
Integrating Categorical Resource Types into a P2P Desktop Grid System ∗

Jik-Soo Kim, Beomseok Nam, Michael Marsh, Peter Keleher, Bobby Bhattacharjee and Alan Sussman
UMIACS and Department of Computer Science, University of Maryland

{jiksoo, bsnam, mmarsh, keleher, bobby, als}@cs.umd.edu

Abstract

We describe and evaluate a set of protocols that imple-
ment a distributed, decentralized desktop grid. Incoming
jobs are matched with system nodes through proximity in
an N-dimensional resource space. This work improves on
prior work by (1) efficiently accommodating node and job
characterizations that include both continuous and categor-
ical resource types, and (2) scaling gracefully to large sys-
tem sizes even with highly non-uniform distributions of job
and node types. We use extensive simulation results to show
that the resulting system handles both continuous and cat-
egorical constraints efficiently, and that the new scalability
techniques are effective.

1 Introduction

Desktop gridcomputing systems have achieved massive
computing power with low cost by leveraging unused ca-
pacity on high-performance personal computers and work-
stations across the Internet [1]. However, traditional cen-
tralized server-client Grid architectures have inherent prob-
lems in robustness, reliability and scalability. Researchers
have therefore recently turned to Peer-to-Peer (P2P) algo-
rithms in an attempt to address these issues [4, 11]. Our pre-
vious work [6, 7] described a matchmaking approach based
on proximity between job and node characterizations in an
N-dimensional Content-Addressable Network (CAN) [9],
where each resource type corresponds to a distinct dimen-
sion. However, this approach only accommodatescontinu-
ousresource characterizations, such as memory or disk size,
or CPU speed. For continuous resource types, matchmaking
requires that a node meet or exceed a job’s requirements.

This work has two novel contributions. First, we ex-
tend our prior work to includecategorical resource con-
straints. Categorical constraints require a singular value for
that resource, such as a specific type of operating system or
processor, as opposed to the minimum requirements for a

∗This research was supported by NASA under Grant #NNG06GE75G
and the National Science Foundation under Grant #CNS-0615072.

continuous resource constraint. While such resource types
could be accommodated by performing an additional check
to match the categorical constraints (after identifying the
nodes that are able to run the job since they meet the con-
tinuous resource requirements, as described in our previous
work), that approach can be inefficient. For example, when
the required categorical resources are not common, or not
spread uniformly through the CAN space, a large number
of such checks might have to be performed for each job.
Another approach would be to create distinct CAN spaces
for each combination of categorical constraints. However,
the number of such spaces could be very large (the product
of the numbers of different values for each categorical con-
straint), and the resulting system would be very inefficient
for matchmaking in common cases, such as when not all
categorical resource types are specified for a job (a “don’t
care” condition). Our approach is to integrate the categori-
cal resource types into a single N-dimensional CAN space
so that matchmaking is efficient foranycombination of cat-
egorical and continuous constraints.

The second contribution of this paper is a set of optimiza-
tions to the basic CAN infrastructure that allows the system
to scale well for highly non-uniform distributions of jobs
and nodes. The load on individual nodes in a desktop grid
consists of application load (the jobs to be executed), and
system load (load imposed by the workings of the underly-
ing system). Unfortunately, non-uniform distributions can
cause any CAN, not just the modified CAN of our system,
to distribute the system load unevenly across nodes. For ex-
ample, consider a system with only two types of nodes, but
many of each. The basic CAN infrastructure can cause a
single node of one type to be a “neighbor” of all nodes of
the second type, causing the system load incurred at that one
node to scale linearly with the size of the system. Our opti-
mizations distribute this load more fairly, without impacting
the overall reliability or performance of the system.

2 Background

A general-purpose desktop grid system must accommo-
date various scenarios of node capabilities and job require-
ments. Nodes may be added one at a time over time, so that

their resource capabilities are heterogeneously distributed,
or they may be added as sets of homogeneous clusters.
Likewise, jobs may be relatively unique in their require-
ments, or part of a series of requests with similar or identical
requirements (e.g., a simulation sweeping over a large set of
parameter combinations). A good matchmaking algorithm
must be expressive enough to fully describe both minimum
job requirements and disparate nodes. Further, such an al-
gorithm should evenly balance load across system nodes,
and find a valid assignment for every job, if such an as-
signment exists. Also, resources should not be wasted. All
other issues being equivalent, a job should not be assigned
to a node that is over-provisioned with respect to that job.
Finally, the matchmaking process should not add significant
overhead to the cost of executing a job.

2.1 Overall System Architecture

In previous work [6, 7] we have found that a Content-
Addressable Network (CAN) [9] provides a good frame-
work for a decentralized desktop grid. A CAN is a type of
distributed hash table (DHT) that maps nodes and jobs into
a multidimensional space. In our case, nodes are mapped
by their resource capabilities (each resource type is a sep-
arate dimension), and jobs by their resource requirements.
The semantics of routing in a CAN places a job at a node
that is minimally capable of running that job. The task of
choosing a node to run the job proceeds from that point. All
jobs in the system areindependent, which implies that no
communication is needed between them.

The steps involved in executing a job are as follows:

1. A client inserts a job into the system via some (arbi-
trary) node, called theinjection node.

2. The injection node initiates CAN routing of the job,
which ultimately places it at the job’sowner node.

3. The owner node begins the matchmaking process, in
which it looks for a lightly loaded node satisfying all
of the job’s requirements. This is therun node.

4. The run node places the job into a FIFO queue for
eventual processing. Periodic soft-state heartbeat mes-
sages between the run and owner nodes ensure that
both are still alive. Failure of either node prompts the
other to select a replacement.

5. Once the job finishes, the run node returns the results
to the client and informs the owner node (to terminate
the heartbeats).

As nodes are mapped into the CAN space, each is as-
signed a non-overlapping hyper-rectangularzone. Each
node maintains a list ofneighbors, defined as those nodes
whose zones abut its own. CAN routing is a greedy algo-
rithm, in which a node passes a message (containing, for

example, a job profile) to the adjoining zone that minimizes
the distance to the message destination.

We augmented the basic matchmaking approach in two
ways. First, the basic CAN procedure encounters difficul-
ties when many nodes have similar, or even identical, re-
source capabilities. Since the coordinates of a node are
defined by its resource capabilities, identical nodes are
mapped to the same point in the CAN volume. This creates
a problem for the one-to-one mapping of nodes to zones.
Additionally, many jobs might have very similar require-
ments. For example, many jobs will likely be inserted into
the system with no resource requirements at all specified.
In this case, all those jobs are mapped to the single node
that owns the corresponding zone. We address this problem
by augmenting both job and node descriptions with a ran-
domly assigned value in a “virtual” dimension. The virtual
dimension ensures that all jobs and nodes are unique, and
helps balance load even when the actual jobs and nodes are
similar.

Second, we improve load balancing further bypushing
jobs into underloaded regions of the CAN space. Nodes pe-
riodically send load information towards the origin in each
dimension. This information is aggregated at each step, re-
sulting in each node having partial information about load
in all regions of the CAN space containing nodes more ca-
pable, which are exactly those nodes that are also able to run
that node’s jobs. In times of high load, a node can therefore
pushjobs towards regions of high capability and low load,
based completely on local information. More details about
our basic framework for job executions in a P2P network
can be found in Kim et. al. [6, 7]

3 Integration of All Resources in a CAN
In this section we describe the details of our new tech-

niques to integrate all types of resources (continuous and
categorical) into a single CAN space.

Dealing with continuous and categorical resource types
is not trivial. The system must be able to search for ex-
act matches for the categorical resource types and minimum
matches for the continuous resource types, while balancing
load among multiple candidate nodes. One example of a
possible user query for a set of required resources is (Arch
== “Intel” ∧ OS == “Linux” ∧ CPU≥ 2.4GHz∧ Mem-
ory ≥ 500MB∧ Disk ≥ 1GB), where Arch and OS are the
required processor architecture and operating system type,
respectively. To be able to handle this kind of query, the sys-
tem has to find nodes that both have an Intel architecture and
the Linux operating system, and also that meet the remain-
ing continuous resource constraints (i.e., CPU, Memory and
Disk).

One straightforward approach to integrate different types
of resources into a CAN space would be to add new dimen-
sions for categorical resource types (e.g., a dimension for

Memory

OS

B

A

C

V
BE

E

F

V
EH

H

D

Linux OSX Windows AIX Solaris

I

G

(a) Resource Integration

Memory

OS

B

A

C

V
BE

E

F

V
EH

V
H

H

D

Linux OSX Windows AIX Solaris

Job J
OS == Solaris

&&

Memory >= MJ

M
J

Job J

Owner

I

G

Job J

Run Node

(b) Routing including Virtual Peers

Figure 1. Resource Integration and Routing in a CAN space: In Figure 1(b), solid arrows denote the
physical routing path of job J, while dotted arrows show the logical routing path.

architecture and a dimension for operating system in the ex-
ample). The primary problem with this approach is in spec-
ifying the load information that must be aggregated and dis-
seminated throughout the system to perform load balancing.
The load information must distinguish between machines
with different architectures (e.g., Intel and PowerPC), and
also between different operating systems (e.g., Linux and
Windows). Moreover, load information must be differenti-
ated on the basis of allcombinationsof these choices; the
number of such combinations is exponential in the number
of discrete choices for each categorical resource type. A
second approach is to create a distinct CAN space for each
such combination of choices for categorical resource types.
Load information within each such sub-CAN is then homo-
geneous and can be disseminated efficiently. The drawback
of this approach is that such a system requires some type of
directory service that vectors incoming jobs to the correct
sub-CAN and manages the multiple sub-CANs. This front-
end is both a potential performance bottleneck, and also a
single point of failure.

Our solution is to integrate categorical resource dimen-
sions into a single CAN space, bytransforming them onto
a single dimension using a space-filling curve [10]. Then,
we address load balancing and connectivity issues by intro-
ducingvirtual peers.

Figure 1 shows the basic concepts of our approach for
integrating categorical resource types into a CAN (as an ex-
ample, we use operating system for the categorical resource
type and memory for the continuous resource type). The ba-
sic idea of the approach is to divide the CAN space into mul-
tiple disjoint sub-spaceswhere in each sub-space all of the
categorical resource types are exactly thesame, and provide
an efficient mechanism toconnectthe multiple sub-spaces
(without having a directory service). For example, in Fig-
ure 1(a) all nodes in the “Linux” range (A, B, C, and D) have
the Linux OS. There is no node that has another operating

system type (such as Windows) in that sub-space. Simi-
larly, nodes G, H, and I have the Solaris OS. The overall
CAN space is thus divided into three different sub-spaces,
for Linux, Windows and Solaris. The question then is what
happens to the rest of the CAN space (i.e., the sub-spaces
for OSX and AIX). The OSX and AIX sub-spaces areempty
because no nodes have those OS types. Therefore, there can
be holesin the CAN space, since a sub-space of the CAN
is occupied only if there is at least one real node that has
that categorical resource type. However, we cannot just al-
low holes in the CAN space since they may prevent routing
requests from being delivered.

We address this problem by supplementing thephysical
peers with additionalvirtual peers, as shown in Figure 1(a),
where the OSX and AIX sub-spaces are occupied by two
virtual peers VBE and VEH , respectively. Virtual peers act
similarly to physical peers, both maintaining neighbor in-
formation and allowed to be neighbors of physical peers.
However, a virtual peer never is allowed to become a neigh-
bor of another virtual peer, since a single virtual peer can
cover multipleunoccupiedCAN sub-spaces. Since a vir-
tual peer is not a physical node, we provide a mechanism
to mapeach virtual peer to physical peers (calledmanager
nodes). A manager node of a virtual peer maintains all in-
formation about the virtual peer (e.g., neighbor list) and pro-
cesses any routing requests for its assigned virtual peer(s).
In Figure 1(a), VBE is managed by nodes B and E while
VEH is mapped to nodes E and H. A virtual peer can be
managed by up totwo different physical peers (the number
of mapped physical peers depends on whether the virtual
peer is an edge or an internal virtual peer in the integrated
CAN space), enabling robust failure recovery.

With this design, each physical peer only is responsible
for the exact region of the CAN space to which it belongs,
with respect to its categorical resource specifications, and
the rest of the space is covered by virtual peers. This en-

ables employing the efficient matchmaking and load bal-
ancing techniques presented in Section 2.1, since in each
sub-space the existing algorithms can aggregate the load in-
formation along thecontinuousdimensions, and employ the
job pushing mechanisms for better load balancing within a
single CAN sub-space, without considering different types
of categorical resources. Figure 1(b) shows the overall pro-
cedure of matching a jobJ to node G, showing both physical
and virtual peers in the CAN space. Since each virtual peer
is mapped to one or two physical peers, a job request can
be efficiently delivered to the owner node, as shown in Fig-
ure 1(b) (e.g., when node D routes the job request to the
virtual peer VBE , it can directly send the job to the physical
peer E that VBE is mapped to).

3.1 1-Dimensional Transformation

In Figure 1, we show only a single categorical resource
dimension. However, the management of virtual peers
and failure recovery mechanisms can become very complex
with multiple categorical dimensions. The number of empty
sub-spaces, each requiring a virtual peer, can increase com-
binatorially with the number of categorical dimensions.

To address these problems, wetransformall categori-
cal resource types into asingle dimension. The overall
CAN space is then composed of one transformed categor-
ical resource dimension (we call this dimensionT), along
with all other continuous resource dimensions (including
the virtual dimension described in Section 2.1). Any type
of 1-dimensional transformation function can theoretically
be used for this purpose, but consider that a user query may
specify “don’t care” or a limited range query as the require-
ment for a categorical resource type. In that scenario, the
resource query specified for a job becomes a range query in
a multi-dimensional space, so that a simple transformation
function, such as a row-major or a column-major ordering,
favors one dimension over others.

To support range queries, we preserve locality by us-
ing a Hilbert space filling curve (HSFC) [10] for the
transformation. A HSFC is a continuous mapping from
a d-dimensional space to a 1-dimensional space, passing
through every point in ad-dimensional space exactly once,
resulting in an ordering with good locality properties across
all dimensions.

Transforming all of the categorical resource types into a
single dimension allows us to efficiently introduce virtual
peers to cover gaps in the CAN space. A single dimen-
sion allows a contiguous set of missing configurations (that
have no real peer with those values for the categorical di-
mensions) to be represented with a single virtual peer. The
number of virtual peers then grows only linearly with the
number ofexistingconfigurations.

With a single transformedT dimension, coordinates for
the nodes and jobs are generated by transforming cate-

gorical resource specifications (constraints) and combining
that with continuous resource capabilities (constraints). We
modify the node join algorithm so that if a new node splits
one of the existing nodes in the system, our previous zone
splitting algorithm will be applied. However, if the new
node is mapped to a virtual peer’s zone, it becomes the
first node for the sub-CAN determined by its categorical
resource types and becomes the manager of the new virtual
peers. We also modify the node leave (failure recovery) al-
gorithm so that a virtual peer takes over a recovered zone
along theT dimension only if thelast node in a sub-CAN
departs the system (or fails). Finally, if a job is routed to one
of the virtual peers in the matchmaking process, this means
that there is no node in the system that can meet the job’s
resource constraints, so the job cannot be run.

4 Improving Scalability
Although the design in Section 3 can effectively match

incoming jobs with various types of resource constraints
to available resources, it has several drawbacks for system
maintenance that we now describe.

As shown in Figure 1, a virtual peer becomes the neigh-
bor ofall physical peers that abut in theT dimension (for ex-
ample, VBE is the neighbor of nodes A, B, C, D, E, and F).
This means that a virtual peer must exchange heartbeat mes-
sages with many neighbors periodically, and the size of each
message grows with the number of the virtual peer’s neigh-
bors (this is because each node in the CAN sends its own in-
formation and its neighbor information in a periodic update
message [9]). Such messages can add substantial overhead
for the nodes responsible for the virtual peers. We evalu-
ate the overhead from periodic update message exchanges
in detail in Section 5.

A similar problem can occur with the continuous dimen-
sions. Specifically, whenever there are sets of homogeneous
computational resources in the system (e.g., a workstation
cluster), some nodes might have many neighbors along the
virtual dimensionfrom the zone splitting process. However,
unlike the virtual peer case, this does not always happen
since it depends on the order of nodes joining. This problem
occurs because, unlike the original CAN DHT, our CAN
has dimensions withsemanticscorresponding to resource
types. Therefore, we cannot guarantee that a zone for a new
node will be split along a specific dimension, because the
resource capabilities of nodes are not truly heterogeneous.

Another potential problem with the virtual peers is that
some nodes may process more routing messages than other
nodes. For example, in Figure 1, a job that requires the
Linux operating system type may start from node H (which
is the injection node of this job), where only Solaris ma-
chines are located. That job must traverse multiple sub-
CANs until it arrives at the right sub-CAN (in terms of
categorical resource types). In this step of matchmaking,

the manager nodes will be used for routing jobs across sub-
CANs, since the only way to traverse sub-CANs is through
the virtual peers. Therefore, the manager nodes can end up
routing a large number of matchmaking messages.

All of these issues can limit system scalability, as they
complicate system maintenance with increasing numbers of
nodes and jobs. In the rest of this section we describe new
techniques to address all these problems, to achieve good
scalability as shown in Section 5.

4.1 Modified Heartbeat Messaging

To deal with large periodic update messages, we intro-
duce apartial updatemechanism for heartbeat messaging.
Whenever a node sends information about its neighbors,
it may only sendpartial neighbor information. For this
purpose, we use a threshold value,PU Threshold, which
limits the number of neighbors that are included in a pe-
riodic update message in eachdirection (upper or lower in
each dimension). Therefore, even with only partial informa-
tion about neighbors, each node will let its neighbors know
about at least one and at most PUThreshold neighbors in
each direction (we select the PUThreshold neighbors from
each directionrandomly). This ensures the correctness of
the failure recovery algorithms, so that whenever a node
leaves the system or fails, the neighboring nodes can deter-
mine the neighbors of the lost zone through the neighbor in-
formation maintained in that direction. Note that the partial
updates mechanism does not affect failure recovery along
theT dimension, since a physical peer never takes over the
zone along that dimension (only virtual peers do).

In addition to the partial update mechanism, to reduce
the overhead of message exchanges between a virtual peer
and its neighbors, we also employprobabilistic heartbeat
messaging. As discussed earlier, the node takeover oper-
ation along theT dimension occurs only if the last node
in a sub-CAN departs. Therefore, all physical peers abut-
ting a virtual peer do not have to send heartbeat messages
to the virtual peer (except the ones that manage the virtual
peer). This reduces the number of incoming messages to
the virtual peer. Also, the virtual peer limits how often it
sends heartbeat messages to any given neighbor through the
partial update mechanism described previously, which only
lengthens the average time between heartbeat messages sent
to each neighbor.

4.2 Routing in the T Dimension

To address the problem of hot spots for processing rout-
ing messages from one sub-CAN to another sub-CAN, we
use a special routing mechanism in theT dimension.

Whenever a physical peer tries to route a request to the
virtual peer, it sends the request to one of theneighborsof
the virtual peer (rather than sending directly to the manager

of the virtual peer). Therefore, in theT dimension, the algo-
rithm utilizes the neighbor of neighbor information main-
tained by the CAN, and routing requests are processed not
only through direct neighbors but alsoindirect neighbors.
For example, in Figure 1(b), when node D routes the request
for job J, it selects one of VBE ’s neighbors (node E or F)
and sends the request. This prevents all routing requests de-
livered from the Linux sub-CAN to another sub-CAN from
always going through node E, the manager of VBE .

5 Evaluation

In this section we evaluate our decentralized algorithms
through a comparative analysis of experimental results ob-
tained via simulations.

5.1 Experimental Setup

We use synthetic job and resource (node) mixes to sim-
ulate the behavior and measure the performance of our pro-
posed CAN-based matchmaking algorithms. The resource
mixes are modeled after common environments the system
will run in (a combination of workstation clusters and desk-
top machines), and from a variety of job mixes obtained
from our astronomy collaborators. Our intent is to model a
P2P desktop grid environment with a heterogeneous set of
nodes and jobs. We therefore generated a variety of work-
loads, each describing a set of nodes and events. Events
include node joins, node departures (graceful or from a fail-
ure), and job submissions. The events are generated using
a Poisson distribution with an arrival rate of1/τ (τ is the
average event inter-arrival time).

We used five different resource types for nodes and
jobs: CPU architecture, operating system type, CPU speed,
memory, and disk space. For the categorical resource
types (architecture and operating system), the nodes and
jobs usedtwo different combinations: (Intel/Linux) and
(AMD/Linux). So nodes and jobs can belong to either of
the combinations with respect to their resource specifica-
tions and constraints, respectively. This is representative of
heterogeneous cases where more than two combinations of
the categorical resource types exist, but still shows the basic
behavior of the CAN. Also, this case will show how hav-
ing virtual peers with a large number of physical neighbors
affects overall system performance.

We generate the continuous resource values (CPU, mem-
ory and disk) for nodes and jobs based on aclustering
model, as described in our earlier work. The clustering
model emulates the resources available in a heterogeneous
environment, where a high percentage of nodes have rela-
tively small values for their available resources and a small
fraction of nodes have larger amounts of available resources
(as in [12]). We used ten different sets of homogeneous
clusters having different amounts of continuous resource

capabilities. As described in our previous work [6, 7], our
algorithms can also handle truly heterogeneous set of nodes
and jobs where there are few identical nodes (anunclustered
set of nodes). However, we use the clustered model for our
experiments since this is a likely scenario and it also shows
the behavior of the system when nodes have many neigh-
bors along the virtual dimension, as described in Section 4.

The amount of workW for a jobj is generated uniformly
at random from a predefined set of work ranges (60 minutes
on average), and means that to run the jobj a node must
execute forW time units if it hasexactly the same node
specification as does the jobj’s constraints. To model the
actual running time of a job, we divideW by the node CPU
speed (relative to some baseline node CPU speed), to get a
run time on the node a job is assigned to. Finally, for net-
work communication cost we model the latency of a packet
between any two nodes by an exponential distribution with
a mean of 50 milliseconds.

One important characteristic of the test workload is that
the overall system reaches asteady state, for both available
nodes and active jobs, during the simulation period. The
way we generated the workload is that first an initial set of
1000 nodes join the system. Then, new node join events
and existing node departure events (graceful leaving or fail-
ure) occur at approximately the same rate. Once the sys-
tem reaches the steady state in terms of active nodes a total
of 5000 jobs are submitted. Again, the system behavior is
measured in a steady state, so that the number of active jobs
remains about the same (jobs arrive and complete at about
the same rate), and we show the performance of each match-
making mechanism in this steady state to avoid the transient
effects of earlier jobs that see a largely empty system.

Our metrics arematchmaking cost(the amount of time
between when a job is injected and when it is assigned to
a run node) (MC) and queuing time(the amount of time
between when a job is inserted into a run node and when
it actually starts running) (QT). MC directly quantifies the
overhead needed to perform the matchmaking in a decen-
tralized manner. QT includes the time spent waiting in the
job queue of a run node before a job is executed (i.e., indi-
rectly measuring load balance).

We test the CAN approach both before addressing scal-
ability issues (Section 3) (CAN-Vanilla) and the improved
CAN approach employing partial updates (described in Sec-
tion 4.1) and the special routing algorithm (Section 4.2). For
partial updates, we used two different PUThresholds, 1 and
2 (CAN-PU1 andCAN-PU2, respectively, see Section 4.1).
Since both thresholds showed similar (good) behavior, we
do not show results for higher threshold values. To see how
well the workload could be balanced, we also show results
for a centralized scheme (CENTRAL) that uses knowledge
of the status of all nodes and jobs. Such a scheme would
be very expensive to implement with a distributed set of

nodes, but serves as a target for achieving the best possible
load balance from an online matchmaking algorithm. The
matchmaking cost for the centralized approach is 0.

5.2 Results for System Maintenance

 0

 20

 40

 60

 80

 100

 1 10 100 1000

P
er

ce
n

ta
g

e
(%

)

Message Size (KB in Log Scale)

Size of Periodic Update Messages (CDF)

CAN-Vanilla
CAN-PU1
CAN-PU2

(a) Partial updates reduce many message sizes by orders of mag-
nitude

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 50 100 150 200 250 300 350 400 450 500

T
o

ta
l

S
iz

e
o

f
M

es
sa

g
es

 (
M

B
)

Elapsed Time since the Start of Simulation (minutes)

Total Size of Periodic Update Messages (Snapshots)

CAN-Vanilla
CAN-PU1
CAN-PU2

(b) Total bandwidth consumption with partial updates drops by a
factor of 10

Figure 2. Size of Periodic Heartbeat Mes-
sages Exchanged

Figures 2 and 3 show the behavior of our algorithms
with the scalability improvement techniques. With the use
of partial updates, we can greatly reduce the size of each
periodic update message, as seen from Figure 2(a) (note
that the x-axis islog scale). Compared to CAN-Vanilla,
CAN-PU1 and CAN-PU2 are sending very small heartbeat
messages. The main reason for CAN-Vanilla having larger
message sizes is that the virtual peers have a large num-
ber of neighbors, and send all that neighbor information in
heartbeat messages. This problem is amplified since each
node periodically (every 30 seconds for our simulations)
sends heartbeat messages to all its neighbors. Figure 2(b)
shows the total size of the heartbeat messages sent between
all nodes during every 5 minute interval, and we see that
CAN-Vanilla sends a much larger amount of data than ei-
ther CAN-PU1 or CAN-PU2.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

P
er

ce
n
ta

g
e

(%
)

Number of Routing Messages Per Node

Number of Routing Messages (CDF)

CAN-Vanilla
CAN-PU1
CAN-PU2

99% of CAN-PU2

99% of CAN-Vanilla

Figure 3. The T-dimension routing algorithm
reduces the message burden on manager
nodes compared to CAN-Vanilla.

The partial update mechanism may affect failure recov-
ery along the continuous dimensions, since each node has
only a small amount of information about the neighbors of
its neighbors. So when an existing node leaves the system
or fails, the node that takes over that zone, call itN, might
not be able to find all new neighbors abutting the lost zone
(since the departed node did not provide nodeN all of its
neighbor information). Therefore, temporary holes that no
node owns can occur in the CAN space, since a node that
takes over a zone may not have complete neighbor infor-
mation after merging the lost zone with its own zone. How-
ever, these holes are quickly repaired through later heartbeat
messages when neighbor information is exchanged, since
the partial update algorithm always sends information about
at least one neighbor in each direction in the periodic up-
date messages. In experiments not shown, we verified that
the average time to recover from failures along the continu-
ous dimensions with partial updates is only a factor of three
worse compared to sending complete updates (CAN-Vanilla
takes an average of around 20 seconds to repair holes).

In addition to the partial update mechanism, we proposed
a special routing algorithm in theT dimension to avoid hot
spots for routing requests. The results are shown in Fig-
ure 3, which shows the number of routing messages pro-
cessed by each node during the entire simulation. The fig-
ure shows that CAN-Vanilla, which does not use the spe-
cial routing algorithm in theT dimension, shows the worst
performance in terms of number of routing messages pro-
cessed. The main reason for this is that the physical peers
maintaining the virtual peers (the manager nodes) must pro-
cess a large number of routing messages to deliver requests
between the Intel/Linux and AMD/Linux sub-CANs.

5.3 Results for Job ExecutionsFigure 4 shows the matchmaking cost and queuing time
of jobs with the different algorithms. As we can see from

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
er

ce
n

ta
g

e
(%

)

Time (s)

Matchmaking Cost of Jobs (CDF)

CAN-Vanilla
CAN-PU1
CAN-PU2

(a) Matchmaking is not noticeably impacted by partial updates

 86

 88

 90

 92

 94

 96

 98

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
er

ce
n

ta
g

e
(%

)

Time (s)

Queuing Time of Jobs (CDF)

CENTRAL
CAN-Vanilla

CAN-PU1
CAN-PU2

(b) Stale queue information for neighbors results in slightly
longer queuing times with partial updates

Figure 4. Matchmaking and Queuing Time

Figure 4(a), the CAN-based mechanisms can match the jobs
having different resource constraints with available hetero-
geneous resources with very low cost. Most of the jobs can
be matched within a couple of seconds, but some take much
longer. High matchmaking costs can occur when new nodes
join or existing nodes leave the system Those events cause
transient system states where matchmaking for a job can-
not proceed until the holes in the CAN space caused by the
node departures have been repaired. During those periods
CAN routing can fail, so has to be retried. However, jobs
are still matched within a very short time period, since the
system quickly recovers from those transient states.

Figure 4(b) shows the quality of load balancing of the
CAN-based approaches compared to the centralized match-
maker. As the figure shows, all of the CAN-based frame-
works show performance competitive with CENTRAL, al-
though there are some jobs that wait longer in the queues.
We showed in our previous work that in this scenario, with
sets of homogeneous clusters of nodes, the CAN performs
well, both in load balancing and matchmaking cost, because
splitting the CAN in the virtual dimension for clusters of
homogeneous nodes helps spread jobs with similar resource
requirements across all nodes in a cluster capable of running

the jobs [6, 7]. In addition, through the experiments shown
here, we verify that the partial update mechanism does not
affect the quality of load balancing very much, so that our
algorithms perform well for both categorical and continuous
resource capabilities for nodes and requirements for jobs.

6 Related Work

Research such as [3, 8] employed aTime-To-Live(TTL)
mechanism to locate and allocate resources in a Grid envi-
ronment. TTL-based mechanisms are relatively simple and
effective ways to find a resource that meets the job require-
ments, but such mechanisms may fail to find a resource even
though one exists somewhere in the network.

Similar to our approach, research such as [4, 5] en-
coded static or dynamic information about computational
resources using a DHT hash function for resource discov-
ery. However, a small fraction of the nodes can end up con-
taining a large fraction of the resource capabilities of the
nodes if there are many that have very similar (or identical)
capabilities. Also, simple encoding of resource information
cannot effectively avoid selecting resources that are over-
provisioned with respect to the jobs.

A peer-based desktop grid system called WaveGrid [12]
constructed atimezone-awareoverlay network based on
a CAN to use idle night-time cycles geographically dis-
tributed across the globe. Balanced Overlay Networks
(BON) [2] encode information about each node’s available
computational resources, resulting in a self-organized net-
work that allows jobs to be assigned to free nodes via short
random-walks. However, the job allocation model in those
systems does not consider the requirements of the jobs nor
the varying resource capabilities of the nodes.

7 Conclusions and Future Work

In this paper, we have described a P2P desktop grid sys-
tem that can efficiently match exact and minimum require-
ments for jobs simultaneously, while balancing load among
multiple candidate nodes. By introducing virtual peers and
a 1-dimensional transformation using a space-filling curve,
we have integrated different types of resources into a single
CAN. However, this architecture can scale poorly because
of asymmetric peering in the CAN space. We described
several novel techniques that greatly improve scalabilityby
optimizing the information flow, as well as routing across
category boundaries. The resulting decentralized system
is both scalable and efficient in performing matchmaking
for complex jobs and environments that mix continuous and
categorical resources.

We are in the process of implementing our system, and
will characterize its behavior on real workloads, in cooper-
ation with our collaborators in physics and astronomy. In
the near future, we will measure and report on the behavior

of our system for heterogeneous environments running real
applications.

References

[1] D. P. Anderson, C. Christensen, and B. Allen. Designing a
Runtime System for Volunteer Computing. InProceedings
of the 2006 IEEE/ACM SC06 Conference, Nov. 2006.

[2] J. Bridgewater, P. O. Boykin, and V. Roychowdhury. Bal-
anced Overlay Networks (BON): An Overlay Technology
for Decentralized Load Balancing.IEEE Transactions on
Parallel and Distributed Systems, 18(7):1122–1133, 2007.

[3] D. Caromel, A. di Costanzo, and C. Mathieu. Peer-to-peer
for computational grids: mixing clusters and desktop ma-
chines.Parallel Computing, 33(4-5):275–288, 2007.

[4] A. S. Cheema, M. Muhammad, and I. Gupta. Peer-to-peer
Discovery of Computational Resources for Grid Applica-
tions. InProceedings of GRID 2005, Nov. 2005.

[5] R. Gupta, V. Sekhri, and A. K. Somani. CompuP2P: An
Architecture for Internet Computing using Peer-to-Peer Net-
works. IEEE Transactions on Parallel and Distributed Sys-
tems, 17(11):1306–1320, Nov. 2006.

[6] J.-S. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and
A. Sussman. Using Content-Addressable Networks for Load
Balancing in Desktop Grids. InProceedings of HPDC 2007,
June 2007.

[7] J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattachar-
jee, and A. Sussman. Resource Discovery Techniques in
Distributed Desktop Grid Environments. InProceedings of
GRID 2006, Sept. 2006.

[8] C. Mastroianni, D. Talia, and O. Verta. A Super-Peer Model
for Building Resource Discovery Services in Grids: Design
and Simulation Analysis. InProceedings of the European
Grid Conference (EGC), Feb. 2005.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
Proceedings of the ACM SIGCOMM, Aug. 2001.

[10] H. Samet. Foundations of Multidimensional and Metric
Data Structures. Morgan-Kaufmann, 2006.

[11] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mor-
dacchini, M. Pennanen, K. Popov, V. Vlassov, and S. Haridi.
Peer-to-Peer resource discovery in Grids: Models and sys-
tems. Future Generation Computer Systems, 23(7):864–
878, Aug. 2007.

[12] D. Zhou and V. Lo. WaveGrid: a Scalable Fast-turnaround
Heterogeneous Peer-based Desktop Grid System. InPro-
ceedings of IPDPS 2006, Apr. 2006.

