM guarantees that new

values of B on another processor will not be made visible until the two processors synchronize. Since there are no



f Local Subscript Analysis g

DOALL J = 1,N
DO I = 1,N

A(f1(I),f2(J)) =
ENDDO

ENDDO

DOALL J = 1,N
DO I = 1,N

B(...) = A(f1(I),f2(J))
ENDDO

ENDDO

+

broadcast
DO J = LB1,UB1

DO I = 1,N
A(f1(I),f2(J)) =

ENDDO

ENDDO

DO J = LB1,UB1

DO I = 1,N
B(...) = A(f1(I),f2(J))

ENDDO

ENDDO

barrier
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f Local Subscript Analysis 2 g

DOALL J = 1,N
DO I = 1,N

A(f1(I),J) =
ENDDO

ENDDO

DOALL J = 1,N
DO I = 1,N

B(...) = A(f1(I),J-1)
ENDDO

ENDDO

+

broadcast
DO J = LB1,UB1

DO I = 1,N
A(f1(I),J) =

ENDDO

ENDDO

sync with neighbors
DO J = LB1,UB1

DO I = 1,N
B(...) = A(f1(I),J-1)

ENDDO

ENDDO

barrier

(B)

f Lazy Release Consistency g

DO TIME =
DOALL J = 1,N

DO I = 1,N
A(I,J) = B(I,J-1)+B(I,J+1)

ENDDO

ENDDO

DOALL J = 1,N
DO I = 1,N

B(I,J) = A(I,J)
ENDDO

ENDDO

ENDDO

+

broadcast
DO TIME =

DO J = LB1,UB1

DO I = 1,N
A(I,J) = B(I,J-1)+B(I,J+1)

ENDDO

ENDDO

f ANTI-DEPENDENCE ONLY,
NO BARRIER NEEDED g

DO J = LB1,UB1

DO I = 1,N
B(I,J) = A(I,J)

ENDDO

ENDDO

sync with neighbors
ENDDO

barrier

(C)

Figure 4 Advanced Optimization Examples

other loop-independent dependences between the two loop nests, synchronization between them is not required.

A cross-processor true/flow dependence (read-after-write) exists which does need synchronization. It is the

dependence between definitions of B in the second loop nest and reads of nonlocal values of B in the first loop nest.

This dependence is carried by the outer TIME loop, since the endpoints of the dependence occur on different iterations

of the TIME loop. The compiler normally inserts a barrier as the last statement of the TIME loop, but local subscript

analysis can show only nearest-neighbor synchronization is needed.

The one case where synchronization is needed for anti-dependences is when the processor performing a read does

not yet possess a copy of the shared data, since it may retrieve a copy of the data with the new values. For scientific

computations where iterative computations are the rule, this is rarely the case. Our implementation of nearest-neighbor

synchronization solves this problem by invoking a global barrier the first time it is invoked at each location in the

program. Since anti-dependences may be ignored, the algorithm for inserting barrier synchronization becomes similar

to the algorithmfor message vectorization [11]. The level of the deepest true/flow cross-processor dependence becomes

the point where synchronization must be inserted to prevent data races. Synchronization at lower loop levels is not

needed.



3.3 Customized Nearest-Neighbor Synchronization

At some barriers, the compiler can detect communication only takes place between neighboring processors [24]. To

take advantage of this information, we implemented a customized routine for nearest-neighbor synchronization (where

each processor has either zero, one, or two neighbors) directly in CVM. The routine sends a single message to each

neighboring processor upon arrival, and continues as soon as messages are received from all neighboring processors.

In comparison, for normal global barriers all processors send a single message to the barrier master, which broadcasts

a reply once all processors have checked in.

The customized nearest-neighbor synchronization has several advantages over standard global barriers. The most

important is that nearest-neighbor synchronization allows at least some of the induced load imbalance to smooth

out before it delays all processors. However, this benefit usually occurs only if there are multiple nearest-neighbor

synchronization events invoked in sequence. If nearest-neighbor synchronization and global barriers are executed in

alternating sequence, opportunities to smooth out load imbalance are lessened.

Second, the serial bottleneck of the barrier master is avoided. This is not a large advantage for the size of the

system that we are currently evaluating, but should be significant for larger systems.

Finally, common messages can be used to carry both synchronization and data, because both flow only between

neighbors.

4 Experimental Results

4.1 Applications

We evaluated the performance of our compiler/software DSM interface with five programs shown in Table 1. The

“Granularity” column refers to the average length in seconds of a parallelized loop. Except where indicated, numbers

below refer to the larger data set for each application. expl, and redblack are dense stencil kernels typically found

in iterative PDE solvers. jacobi is a stencil kernel combined with a convergence test that checks the residual value

using a max reduction. swm and tomcatv are programs from the SPEC benchmark suite containing a mixture of

stencils and reductions. We used the version of tomcatv from APR whose arrays have been transposed to improve

data locality.

All applications were originally written in Fortran, and typically contain an initialization section followed by

iterations of a time-step loop. Statistics and timings are collected after the initialization section. Optimized versions

of each program were automatically generated by the SUIF compiler. The compiler analyzed but was unable to apply

synchronization optimizations to four other programs, indicating that not all programs may benefit from the techniques

presented in this paper.

Name Description
Problem Sizes Granularity (secs)
Small Large Small Large

expl Explicit Hydrodynamics (Livermore 18) 2562 5122 0.06 0.34
jacobi Jacobi Iteration w/Convergence Test 5122 10242 0.06 0.91

redblack Red-Black Successive-Over-Relax. 5122 10242 0.01 0.14
swm Shallow Water Model (SPEC) 5122 7502 0.10 0.20

tomcatv Vector Mesh Generation (SPEC) 2562 5122 0.04 0.15

Table 1 Applications



4.2 Experimental Environment

We evaluated our optimizations on an IBM SP-2 with 66MHz RS/6000 Power2 processors operating AIX 4.1. Nodes

are connected by a 120 Mbit/sec bi-directional Omega switch capable of a sustained bandwidth of approximately 40

Mbytes per second. Simple RPCs on the SP-2 require 160�secs. A one-hop page miss, where the page manager is also

the owner, requires two messages and 939 �secs. Two-hop page misses require three messages and 1376 �secs. In the

best case, AIX requires 128 �secs to call user-level handlers for page faults, and mprotect system calls require 12

�secs. However, virtual memory primitive costs in the current system are location-dependent, occasionally increasing

these costs to a millisecond or more.

In our experiments, CVM [12] applications written in Fortran 77 were automatically parallelized by the Stanford

SUIF parallelizing compiler version 1.1.2 [9], with close to 100% of the computation in parallel regions. A simple

chunk scheduling policy assigns contiguous iterations of equal or near-equal size to each processor, resulting in a

consistent computation partition that encourages good locality. The resulting C output code was compiled by g++

version 2.7.2 with the -O2 flag, then linked with the SUIF run-time system and the CVM libraries to produce executable

code on the IBM SP-2. Customized support for reductions and the flush update protocol were used to improve overall

performance [14].

4.3 Effectiveness of Compiler Synchronization Optimizations

First, we examine the effectiveness of compiler algorithms in eliminating synchronization. Table 2 displays the number

of parallel loops (doalls) and barriers found in each program at compile time, and the percentage eliminated by different

levels of optimization. Table 3 presents the same information for parallel loops and barriers executed dynamically at

run time for each application. The first two columns for “doalls” indicate the number of parallel loops executed in the

original program and the percentage reduction by merging doalls into the same parallel region. The remaining columns

show the number of barriers executed by the original program, followed by the percentage eliminated or replaced by

nearest-neighbor synchronization for different levels of optimization. The compiler optimization levels are as follows:

“merge” measures the effect of merging adjacent parallel loops into a single parallel region,“depend” eliminates barriers

in parallel regions based on data dependences, “comm” performs communication analysis using local subscript analysis

to eliminate barriers, “lazy” eliminates barriers guarding only anti-dependences. Communication analysis may also

replace barriers with nearest-neighbor synchronization, Optimizations are cumulative.

We see from both tables that the compiler is effective at eliminating parallel loops and barriers encountered during

compilation, with roughly similar benefits for the number of parallel loops and barriers actually executed by the

application at run time. Examining the run-time measurements in Table 3, we find the compiler is quite successful

in discovering parallel loops which may be merged into a single parallel region, eliminating on average 59% of

parallel invocations and 30% of barriers executed. Dependence analysis alone is only able to eliminate barriers in

one program, redblack, but the improvement there is significant. Communication analysis can eliminate barriers

in swm, tomcatv and replace barriers in expl and jacobi. Detecting barriers guarding only anti-dependences,

the compiler can eliminate more barriers outright in expl, jacobi, and tomcatv and convert a barrier to nearest-

neighbor synchronization in swm (by eliminating complex anti-dependences guarded by the barrier). The number of

replaced barriers goes down in expl and jacobi, since the compiler can prove some nearest-neighbor barriers guard

only anti-dependences. Applying all optimizations, on average 51% of all barrier executions are eliminated in these

five programs, with 6% of barriers replaced by nearest-neighbor synchronization.



Doalls in program Barriers in program
Program original original % eliminated % replaced

number % eliminated number merge depend comm lazy comm lazy
expl 3 67 6 33 33 33 50 33 17

jacobi 2 50 4 25 25 25 50 25 –
redblack 4 75 8 38 63 63 63 13 13

swm 16 38 32 19 22 31 31 – 3
tomcatv 8 63 16 31 31 44 50 – –
Average 6.6 59 13.2 29 35 39 49 14 6.6

Table 2 Static Measurement of Synchronization Optimizations

Doalls executed Barriers executed by program
Program original original % eliminated % replaced

number % eliminated number merge depend comm lazy comm lazy
expl 60 67 120 33 33 33 50 33 17

jacobi 40 50 80 25 25 25 50 25 –
redblack 80 75 160 38 63 63 63 13 13

swm 265 33 530 17 17 33 33 – –
tomcatv 140 71 280 36 36 50 57 – –
Average 117 59 234 30 35 41 51 14 6.0

Table 3 Dynamic Measurement of Synchronization Optimizations

4.4 Impact of Compiler Optimizations on Program Performance

Figure 5 displays the impact of synchronization optimizations on application performance on the SP-2, for both small

and large data sets. For each graph, the Y-axis measures improvement over unoptimized programs, the X-axis presents

three optimized versions of each program for both 8 and 16 processor runs: “dependence analysis” merges parallel

regions and eliminates barriers based on data dependences, “communication analysis” uses local subscript analysis

to eliminate barriers or replace them with nearest-neighbor synchronization, “lazy release consistency” eliminates

barriers guarding only anti-dependences. Except for redblack, performance for “dependence” is the same as that

for simply merging adjacent parallel loops into the same parallel region. Optimizations are cumulative.

Table 4 displays speedups and percentage improvements due to optimizations in detail. Performance for appli-

cations cover a broad range. For 16 processor runs with large data sets, average improvement from synchronization

optimizations is 13% for dependence analysis, 17% for communication analysis, and 18% when also eliminating

barriers using lazy release consistency. As expected, optimizations have greater impact for smaller data sets and more

processors, since synchronization overhead is more significant. For small data set runs on 16 processors, average

improvements increase to 20%, 26%, and 28% respectively. For 8 processor runs improvements from synchronization

optimizations drop to 8%, 11%, and 11% with large data sets and 13%, 18%, and 19% with small data sets for the

three optimization levels, respectively.
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Figure 5 Impact of Barrier Elimination (8 & 16 Processors)

expl jacobi redblack swm tomcatv Average
sm lg sm lg sm lg sm lg sm lg sm lg

Speedup unoptimized 5.7 13 6.0 12 1.3 4.0 1.4 2.2 1.3 3.1 3.1 6.7
dependence 6.6 13 6.8 13 2.7 6.9 1.4 2.3 1.5 3.3 3.8 7.7

communication 6.9 14 7.3 13 3.0 7.2 1.5 2.3 1.7 3.6 4.1 7.9
lazy RC 7.1 14 8.2 13 3.1 7.2 1.5 2.4 1.7 3.6 4.3 8.1

dependence 15 5.1 12 6.8 53 43 5.2 5.0 13 5.6 20 13
% Improv communication 18 6.9 18 9.7 59 45 9.8 8.2 24 14 26 17

lazy RC 21 9.0 27 12 59 45 10 8.6 24 14 28 18

Table 4 Impact of Barrier Elimination (16 Processors)
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expl jacobi redblack swm tomcatv Average
sm lg sm lg sm lg sm lg sm lg sm lg

% Exec time barrier overhead 2.1 0.7 2.6 1.3 4.0 3.2 1.5 1.0 1.8 1.1 2.4 1.5
(unoptimized) load imbalance 35 13 48 30 72 60 47 46 65 56 53 41
% Decrease dependence 37 35 22 21 65 66 6.5 7.7 17 8.3 29 28

in load communication 38 30 31 31 72 69 15 14 23 12 36 31
imbalance lazy RC 44 44 46 34 72 68 16 15 25 12 41 35

Table 5 Effect of Optimizations on Load Imbalance (16 Processors)

4.5 Impact of Compiler Optimizations on Synchronization Overhead

In order to evaluate synchronization optimizations in more detail, we instrumented CVM to directly measure barrier

overhead (time spent executing barrier code) and load imbalance (idle time spent waiting at barriers). We found the

actual time spent in barrier routines to be small. Instead, most of the overhead was caused by load imbalance. Table 5

shows barrier overhead and load imbalance as a percentage of overall execution time. The measurements are for 16

processor SP-2 runs with small and large data sets. Average load imbalance is 41% of execution time for large data

sets and 53% for small data sets. Load imbalance takes up less percentage of execution time with large data sets,

because the larger amount of data on individual processors gives the greater chance to smooth out load imbalance.

We also measured the impact of synchronization optimizations on reducing load imbalance. Table 5 displays the

percentage reduction in idle time after applying different levels of optimization. Figure 6 graphically presents the

same information for the large data sets. We see that optimizations can significantly reduce load imbalance for some

of the applications studied (72% decrease for redblack with small data set). Average load imbalances decrease by

28%, 31%, and 35% with large data sets and by 29%, 36%, and 41% with small data sets for three optimization levels,

respectively.



Execution time expl jacobi redblack swm tomcatv Average
(dep vs. comm) sm lg sm lg sm lg sm lg sm lg sm lg

% Improv 3 2 10 3 12 3 – – – – 5 2

Table 6 Impact of Nearest-Neighbor Barriers (16 Processors)

4.6 Impact of Nearest-Neighbor Synchronization on Performance

Using communication analysis, SUIF was able to replace two barriers with nearest-neighbor synchronization in

expl, and one barrier each in jacobi and redblack. The performance improvements due to replacing barriers

are shown in Table 6. As with all synchronization optimizations, impact is heightened for smaller data sizes.

Performance improvements are due to a combination of better load balancing and fewer messages; the amount of data

communication that is piggybacked on synchronization messages tripled for some applications when using nearest-

neighbor barriers. Nonetheless, the overall impact on performance is limited. The primary reason is that many of the

barrier synchronizations that are prime candidates to be replaced by nearest-neighbor synchronizationcan be eliminated

instead. However, nearest-neighbor synchronization may prove more important when using more than 16 processors.

5 Related Work

Before studying methods for eliminating barrier synchronization, researchers investigated efficient use of data and

event synchronization, where post and wait statements are used to synchronize between data items [23] or loop

iterations [16]. Researchers compiling for fine-grain data-parallel languages sought to eliminate barriers following

each expression evaluation [10, 20, 21]. Simple data dependence analysis can be used to reduce barrier synchronization

by orders of magnitude, greatly improving performance. For barriers separating statements on the same loop level,

Hatcher and Quinn use a two-dimensional radix sort to find the minimal number of barriers [10]. Philippsen and Heinz

find the minimal number of barriers with an algorithm based on topological sort; they also attempt to minimize the

amount of storage needed for intermediate results [20].

Eliminating barriers in compiler-parallelized codes is more difficult. Cytron et al. were the first to explore the

possibilities of exploiting SPMD code for shared-memory multiprocessors [5]. They concentrated on safety concerns

and the effect on privatization. In previous work [24] we presented techniques to eliminate or lessen synchronization

based on communication analysis used by distributed-memory compilers to calculate explicit communication [11].

O’Boyle and Bodin [19] present techniques similar to local subscript analysis. They apply a classification algorithm

to identify data dependences that cross processor boundaries, then apply heuristics based on max-cut to insert barrier

synchronization and satisfy dependence.

There has been a large amount of research on software DSMs [1, 7, 18]. More recently, groups have examined

combining compilers and software DSMs. Viswanathan and Larus developed a two-part predictive protocol for iterative

computations for use in the data-parallel language C** [25]. Chandra and Larus evaluated combining the PGI HPF

compiler and the Tempest software DSM system [2, 3]. Results on a network of workstations connected by Myrinet

indicates shared-memory versions of dense matrix programs achieve performance close to the message-passing codes

generated.

Granston and Wishoff suggest a number of compiler optimizations for software DSMs [8]. These include tiling

loop iterations so computation is on partitioned matching page boundaries, aligning arrays to pages, and inserting hints

to use weak coherence. Mirchandaney et al. propose using section locks and broadcast barriers to guide eager updates

of data and reductions based on multiple-writer protocols [17].



Dwarkadas et al. applied compiler analysis to explicitly parallel programs to improve their performance on a

software DSM [6]. By combining analysis in the ParaScope programming environment with TreadMarks, they were

able to compute data access patterns at compile time and use it to help the runtime system aggregate communication

and synchronization.

Cox et al. conducted an experimental study to evaluate the performance of TreadMarks as a target for the Forge

SPF shared-memory compiler from APR [4]. Results show that SPF/TreadMarks is slightly less efficient for dense-

matrix programs, but outperforms compiler-generated message-passing code for irregular programs. They also identify

opportunities for the compiler to eliminate unneeded barrier synchronization and aggregating messages in the shared-

memory programs. Many of their suggestions are implemented in the SUIF/CVM system and are evaluated in this

paper.

Rajamony and Cox developed a performance debugger for detecting unnecessary synchronization at run-time by

instrumenting all loads and stores [22]. In the SPLASH application Water, it was able to detect barriers guarding only

anti and output dependences that may be eliminated by applying odd-even renaming. In comparison, SUIF at compile

time eliminates many barriers guarding only anti-dependences.

6 Conclusions

In this paper we investigate ways to improve the performance of shared-memory parallelizing compilers targeting

software DSMs. We present techniques for reducing synchronization overhead based on compile-time elimination

of barriers. Our algorithm extends previous techniques by 1) inexpensively performing communication analysis

using local subscript analysis by exploiting chunk iteration partitioning, 2) exploiting delayed updates in lazy-release-

consistency software DSMs to eliminate barriers guarding only anti-dependences, 3) replacing barrier synchronization

with customized nearest-neighbor synchronization. Experiments on an IBM SP-2 indicate these techniques on average

eliminate 50% of all barriers executed and improve parallel performance by 10-30%, depending on data set size and

number of processors. Synchronization optimizations become more important as the number of processors grows. By

reducing the synchronization overhead of compiler-parallelized programs on software DSMs, we believe that we are

contributing to our long-term goal: effectively running applications that are too complex to be compiled directly to

message-passing code.
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