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Abstract

Software distributed-shared-memory (DSM) systems providean appealingtarget for parallelizing compilersdueto
their flexibility. Previous studies demonstrate such systems can provide performance comparable to message-passing
compilersfor dense-matrix kernels. However, synchronizationand load imbalanceare significant sourcesof overhead.
In this paper, weinvestigate the impact of compilation techniquesfor eliminating barrier synchronization overheadin
software DSMs. Our compile-time barrier elimination algorithm extends previous techniquesin three ways: 1) we
perform inexpensivecommunication analysisthrough local subscript analysiswhen using chunk iteration partitioning
for paralel loops, 2) we exploit delayed updates in lazy-release-consistency DSMs to eliminate barriers guarding
only anti-dependences, 3) when possible we replace barriers with customized nearest-neighbor synchronization.
Experiments on an IBM SP-2 indicate these techniques can improve parallel performance by 20% on average and by
up to 60% for some applications.

1 Introduction

It is generaly agreed that distributed-memory parallel architectures (e.g., IBM SP-2, Cray T3D) come closest to
achieving peak performance when programmed using a message-passing paradigm. However, users are willing write
message-passing programs only for afew important applications because it takes too much time and effort. Compilers
for languages such as High Performance Fortran [15] provideapartial solutionbecause they allow usersto avoid writing
explicit message-passing code, but HPF compilers currently only support alimited class of data-parallel applications.
One method for increasing programmability of message-passing machines isto combine powerful shared-memory
parallelizing compilerswith softwaredistributed-shared-memory (DSM) systemsthat provideacoherent shared address
spacein software. Scientistsand engineerscan writestandard Fortran programs, rewriting afew computation-intensive
procedures and adding parallelism directives where necessary. The resulting programs are portable since they can be
run on the large-scale parallel machines as well as the low-end, but more pervasive multiprocessor workstations.
Shared-memory paralelizing compilersareeasy to use, flexible, and can accept awiderangeof applications. Results
from several recent studies [4, 14] indicate they can approach the performance of current message-passing compilers
or explicitly-parallel message-passing programs on distributed-memory machines. However, load imbalance and
synchronization overhead were identified as sources of inefficiency when compared with message-passing programs.
Figure 1 categorizes execution time for five compiler-parallelized applications. Execution times is split into
application processing time, OS overhead, communication cost, load imbalance (idle time spent waiting at barriers),
and barrier overhead (time spent executing barrier code). Measurements demonstrate synchronization overhead can
comprise a large portion of overall execution time across a range of sample applications. While not much time is
spent explicitly executing barriers in these programs, the load imbalance exposed by frequent barriers comprises a
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large percentage of total executiontime. The compiler-generated codeis ba anced computationally, but the underlying
DSM and OS effectively add random (and unequal) delays. It is clear from these measurements that reducing load
imbalance caused by synchronization overhead isimportant for achieving good performance.

In this paper we investigate a number of compiler techniques for reducing synchronization overhead and load
imbalance. Our techniques are evaluated in a prototype system [14] using the CVM [12] software distributed-shared-
memory (DSM) as a compilation target for the SUIF [9] shared-memory compiler. This paper makes the following
contributions:

eliminate barriers by inexpensively detecting communication using local subscript analysis

exploiting lazy release consistency to eliminate barriers guarding only anti-dependences

replacing barriers with customized nearest-neighbor synchronization

empirical evaluation of compiler synchronization optimizationsfor software DSMs

We begin by describing the compiler/software DSM framework, then describe each optimization technique. We
present our prototype system, followed by experimental results. We conclude with a discussion of related work.

2 Background

We introduce the two components of our prototype system, the SUIF shared-memory compiler and the CVM software
DSM. We also review previous compiler techniques for reducing synchronization overhead.

2.1 SUIF Shared-Memory Compiler

SUIF isaoptimizing and parallelizing compiler developed at Stanford [9]. It has been successful in finding parallelism
in many standard scientific applications. Like most shared-memory parallelizing compilers, SUIF employs afork-join
programming model, where a single master thread executes the sequential portionsof the program, assigning (forking)
computation to additiona worker threads when aparallel 1oop or task is encountered. After completing its portion of
the paralel loop, the master waits for al workersto complete (join) before continuing execution. During the parallel
computation, the master thread participates by performing a share of the computation just like a worker. After each
paralel computation worker threads spin or go to deep, waiting for additiona work from the master thread.



2.2 CVM Software DSM

CVM is a software DSM that supports coherent shared memory for multiple protocols and consistency models[12].
It is written entirely as a user-level library and runs on most UNIX-like systems. Its primary coherence protocol
implements a multiple-writer version of lazy release consistency [13], a derivation of release consistency. Release
consistency alows a processor to delay making modifications to shared data visible to other processors until special
acquireor rel ease synchronization accesses occur. Lazy release consi stency postponesthe propagation of modifications
further; updates to shared datado not have to be made visibleto a processor until the next timethat processor acquires
a released synchronization variable. Experiments show that lazy-release-consistency protocols generally cause less
communication than release consistency [7]. Consistency information in CVM is piggybacked on synchronization
messages. Multiple updates are also aggregated in a single message where possible.

2.3 SUIF/CVM Interface

SUIF was retargeted to generate code for CVM by providing a run-time interface based on CVM thread creation and
synchronization primitives. Performance was improved by adding customized support for reductions, as well as a
flush update protocol that at barriers automatically sends updatesto processors possessing copies of recently modified
shared data [14]. Compiler analysis needed to use the flush update protocol is much simpler than communication
analysis needed in HPF compilers. The identities of the sending/receiving processors do not need to be computed at
compiletime, and the compiler does not need to be 100% accurate sincethe only effect ison efficiency, not correctness.
Instead, the compiler only needsto locate data that will likely be communicated in a stable pattern, then insert callsto
DSM routinesto apply the flush protocol for those pages at the appropriate time.

24 Compile-timeBarrier Elimination

The fork-join model used by shared-memory compilers is flexible and can easily handle sequentia portions of the
computation; however, it imposes two synchronization events per parallel loop as shown in Figure 2(A). First, a
broadcast barrier isinvoked before the parallel 1oop body to wake up available worker threads and provide workers
with the address of the computation to be performed and parameters if needed. A barrier is then invoked after the
loop body to ensure all worker threads have completed before the master can continue.

M easurements show synchronization overhead can significantly degrade performance. Barriers are expensive for
two reasons. First, executing a barrier has some run-time overhead that typically grows quickly as the number of
processorsincreases. Second, executing abarrier requiresal processorstoidlewhilewaiting for the slowest processor;
this effect resultsin poor processor utilization when processor execution times vary. Eliminating the barrier allows
perturbations in task execution time to even out, taking advantage of the loosely coupled nature of multiprocessors.
Barrier synchronization overhead is particularly significant as the number of processors increases, since theinterva
between barriers decreases as computation is partitioned across more processors.

In previouswork, we devel oped compiler algorithmsfor barrier elimination[24]. Wefirst generate codefor parallel
loops using the single-program, multiple-data (SPMD) programming model found in message-passing programs,
where all threads execute the entire program. Sequential computation iseither replicated or explicitly guarded to limit
execution to a single thread, while parallel computation is partitioned and executed across processors. By placing
multiple loopsin the same SPMD region, we make barriers explicit and provide opportunitiesfor barrier elimination
or replacement.

Compile-time barrier elimination is made possible by the observation that synchronization between a pair of
processors is only necessary if they communicate shared data. If data dependence analysis can show two adjacent
loop nests access digoint sets of data, then the barrier separating them may be eliminated, as in Figure 2(B). If
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DOALL I =1N DOALL I =1N DISTRIBUTE (BLOCK) :: A,B DISTRIBUTE (BLOCK) :: A,B
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Figure2 Optimization Examples

two loop nests accesses the same data, but communication analysis proves no remote data is accessed based on
data and computation decomposition information, the barrier may aso be eliminated, as in Figure 2(C). Finally,
if communication analysis identifies simple interprocessor sharing patterns, the barrier may be replaced with less
expensive forms of synchronization. In particular, if dataisonly shared between neighboring processors, the barrier
may be replaced by nearest-neighbor synchronization, as shown in Figure 2(D).

3 Reducing Synchronization Overhead

Later in this paper, we will examine the impact of barrier elimination agorithms on the performance of SUIF-
parallelized programs for CVM. In this section we discuss novel extensions to compiler techniques for reducing
synchronization overhead.

3.1 Communication AnalysisUsing L ocal Subscripts

Previous communication analysis relied on compile-time information on the data and computation decomposition
selected for aprogram to precisely determine whether interprocessor communication takes place [24]. Wefind that an
alternative communication analysi s technique based on local subscript analysis can yield good resultswith much less
complex analysis. The Loca subscript analysisagorithmis shownin Figure 3.

We assume dependence analysishas already eliminated all array reference pairsbetween |oop nests provento access
digoint memory locations. Loca subscript analysis relies on the compiler selecting a consistent chunk partitioning of
paralel loopiterations. Consistent iteration partitioning of loops with identical 1oop bounds will then aways assign
the same loop iterations to each processor. If al subscript pairs are identical, each processor will only access local
data. If the subscripts differ by only a constant, then each processor will access remote data a constant number of
processors away. Since constant differences in subscripts are usually small, processors will end up accessing remote
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Figure3 Locda Subscript Analysis Algorithm

data on neighboring processors, allowing barriersto be replaced by nearest-neighbor synchronization.

Local subscript analysisisdesigned to complement full communication analysis. It hastwo advantages, efficiency
and applicability. Because it only relies on local symbolic information, loca subscript analysis can quickly eliminate
simple array reference pairs that do not require synchronization. More expensive communication anaysis may be
applied if the local test fails. Loca subscript analysis can also potentially be applied in more cases than standard
communication analysis, sinceit relies only onlocal program information and a consi stent chunk iteration partitioning.
Communication analysis, in comparison, relies on knowing the compile-time computation and data decomposition.
Additionally, local subscript analysis only needsto ensure every subscript expression pair isidentical. Communication
analysis must calculate what data is communicated, and can be disabled by a single complex array subscript. For
instance, in Figure 4(A), local subscript analysis does not need to fully analyze fi() or f2() before eiminating the
barrier, unlike communication analysis. Similarly, local subscript analysis can determine that only nearest-neighbor
synchronization is needed even if some subscripts are too complex to analyze, as shown in Figure 4(B).

3.2 Exploiting Lazy Release Consistency

A second enhancement to our compile-time barrier elimination algorithmis made possible by the underlying semantics
of lazy-rel ease-consistency software DSMs. In atraditiona shared-memory model, synchronizationisneeded between
two loop nestsif two processors access shared data, with at least one of the processors performing awriteto the shared
data. However, in a lazy-rel ease-consistency software DSM, if the shared reference is aread in the first loop and a
writein the second loop, no synchronization is needed because writes from the second loop will not become visibleto
the read in the first loop until synchronization is encountered. In other words, anti-dependences (write-after-read) do
not need to be synchronized.

To see how the compiler can use this property, consider the example shown in Figure 4(c). The first loop nest
reads nonlocal vaues of B which are defined in the second loop nest. The cross-processor dependence caused by B is
thus a loop-independent anti-dependence. Normally, synchronization is needed to ensure the old values of B are read
before the new values of B are written. However, with lazy release consistency the software DSM guarantees that new
values of B on another processor will not be made visible until the two processors synchronize. Since there are no
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DOALL J=1,N DOALLJ= 1N DO TIME =
DOI=1N DOI=1N DOALLJ= 1N
A(f10)./2(9) = A(f1().9) = DOI=1N
ENDDO ENDDO A(1,J) =B(1,3-1)+B(1,J+1)
ENDDO ENDDO ENDDO
DOALL J=1,N DOALLJ=1N ENDDO
DOI=1N DOI=1N DOALLJ=1,N
B(...) = A(f1(1),£2(3) B(...) =A(f1(1),3-1) DOI=1N
ENDDO ENDDO B(1,J) = A(1,J)
ENDDO ENDDO ENDDO
ENDDO
U U ENDDO
broadcast broadcast
DO J=LB1,UB; DO J=LB1,UB1 4
DOI=1N DOI=1N broadcast
A(f1()./2(9) = A(f1().9) = DOTIME =
ENDDO ENDDO DO J=LB1,UB1
ENDDO ENDDO DOI=1,N
DO J=LB1,UB1 sync_with_neighbors A(1,9) = B(1,3-1)+8(1,J+1)
DOI=1N DO J=LB1,UB1 ENDDO
B(...) = A(f1(1),£2(3) DOI=1N ENDDO
ENDDO B(...) =A(f1(1),3-1) { ANTI-DEPENDENCE ONLY,
ENDDO ENDDO NO BARRIER NEEDED }
barrier ENDDO DO J=LB1,UB;
barrier DOI=1N
B(1,J) = A(1,J)
ENDDO
ENDDO
sync_with_neighbors
ENDDO
barrier
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Figure4 Advanced Optimization Examples

other loop-independent dependences between the two loop nests, synchronization between them is not required.

A cross-processor true/flow dependence (read-after-write) exists which does need synchronization. It is the
dependence between definitions of B in the second loop nest and reads of nonlocal values of B in the first loop nest.
This dependence is carried by the outer TIME loop, since the endpoints of the dependence occur on different iterations
of the TIME loop. The compiler normally inserts a barrier as the last statement of the TIME loop, but local subscript
analysis can show only nearest-neighbor synchronization is needed.

The one case where synchronization is needed for anti-dependencesis when the processor performing aread does
not yet possess a copy of the shared data, since it may retrieve a copy of the data with the new values. For scientific
computationswhereiterative computationsare therule, thisisrarely thecase. Our implementation of nearest-neighbor
synchronization solves this problem by invoking a global barrier the first time it is invoked a each location in the
program. Since anti-dependences may be ignored, the algorithm for inserting barrier synchronization becomes similar
tothea gorithmfor message vectorization[11]. Thelevel of thedeepest true/flow cross-processor dependence becomes
the point where synchronization must be inserted to prevent data races. Synchronization at lower loop levelsis not
needed.



3.3 Customized Nearest-Neighbor Synchronization

At some barriers, the compiler can detect communication only takes place between neighboring processors [24]. To
take advantage of thisinformation, we implemented a customized routinefor nearest-neighbor synchronization (where
each processor has either zero, one, or two neighbors) directly in CVM. The routine sends a single message to each
neighboring processor upon arrival, and continues as soon as messages are received from al neighboring processors.
In comparison, for normal global barriersall processors send a single message to the barrier master, which broadcasts
areply once al processors have checked in.

The customi zed nearest-neighbor synchronization has several advantages over standard global barriers. The most
important is that nearest-neighbor synchronization allows at least some of the induced load imbalance to smooth
out before it delays dl processors. However, this benefit usually occurs only if there are multiple nearest-neighbor
synchronization events invoked in sequence. If nearest-neighbor synchronization and global barriers are executed in
alternating sequence, opportunitiesto smooth out load imbal ance are | essened.

Second, the serial bottleneck of the barrier master is avoided. Thisis not a large advantage for the size of the
system that we are currently evauating, but should be significant for larger systems.

Finally, common messages can be used to carry both synchronization and data, because both flow only between
neighbors.

4 Experimental Results

4.1 Applications

We evaluated the performance of our compiler/software DSM interface with five programs shown in Table 1. The
“Granularity” column refers to the average length in seconds of a parallelized loop. Except where indicated, numbers
below refer to thelarger data set for each application. expl , andr edbl ack are dense stencil kernelstypically found
initerative PDE solvers. j acobi isastencil kernel combined with a convergence test that checks theresidua value
using a max reduction. swmand t ontat v are programs from the SPEC benchmark suite containing a mixture of
stencils and reductions. We used the version of t oncat v from APR whose arrays have been transposed to improve
datalocality.

All applications were originally written in Fortran, and typically contain an initialization section followed by
iterations of atime-step loop. Statistics and timings are collected after theinitiaization section. Optimized versions
of each program were automatically generated by the SUIF compiler. The compiler analyzed but was unable to apply
synchronization optimizationsto four other programs, indicating that not al programs may benefit from thetechniques
presented in this paper.

Problem Sizes | Granularity (secs)
Small Large | Small Large

expl Explicit Hydrodynamics (Livermore 18) | 256> 512 | 0.06 0.34

Name Description

jacobi Jacobi Iteration w/Convergence Test 5122  1024° | 0.06 0.91
redbl ack Red-Black Successive-Over-Relax. 5122 1024° | 0.01 0.14
swm Shallow Water Model (SPEC) 5122  750° | 0.10 0.20
tomcatv Vector Mesh Generation (SPEC) 256> 512° | 0.04 0.15

Tablel Applications



4.2 Experimental Environment

We evaluated our optimizationson an IBM SP-2 with 66MHz RS/6000 Power2 processors operating AlX 4.1. Nodes
are connected by a 120 Mbit/sec bi-directional Omega switch capable of a sustained bandwidth of approximately 40
Mbytes per second. Simple RPCson the SP-2 require 160 pzsecs. A one-hop page miss, wherethe page manager isalso
the owner, reguires two messages and 939 psecs. Two-hop page misses require three messages and 1376 pisecs. Inthe
best case, AIX requires 128 psecsto cal user-level handlers for page faults, and npr ot ect system cals require 12
p1secs. However, virtual memory primitive costs in the current system are locati on-dependent, occasionally increasing
these costs to amillisecond or more.

In our experiments, CVM [12] applicationswritten in Fortran 77 were automatically parallelized by the Stanford
SUIF paraldizing compiler version 1.1.2 [9], with close to 100% of the computation in paralel regions. A simple
chunk scheduling policy assigns contiguous iterations of equal or near-equal size to each processor, resulting in a
consistent computation partition that encourages good locality. The resulting C output code was compiled by g++
version 2.7.2 with the-02 flag, then linked withthe SUIF run-time system and the CVM librariesto produce executable
code on theIBM SP-2. Customized support for reductions and the flush update protocol were used to improve overall
performance [14].

4.3 Effectiveness of Compiler Synchronization Optimizations

First, we examine the effectiveness of compiler algorithmsin eliminating synchronization. Table 2 displaysthe number
of paralld loops(doalls) and barriersfoundin each program at compiletime, and the percentage eliminated by different
levels of optimization. Table 3 presents the same information for paralel 1oops and barriers executed dynamically at
run time for each application. Thefirst two columnsfor “doalls’ indicate the number of paralel loops executed in the
original program and the percentage reduction by merging doalsinto the same parallél region. The remaining columns
show the number of barriers executed by the origina program, followed by the percentage eliminated or replaced by
nearest-nei ghbor synchronization for different levels of optimization. The compiler optimization levelsare asfollows:
“merge’” measurestheeffect of merging adjacent parallel loopsinto asingleparallel region, “ depend” eliminatesbarriers
in paralld regionsbased on data dependences, “comm” performs communication analysisusing local subscript analysis
to eliminate barriers, “lazy” eliminates barriers guarding only anti-dependences. Communication analysis may also
replace barriers with nearest-neighbor synchronization, Optimizationsare cumul ative.

We see from both tables that the compiler is effective at eliminating parallel loops and barriers encountered during
compilation, with roughly similar benefits for the number of parallel loops and barriers actualy executed by the
application at run time. Examining the run-time measurements in Table 3, we find the compiler is quite successful
in discovering parald loops which may be merged into a single parald region, diminating on average 59% of
paralel invocations and 30% of barriers executed. Dependence anaysis done is only able to eliminate barriers in
one program, r edbl ack, but the improvement there is significant. Communication analysis can eliminate barriers
inswm t ontat v and replace barriersin expl and j acobi . Detecting barriers guarding only anti-dependences,
the compiler can eliminate more barriers outrightin expl , j acobi ,and t ontat v and convert abarrier to nearest-
neighbor synchronization in swm(by eliminating complex anti-dependences guarded by the barrier). The number of
replaced barriersgoesdowninexpl andj acobi , sincethe compiler can prove some nearest-neighbor barriersguard
only anti-dependences. Applying al optimizations, on average 51% of al barrier executions are eliminated in these
five programs, with 6% of barriers replaced by nearest-neighbor synchronization.



Doadllsin program Barriersin program
Program || original original % eliminated % replaced
number | % eliminated || number | merge | depend | comm | lazy | comm | lazy
expl 3 67 6 33 33 33 50 33 17
jacobi 2 50 4 25 25 25 50 25 -
redblack 4 75 8 38 63 63 63 13 13
swm 16 38 32 19 22 31 31 - 3
tomcatv 8 63 16 31 31 44 50 - -
Average 6.6 59 13.2 29 35 39 49 14 6.6

Table2 Static Measurement of Synchronization Optimizations

Doalls executed Barriers executed by program

Program || original original % eliminated % replaced
number | % eliminated || number | merge | depend | comm | lazy | comm | lazy

expl 60 67 120 33 33 33 50 33 17

jacobi 40 50 80 25 25 25 50 25 -
redblack 80 75 160 38 63 63 63 13 13

swm 265 33 530 17 17 33 33 - -

tomcatv 140 71 280 36 36 50 57 - -
Average 117 59 234 30 35 41 51 14 6.0

Table3 Dynamic Measurement of Synchronization Optimizations

4.4 |1mpact of Compiler Optimizationson Program Performance

Figure 5 displaysthe impact of synchronization optimizations on application performance on the SP-2, for both small
and large data sets. For each graph, the Y-axis measures improvement over unoptimized programs, the X -axis presents
three optimized versions of each program for both 8 and 16 processor runs. “dependence analysis’ merges parallel
regions and eliminates barriers based on data dependences, “communication analysis’ uses loca subscript analysis
to eliminate barriers or replace them with nearest-neighbor synchronization, “lazy release consistency” eliminates
barriers guarding only anti-dependences. Except for r edbl ack, performance for “dependence” is the same as that
for simply merging adjacent parallel loopsinto the same parallel region. Optimizations are cumulative.

Table 4 displays speedups and percentage improvements due to optimizationsin detail. Performance for appli-
cations cover a broad range. For 16 processor runs with large data sets, average improvement from synchronization
optimizations is 13% for dependence anaysis, 17% for communication anaysis, and 18% when aso eiminating
barriers using lazy release consistency. As expected, optimizations have greater impact for smaller data sets and more
processors, since synchronization overhead is more significant. For small data set runs on 16 processors, average
improvementsincrease to 20%, 26%, and 28% respectively. For 8 processor runsimprovements from synchronization
optimizations drop to 8%, 11%, and 11% with large data sets and 13%, 18%, and 19% with small data sets for the
three optimization levels, respectively.



expl(small)
60%

jacobi(small)

60%

redblack(small)

60%

S 40% S 40% 2 a0%
) [ [
3 20% § 20% S 20%
£ E £
2w E S 0%
8 16 8 16 8 16
processors processors processors
expl jacobi redblack
60% 60% 60%
é 40% é 40% é 40%
[ [ [
3 3 3
S 20% 5 20% S 20%
£ = 5 £
S o S o S o
8 16 8 16 8 16
processors processors processors
swm(small) tomcatv(small)
60% 60%
S 40% § 40%
§. 20% g_ 20%
E E
> o = ow
8 16 8 16 O dependence analysis
processors processors
B communication analysis
swm tomcatv
60% 60% O /azy release consistency
é 40% é 40%
z g
2 20% S 20%
E E
> o% S 0%
8 16 8 16
processors processors
Figure5 Impact of Barrier Elimination (8 & 16 Processors)
expl jacobi redblack swm tomcatv || Average
sn|Ilgj|lsn|Ilg|sn|Ig|sm|lg|sm|lg | sm| Ig
Speedup unoptimized 5713|6012 (|13 |40 14|22 | 13|31 31|67
dependence 66| 13| 68| 13| 27|69 14|23 15|33| 38|77
communication || 69 | 14 || 73| 13 || 30 | 72 || 1523 || 17 |36 | 41|79
lazy RC 71| 14| 82| 13| 31|72]| 15|24 17361 43|81
dependence 15 |51 12 | 68| 53 | 43 || 52|50 13|56 20 | 13
% Improv | communication || 18 | 69 || 18 | 9.7 || 59 | 45|/ 98 | 82| 24 | 14 || 26 | 17
lazy RC 21 | 90| 27| 12 || 59 | 45| 10 |86 || 24 | 14 || 28 | 18
Table4 Impact of Barrier Elimination (16 Processors)
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Figure6 Effect of Optimizationson Load Imbalance (16 Processors)
expl jacobi redblack swm tomcatv || Average

sn|ilgj|lsn|jlg|sm|lg|sm|lg|sm|lg | sm| g
% Exectime | barrieroverhead || 21 | 0.7 || 26 | 1.3 |/ 40| 32 || 15| 10| 18| 11| 24|15
(unoptimized) | loadimbalance || 35 | 13 || 48 | 30 || 72 | 60 || 47 | 46 || 65 | 56 || 53 | 41
% Decrease dependence 37 | 3| 2| 21| 65| 66| 65|77| 17 |83 | 29 | 28
inload communication || 38 | 30 || 31 | 31| 72 | 69 || 15| 14 || 23 | 12 || 36 | 31
imbal ance lazy RC 44 | 44 || 46 | 34 || 72 | 68 || 16 | 15 || 25 | 12 || 41 | 35

Table5 Effect of Optimizationson Load Imbalance (16 Processors)

4.5 Impact of Compiler Optimizationson Synchronization Over head

In order to evaluate synchronization optimizationsin more detail, we instrumented CVM to directly measure barrier
overhead (time spent executing barrier code) and load imbalance (idle time spent waiting at barriers). We found the
actual time spent in barrier routinesto be small. Instead, most of the overhead was caused by load imbalance. Table 5
shows barrier overhead and load imbal ance as a percentage of overall execution time. The measurements are for 16
processor SP-2 runs with small and large data sets. Average load imbalance is 41% of execution time for large data
sets and 53% for small data sets. Load imbalance takes up less percentage of execution time with large data sets,
because the larger amount of data on individua processors gives the greater chance to smooth out load imbalance.
We aso measured the impact of synchronization optimizations on reducing load imbalance. Table 5 displays the
percentage reduction in idle time after applying different levels of optimization. Figure 6 graphically presents the
same information for the large data sets. We see that optimizations can significantly reduce load imbalance for some
of the applications studied (72% decrease for r edbl ack with small dataset). Average load imbalances decrease by
28%, 31%, and 35% with large data sets and by 29%, 36%, and 41% with small data sets for three optimization levels,
respectively.



Execution time expl jacobi redblack swm tomcatv || Average
(depvs.comm) ([ sm | Ig|fsm|lgfsn|Ilg|sm]|lg]|sm]|lg]| sm]| Ig
% Improv 312} 10]| 3| 12| 3 - = -1- 51| 2

Table6 Impact of Nearest-Neighbor Barriers (16 Processors)

4.6 Impact of Nearest-Neighbor Synchronization on Performance

Using communication analysis, SUIF was able to replace two barriers with nearest-neighbor synchronization in
expl , and one barrier each inj acobi and r edbl ack. The performance improvements due to replacing barriers
are shown in Table 6. As with al synchronization optimizations, impact is heightened for smaller data sizes.
Performance improvements are due to a combination of better load balancing and fewer messages; the amount of data
communication that is piggybacked on synchronization messages tripled for some applications when using nearest-
neighbor barriers. Nonetheless, the overall impact on performance islimited. The primary reason is that many of the
barrier synchronizationsthat are prime candidatesto bereplaced by nearest-nei ghbor synchronization can be eliminated
instead. However, nearest-neighbor synchronization may prove more important when using more than 16 processors.

5 Reated Work

Before studying methods for eliminating barrier synchronization, researchers investigated efficient use of data and
event synchronization, where post and wait statements are used to synchronize between data items [23] or loop
iterations [16]. Researchers compiling for fine-grain data-parallel 1anguages sought to eliminate barriers following
each expressionevaluation[10, 20, 21]. Simpledatadependence analysiscan beused to reduce barrier synchronization
by orders of magnitude, greatly improving performance. For barriers separating statements on the same loop level,
Hatcher and Quinn use a two-dimensional radix sort to find the minimal number of barriers[10]. Philippsen and Heinz
find the minimal number of barriers with an agorithm based on topological sort; they aso attempt to minimize the
amount of storage needed for intermediate results[20].

Eliminating barriers in compiler-paralelized codes is more difficult. Cytron et al. were the first to explore the
possibilitiesof exploiting SPMD code for shared-memory multiprocessors[5]. They concentrated on safety concerns
and the effect on privatization. In previouswork [24] we presented techniques to eliminate or lessen synchronization
based on communication analysis used by distributed-memory compilers to calculate explicit communication [11].
O’'Boyle and Bodin [19] present techniques similar to local subscript analysis. They apply a classification agorithm
to identify data dependences that cross processor boundaries, then apply heuristics based on max-cut to insert barrier
synchronization and satisfy dependence.

There has been a large amount of research on software DSMs[1, 7, 18]. More recently, groups have examined
combining compilersand software DSMs. Viswanathan and Larusdevel oped atwo-part predi ctive protocol for iterative
computations for use in the data-paralldl language C** [25]. Chandra and Larus evaluated combining the PGl HPF
compiler and the Tempest software DSM system [2, 3]. Results on a hetwork of workstations connected by Myrinet
indicates shared-memory versions of dense matrix programs achieve performance close to the message-passing codes
generated.

Granston and Wishoff suggest a number of compiler optimizations for software DSMs [8]. These include tiling
loop iterations so computationis on partitioned matching page boundaries, aligning arraysto pages, and inserting hints
to use weak coherence. Mirchandaney et al. propose using section locks and broadcast barriersto guide eager updates
of dataand reductions based on multiple-writer protocols [17].



Dwarkadas et al. applied compiler anaysis to explicitly parallel programs to improve their performance on a
software DSM [6]. By combining analysis in the ParaScope programming environment with TreadMarks, they were
able to compute data access patterns at compile time and use it to help the runtime system aggregate communication
and synchronization.

Cox et al. conducted an experimental study to evauate the performance of TreadMarks as atarget for the Forge
SPF shared-memory compiler from APR [4]. Results show that SPF/TreadMarks is dightly less efficient for dense-
matrix programs, but outperforms compiler-generated message-passing codefor irregular programs. They aso identify
opportunitiesfor the compiler to eliminate unneeded barrier synchronization and aggregating messages in the shared-
memory programs. Many of their suggestions are implemented in the SUIF/CVM system and are evaluated in this
paper.

Rajamony and Cox devel oped a performance debugger for detecting unnecessary synchronization at run-time by
instrumenting al loads and stores[22]. In the SPLASH application Water, it was ableto detect barriers guarding only
anti and output dependences that may be eliminated by applying odd-even renaming. In comparison, SUIF at compile
time eliminates many barriers guarding only anti-dependences.

6 Conclusions

In this paper we investigate ways to improve the performance of shared-memory paralelizing compilers targeting
software DSMs. We present techniques for reducing synchronization overhead based on compile-time eimination
of barriers. Our agorithm extends previous techniques by 1) inexpensively performing communication anaysis
using local subscript analysis by exploiting chunk iteration partitioning, 2) exploiting delayed updatesin lazy-rel ease-
consistency software DSMsto eliminate barriers guarding only anti-dependences, 3) replacing barrier synchronization
with customized nearest-neighbor synchronization. Experimentson an IBM SP-2 indicate these techniques on average
eliminate 50% of al barriers executed and improve parallel performance by 10-30%, depending on data set size and
number of processors. Synchronization optimizations become more important as the number of processors grows. By
reducing the synchronization overhead of compiler-parallelized programs on software DSMs, we believe that we are
contributing to our long-term goal: effectively running applications that are too complex to be compiled directly to
message-passing code.
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