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Abstract— Desktop grids use opportunistic sharing to exploit to large configurations and heavy workloads it becomes a
large collections of personal computers and workstations across challenging problem to efficiently match jobs with diffetea-
the Internet, achieving tremendous computing power at low cost. source requirements to available heterogeneous commahti

Traditional desktop grid systems are typically based on a client- . . WL
server architecture, which has inherent shortcomings with respet resources, to provide good load balancing, and to obtain hig

to robustness, reliability and scalability. In this paper, we propose System throughput and low job turnaround times.
a decentralized, robust, highly available, and scalable infrastruc-  In this paper, we quantify the trade-offs between perfogmin
ture to match incoming jobs to available resources. Through a efficient matchmaking and maintaining good load balance,
comparative anaIyS|s_ on the experimental resul.ts obtaln.ed via comparing three different matchmaking algorithms for save
S|mulat|o_n of three different types of matchmaking algorithms diff - f Kloads Vi imulati This study i
under different workload scenarios, we show the trade-offs GlfT€rent types ol workioads via simulation. 1his study 1S
between efficient matchmaking and good load balancing in a intended to give insight into the design and implementation
fully decentralized, heterogeneous computational environment.  of resource discovery algorithms in a distributed and loeter
geneous Grid environment.
The rest of the paper is structured as follows. Section Il
Desktop grid computing has achieved tremendous compupresents related work. Section Il discusses our assumed
ing power with low cost through opportunistic sharing t@ontext and overall goals, while Section IV describes the
exploit large collections of personal computers and warkstalgorithms and optimization criteria for matching jobs to
tions across the Internet. Existing platforms for desktod g resources. Finally, Section V contains our evaluation, and
computing typically employ a client-server architectusere Section VI concludes.
a trusted server supplies jobs to a set of potentially weipéi
client machines [1], [2]. This architecture has inherertrsh Il. RELATED WORK
comings with respect to robustness, reliability and sdkbiiab Peer-to-Peer research has shown that a robust, reliable
Our goal is to design and build a massively scalable infrasystem for storing and retrieving files can be built upon
tructure for executing grid applications on a widely distited unreliable machines and networks. The algorithms for dbjec
set of resources. Such infrastructure mustdeeentralized, location and routing in P2P networks [7], [8], [9], [10]
robust, highly available and scalable, while effectivelymap- are capable of scaling to very large number of peers and
ping application instances to available resources throughaitultaneous requests for service (callBistributed Hash
the system. By employing Peer-to-Peer (P2P) services, dablesor DHTSs). Building upon these basic services to provide
techniques allow users to submit jobs to the system, and thesystem for making computational resources available on
jobs to be run on any available resources in the system tldgimand can allow users to both provide resources when they
meet the minimum job requirements (e.g., memory size, digke not being otherwise used, and to obtain resources when
space, etc.). The overall system, from the point of view diiey are needed.
a user, can be regarded as a combination of a centralizedResearch such a®][ [11] proposed a P2P architecture to
Condor-like Grid system for submitting and running arbigra locate and allocate resources in Grid environment empdpgin
jobs [3], and a system such as BOINC [1] for farming out job&me-To-Live (TTL) mechanism. TTL-based mechanisms are
from a server to be run on a potentially very large collectiorelatively simple but effective ways to find a resource (that
of machines in a completely distributed environment. Suchnaeets the job constraints) in a widely distributed envirentn
confluence of P2P and distributed computing is a natural stefthout incurring too much overhead in the search. However,
in the progression of grid computing, and has indeed besach mechanisms may fail to find an appropriate resource to
described as inevitable [4]7], [5]. run a given job on (that meets the job constraints), evenghou
Our preliminary work [6] has shown that we can effectivelguch a resource exists somewhere in the network, because of
match jobs to processing nodes with varying capabilities blye TTL mechanism. Therefore, sbways find an appropriate
leveraging routing information from an underlying P2P sysesource in the system (if it exists) without much overhead,
tem, and by efficiently aggregating and disseminating nresouwe must employ more effective algorithms, as described in
utilization information. However, as such a system scal&ection IV.

I. INTRODUCTION



Studies on encoding static or dynamic information aboditasets. For example, users often perfparemeter sweeps
computational resources using a DHT hash function féo optimize algorithmic settings or explore the behavior of
resource discovery have also been conducted [4], [12]. physical systems. Similarly, the same computation may be
particular, the SWORD system [12] explored a variety gierformed on different input regions, such as n-body or
architectures, including a centralized data center, P2Bdee- weather calculations that differ only in spatial coordasat
source discovery and hybrid architectures. However, thare  To summarize, the goals of any matchmaking (or in our
be a load balancing problem for these encoding techniquease, routing) algorithm must include the following:
since a small fraction of the nodes can contain a majority of 1) |ow overhead - The routing must not add significant
the resource information whenever there are many nodes that overhead to the cost of executing a job. This can be

have very similar (or identical) resource capabilities fire t challenging, given that the routing/matching is done in
system. a completely decentralized fashion.

The CCOF (Cluster Computing on the Fly) project [13] 2) completeness - A valid assignment of a job to a node
conducted a Comprehensive StUdy of generic searching meth- must be found if such an assignment exists.
ods in a highly dynamic P2P environment to locate idle 3) precision - Resources should not be wasted. All other
computer cycles throughout the Internet. More recent work  jssues being equivalent, a job should not be assigned to
from the CCOF researchers, on a peer-based desktop grid sys- a node that is over-provisioned with respect to that job,
tem called WaveGrid, constructedtiamezone-aware overlay such that the over-provisioning does not give the job an
network based on Content-Addressable Network (CAN) [7] advantage.

to use idle night-time cycles geographically distributedoas  4) |oad balance - Load (jobs) must be distributed across
the globe [14]. However, the host availability model in that the nodes capable of performing them.

work is not based on the resource requirements of the jobSrpere gre additional issues that we do not discuss here. For
and that work does not consider balancing load across @‘?ample in some situations (e.g., conditions of low losi
available system resources. o , system might prefer to optimize throughput by executingsjob
Awan et al. [15] proposed a distributed cycle sharing systeg themost capable available node. This raises the question of
that utilizes a large number of participating nodes to aehie,ynat we wish to optimize for: throughput or response time. We
robustness through redundancy on top of an unstructured BgR expicitly avoiding this issue by designing an infrastare

network. By employing efficient uniform random sampling Uspat can accommodate either objective.
ing random walks, probabilistic guarantees on the perfacaa

of the system could be achieved. Also, they claim to support IV. ALGORITHMS

robustness and scalability with high probabilistic guteas. e begin by defining terminology and the basic framework
However, as for the CCOF project, the job allocation modef our approach to matchmaking, and then describes the two
in this work does not consider the constraints of the jobs napproaches that we evaluate in this paperréneezvous node

the varying resource capabilities of nodes in the system. tree, and CAN-based resource matching.

I11. W ORKLOAD ASSUMPTIONS ANDOVERALL GOALS A. Terminology and Basic Framework

A general-purpose system must accommodate heterogeAll of the work described here assumes an underlying
neous clusters of nodes running heterogeneous batchdssof jdistributed hash table (DHT) infrastructure [7], [8], [91.0].
The obvious implication is that a matchmaking process mu3HTs use computationally secure hashes to map arbitrary
incorporate both node and job information into the procesgentifiers to random nodes in a system. This randomized
that eventually maps a job onto a specific node. mapping allows DHTSs to present a simple insertion and lookup
Our expected environment and usage simultaneously makd? that is highly robust, scalable, and efficient. We inbaith
this problem easier and more difficult. A large fraction ofiodes and jobs into a single DHT, performing matchmaking
nodes in our system might belong to one of a small numbley mapping a job to a node via the insertion process, and
of equivalence classes. For example, many organizatiops hbien relying on that node to find candidates that are able and
clusters of identical machines all at once, whether to ereatilling to execute the job. By leveraging such an architestu
compute farms or just to replace an entire department's mae are effectively reformulating the problem of matchmakin
chines at once. Node clusters make the problem more diffictdtone of routing, similarly to anycasting [16], or contdyatsed
by removing the notion of a single best match for a giverouting [17]. Jobs are injected into the systemfogwarding
job. The underlying routing algorithm must be able to cop#hem to a node that will become responsible for them.
with many similar nodes and perform some intelligent load A job in our system is the data and associated profile
balancing across them. However, node clustering can atbat describes a computation to be performed. A job profile
simplify the problem by reducing the set of possible choiceontains several characteristics about the job, such as the
for the routing algorithm. client that submitted it, its minimum resource requirersent
Likewise, job mixtures might show clustering. Sets ofhe location of input data, etc. All jobs in our system are
similar jobs (in terms of resource constraints) can resutidependent, which implies that no communication is needed
from running the same code with slightly different inpubetween them. This is a typical scenario in a desktop grid



environment, enabling many independent users to subniit théecentralized manner (to find the parent node in the RN-Tree,
jobs to a collection of node resources in the system. divide the GUID of the predecessor node of the child node
Clients insert jobs into the system by submitting them tim the Chord ring by two and find theiccessor node of that
any system node. Nodes receiving submitted jobs assign thé&tdID in the Chord ring - see [6] for more details). Since
globally unique identifiers (GUIDs), and initiate the prese the GUIDs of nodes in the system are generated uniformly
of assigning them t@wners. at random, the overall height of the RN-Tree is likely to be
An owner is responsible for monitoring the execution of (log V) whereN is the total number of live nodes in the
the job and ensuring that its results are returned to thatcliesystem (we investigated the characteristics of the RN-iree
The owner attempts to find an appropriate node through terms of overall height and node degree in [6]). Due to the
a matchmaking mechanism. Matchmaking is the process dyfnamics of the system (new nodes joining, existing nodes
matching jobs with physical resources, and consists ofrfgndideparting), the correct parent pointer of a node can change
an appropriate node for running a job based on the congtraiaver time. Therefore each node must refresh/update its RN-
in the job profile and the current (distributed) state of thdes Tree parent node pointer periodically to maintain the REeTr
in the system. Once an appropriate run node is identified, thiucture.
new job is inserted into its incoming job queue where jobs areOnce the parent-child relationship in the RN-Tree is de-
executed in FIFO order. termined, each node periodically sends local subtree resou
Run nodes periodically sergartbeat messages to the own-information (for the subtree rooted by that node) to its pare
ers of all jobs either running or queued locally. Heartbeats node, and this information iaggregated at each level of the
communicated directly between run nodes and owner nodBd\-Tree (hierarchical aggregation as in [18]).
rather than through DHT routing. This soft-state messaggspl  In the work described in this paper, the only information
an important role in failure recovery during the processifig distributed through the tree is a description of the maximal
jobs in our system, as job profiles are replicated on both taeount of each resource available at some node in the subtree
owner and run nodes. If either the owner node or the run not@lee resources modeled include continuous variables, ssich a
fails, the other will detect the failure and initiate a reepy the speed of the CPU, the amount of memory available, and
protocol so that the job can continue to make progress. i bahe amount of disk space available, and discrete variablgs s
fail before the recovery protocol completes, the client imuas operating system type and version. The resources modeled
resubmit the job. After a job completes, the run node returnzatch the constraints (requirements) that can be specified i
the results to the owner, which forwards them to the client.job profiles.
We inject jobs into the system by mapping each to a
randomly-chosen node, which becomes the job’s owner. The
DHTs provide robustness, availability, and above all, scabwner initiates a search for a node on which to run the job. The
ability. They also introduce randomness into the system kgarch first proceeds through the subtree rooted at the pwner
mapping names to nodes through hash functions. This randasnly searching up the tree into subtrees rooted at the ansest
ness helps balance routing load in DHTSs, but we can also usfethe owner if the subtree does not contain any satisfactory
it to help balance computational load in our desktop grid. Feandidates. The search is pruned using the maximal resource
example, a crude form of load balancing can be accomplishieformation carried by the RN-Tree.
merely by randomly choosing a node assignment from all Rather than stopping at the first candidate capable of
viable candidates. The main drawbacks of this approach a&secuting a given job, the search proceeds until at léast
that it does not account for dynamic aspects, such as the leaghable nodes are found. The search completes by choosing
at individual nodes in the system at any given time, nor dbeshe least loaded of the k nodes to run the job. To determine
describe a way to make a match when a randomized hashihg least loaded node among the candidate run nodes, we
matches a job with a node that is not capable of performiqwll each candidate for thgze of its job queue (the current
it (“completeness”). set of unfinished jobs assigned to a node) at the time the
We begin with a description of theendezvous node tree  matchmaking is performed. Queue size is modeled as either
(RN-Tree or RNT), an approach to addressing both problentge number of jobs in the queue (which was used in the
through use of a distributed data structure built on top of axperiments) or an estimate of the run time for all current
underlying DHT, which in our implementation is Chord [9],jobs in the queue. Through experiments not discussed here,
Specifically, the RN-Tree copes with dynamic load balanage have determined that a value of five (5) forproduces
issues by performing a limited random walk after the initialobust results with low overheads. Further details aboist th
mapping, and addresses completeness by passing informagiearch procedure can be found in [6].
describing the most capable reachable system up and down the
tree. This latter aspect allows even the hardest cores ¢aseC: Content-Addressable Network
be satisfied inD(log N) additional steps. A content-addressable network (CAN) is a DHT that maps
An RN-Tree contains all participating nodes in the desktdpUIDs to points in ad-dimensional space [7]. The conven-
grid. Each node determines its parent node based on onlly loganal use of CAN is to map a GUID into the space by applying
information, which enables building the tree in a completeld different hashes, one for each dimension. However, positio

B. The Rendezvous Node Tree



in the CAN space need not be created through randomizaa owner may be able to create a candidate list locally, witho
hashes. For example, Tang et al. [19] map documents ad/ communication.
gueries into a CAN space, executing queries via a blind local2) Mrtual Dimensions. The above procedure works in all
search centered on a query’s mapping. cases, but may cause extreme load imbalance when many
Similarly, we can formulate our matchmaking problem asodes have similar, or even identical, resource capasliti
a routing problem in a CAN space. By treating each resour&nce the coordinates of a node are defined by its resource
type as a distinct dimension, nodes and jobs can be mappagabilities, identical nodes are mapped to the same place i
into the CAN space by using their capabilities or consteagmt the CAN volume. The best way distribute ownership of a zone
each resource type to determine their coordinates. As desimacross multiple such nodes is not immediately obvious.
example, if our resource types consist of CPU speed, memonConversely, many jobs might have extremely similar con-
size, and disk space, we might map a 3.6GHz workstaticstraints. For example, many jobs will probably be inserted i
with 2GB of memory and 500GB of disk space, to the poirthe system with no constraints at all. In this case, all of the
{360, 2000, 509. A job requiring at least a 1GHz machinethese jobs will be mapped to a single node that owns the zone
100MB of memory, and 200 MB of disk space would map teontaining the minimum point in the CAN volume.
{100, 100, 0.2, clearly some distance from the node discussedWe address this issue by supplementing the “real” dimen-
above. With this approach, mapping a job to a node mighions (those corresponding to node capabilities) withrtual
seem to consist merely of mapping the job into the CAN spadamension. Coordinates in the virtual dimension are generated
and finding the nearest node. uniformly at random. Whenever a new node joins the system,
However, the semantics of matching jobs to nodes aaserepresentative point for the new node is generated by
different than that of merely finding the closest match nodeombining the resource capabilities of the node and rangoml
Most importantly, job constraints represeninimum accept- generated virtual dimension values. Therefore, even when
able guantities. Any node meeting a job’s constraints can rimultiple identical nodes join the system, they are mapped
the job, but a node whose coordinate in any dimension tis distinct locations, and zone splitting is straightforda
less than that specified by the job’s constraints, even if veBimilarly, when a new job is inserted into the system, the
close in the CAN space, is not a viable choice to run the jobew job’s coordinates become a combination of the job’s
Hence, instead of searching for the node whose capabilitemnstraints and a randomly assigned virtual coordinate. In
are closest to the job’s constraints, our matchmakingfigut combination, the randomly assigned node and job coordinate
procedure must search ftire closest node whose coordinates act to break up clusters and spread load more evenly over
in all dimensions meet or exceed the job’s constraints. nodes.
A second issue is that jobs might not have constraints3) Changes to Underlying CAN: Our use of CAN differs
in all dimensions. Indeed, a job may be injected into thieom the canonical uses in that coordinates have semantic
system with no constraints at all, implying that it may beneaning. This difference requires several changes in hew th
executed by any node in the system. We map any undefinettlerlying network management algorithms work. The most
constraint to the minimum in the corresponding dimensioimportant changes are in the way zones are split and merged.
This approach is simple and correct, but might exacerbai# lo Zones are split when a new node enters the system. The
balance problems. We discuss this issue more in Section \CAN maps the node to an existing zone, and then the zone
1) Details: A CAN works by dividing thed-dimensional is split between the owner and the new node. The default
volume into zones managed by individual nodes. Zone assigpAN split algorithm can choose to split the zone on any
ment is accomplished by mapping new nodes to an existingis, because the mapping of a zone to an owner has no
zone, and then giving the new node part of that zone. Zongmmantics, and the coordinates of a pair of points usudfigrdi
are re-assigned and aggregated when existing nodes leaveromost, if not all, axes. In our CAN, however, nodes and
fail. These techniques can be used to divide the CAN amojalps may be identical in capabilities and constraints ediiffg
distinct run nodes. However, mapping of jobs to those nodesly in their coordinates in the virtual dimension (e.g. for
is less straightforward. a cluster of homogeneous nodes, since we use the resource
A job is inserted into the system by using its constraintsapabilities as the representative point for each node én th
as coordinates, and defining the owner of the resulting zosgstem). This restricts the choice of the dimension on which
as the owner of the job. The owner creates a list of candidatesplit. Therefore, our split mechanism first tries to finghts
run nodes, and chooses the least loaded among them atakis among the real dimensions that have different cootelina
time matchmaking is performed (as reported by the candidateross the existing node and the new node. If that is not
nodes), as for the RN-Tree algorithm. The candidate nodesssible, the virtual dimension is used as the split axis. To
are drawn from the owners of neighboring zones, such tHatild a better (i.e. closer to cubic) grid space when splitti
each candidate is at least as capable as the original ownereal dimensions, we iterate across the dimensions for gdith s
all dimensions (capabilities), but more capable in at least. operation.
As with the RN-Tree mechanism, we used sensitivity analysisThe second major change to the algorithms is in how zones
to identify five (5) as a reasonably robust constant size fare merged. A zone is merged with a neighbor when it is
this set. Owner nodes store information about neighbors, esgphaned because of an owner leaving, either gracefullyor b



failing. The default CAN recovery algorithms allow such amonstraints and picks the one with the shortest job queus:- Ho
orphaned zone to be merged with any neighboring zone. Meer, such a scheme would not be feasible in a complete system
restriction is made on which nodes can own a zone. In fagfhplementation with respect to performance and robustness
a node can own multiple zones, which can result in highkince the algorithm would incur a large overhead to fahid
fragmented coordinate space. Therefore, to achieve amnertodes in the P2P system that meet the job constraints, and the
one node to zone assignment, CAN runs a peribdakground node performing the centralized algorithm would be a single
zone reassignment algorithm. That algorithm can assign ongoint of failure in the system.
of the neighbor nodes of the departed node to another region,
without any restrictions on merging and reassigning the or-
phaned zone (see the details in [7]). However, in our systemWe present a preliminary evaluation of our ideas on decen-
this can cause a violation in our required semantics abdtdlized job assignment.
the relationship between a zone and the owner of that zone, .
whereby a zone should contain the coordinates (i.e., resouf® EXPerimental Setup
capabilities) of its owner. We use synthetic job and node mixes to simulate the
Specifically, zone owners play two roles. First, they ensubehavior and measure the performance of both the RN-Tree
that jobs mapped to the zone are run. This is accomplishald CAN-based approaches. Our intent is to model a P2P
by creating a set of candidate run nodes and polling themdesktop grid environment with a heterogeneous set of nodes
find the least loaded candidate run node. For this purpose, #nd jobs. We therefore generated a variety of workloadd) eac
owner of a zone would not actually have to be mapped intescribing a set of nodes and events. Events include node
that zone, because a job’s owner is never a candidate to jams, departures (graceful or otherwise), and job suboriss
the job. However, owners also serve as candidate run noddw events are generated using a Poisson distribution with a
for jobs mapped to neighboring zones. For example, assumardval rate of 1 / [Average Event Inter-Arrival Time (AEIAT
job is mapped into a zong, and that zone; is z;'s neighbor. Jobs can specify constraints for three different resowypest
z;'s owner may then include;’s owner in the list of candidate CPU speed, memory, and disk space. We generated node
run nodes for any job mapped tg. However, if z;’s owner profiles using a clustering model to emulate resourcesablail
is not actually mapped somewhere 4p, it might not have in a heterogeneous environment, where a high percentage of
the capabilities;;’s owner expects, and might therefore not baodes have relatively small values for their available veses
able to run the job. The zone merging procedure must theref@nd a small fraction of nodes have larger amounts of availabl
preserve the constraint that a zone’'s owner must be mappesgources (as in [14]).
into the zone. Satisfying this constraint requires thatezobe =~ Though we investigated many workloads, we have space
merged in a way that is consistent with the original splitesrd in this paper only for the most interesting results. The first
The zone merge algorithm accomplishes this by preserviag flour workloads are relatively static; no nodes join or leave
original split order at the owner, and reversing that order turing the course of the experiments. They differ on two axes
select which node to merge a zone into. Workloads are categorized as eithebustered or mixed. The
) former divides all nodes and jobs into a small number of
D. Centralized Matchmaker equivalence classes, where all items in a given equivalence
To compare against the RN-Tree and CAN-based matatlass are identical. The latter assigns node capabilities a
making algorithms, we have designed amine scheduling job constraints randomly. Workloads are also distingudshe
mechanism, called th@entralized Matchmaker, that maintains by whether the jobs have “light” or “heavy” constraints. For
global information about the current capabilities and loaa given job, each type of resource has a fixed independent
information for all the nodes in the system, so can assigmobability of being constrained: “light” jobs have an sage
a job to the node that both satisfies the job constraints aofi1.2 constraints (out of the 3) and “heavy” jobs have an
has the minimum job queue size across all nodes in theerage of 2.4. More detail on the workload generation can
entire system (breaking ties arbitrarily). In our simwati be found in Kim et al. [6].
environment, the Centralized Matchmaker does not incur anyOur metrics arenatchmaking cost (the number of messages
cost for gathering the global information about the nodeequired for finding candidate run nodes by the owner node
in the system and performing the matchmaking (since tloé¢ a job), wait time (the amount of time between when a job
simulator can maintain global information about all the @®d is injected and when it actually starts running), aawrage
in the system). Even though the matchmaking performed byeue length, which is the length of the non-preemptive run
the Centralized Matchmaker is not always optimal (sincs it queue seen by a job when it is finally assigned to a run
an online algorithm), it should provide good load balancingode. Matchmaking cost directly quantifies the messagisg co
and can be a good comparison model for other matchmakingeded to perform the matchmaking in a decentralized manner
algorithms, as in [12], [13]. Wait time includes the time to perform the matchmaking
We can view the Centralized Matchmaker algorithm as ttagorithmand the time spent waiting in the run queue before a
extreme case of the RN-Tree or CAN based search algorithjoh is performed. Wait time reflects both protocol overhead a
since it first findsall candidate run nodes that meet the jothe quality of the matchmaking results, i.e., load imba¢anc

V. PERFORMANCE
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Fig. 2. Mixed Workloads

Finally, the distribution of queue lengths provides a direc The mixed workloads give us a slightly different story. The
measurement of the load balance seen by injected jobs. matchmaking costs (number of messages) and the wait time on
We test the RN-Tree approach (RNT), the CAN approadhe “heavy” constraint workload still favor CAN, but CAN's

(CAN), and the idealized centralized approach (Centrd)izeperformance on the “light” constraint mixed workload is rhuc
that uses up-to-date global information to choose the noderse than that of RNT. Figure 2(c) shows that queue lengths
with shortest queue length from all nodes in the system. We dre much larger and more varied in CAN than RNT, implying
not include “matchmaking cost” numbers for the centralizeddad imbalance.

approach because it requires no messages. This latter finding was somewhat of a surprise: CAN per-
Overgll, we found that, as expecte.d, the rgndezvpus 4Brms poorly with the “light” mixed workload. To understand
proach is better suited for less de_:mandlng situations Wﬂ_hem why the resulting load imbalance is worse than in the claster
structure. The CAN approach is generally better suited e~ consider a hypothetical CAN with only a single real
handle more complex situations. However, we did enco”mﬁﬂnension, CPU speed, and where each node has a CPU value
a few surprises. of “3600”, and each job has a constraint of “2000”. Nodes
B. Performance and jobs end up distributed along two parallel lines in the 2-
Figure 1 shows “matchmaking cost” (in messages), wwaitAN because of“thelr ra}’ndomly aSS|gnec_1I virtual coordlna\_tes
time”, and “queue length” for the clustered workloads, whilAs a result, the “closest” node can be different for each job.

Figure 2 shows the corresponding data for the mixed worI—hiS is an approximation of the clustered case, and explains

loads. Taking the clustered workloads first, the RN-Tree h4dly CAN's load balance is good.

lower matchmaking costs, but CAN has lower wait times However, the analogue for the “light” mixed workload in
and smaller queue lengths. The difference in queue lengthss example would be slightly different. Since the workloa
explains the difference in wait times, and comes about tsrais “light”, most jobs would not have CPU constraints, cagsin
the virtual dimension allows nodes of a cluster to be spre#tteir CPU speed coordinates to be the minimum value in
in the CAN space. that dimension, say, “1000”. Hence, the jobs are still nyostl



distributed (via the virtual dimension) along a line at agéin Average Wait Time for Jobs
CPU coordinate, much like the case above. However, the fact
that this is the mixed workload implies that most nodes have 200 [ B RNT
distinct CPU speeds. The node with the lowest CPU speed B cAn
ends up being closest to the line representing the jobs, and
will become the owner of a disproportionate number of them,
resulting in load imbalance.

Due to these characteristics of space partitioning for the
CAN approach, the matchmaking performance of CAN shows
different behavior for the clustered and mixed workloads.
In particular, for clustered workloads the matchmakingt cos
for CAN is higher than that for RN-Tree. In the clustered 0
workloads, many nodes have identical resource capabilitie Dynamic | Dynamic Il Dynamic I
so that overall the CAN space will be split along the virtual
dimensions. This results icoarse-grained ranges in the real Fig. 3. Dynamic Workloads
dimensions, where each node maintains much larger zones

compared to its own resource capabilities. Therefore, the first find de wh bilii _ | h
matchmaking process in CAN becomes expensive for jonstO Irstfind a node whose capabilities approximately matc

that have a small number of very high resource requiremer‘Hé? job’s constraints, followed by a short random walk among
However, for jobs that have more constraints, the overaMilar nodes to find one that is lightly loaded. _
matchmaking performance is better since jobs with many OUr original expectation was th_at .the overhead of the sim-
constraints are more likely mapped to the right region ipler RN-Tree protocol would_ be significantly less than that o
the space where many candidate run nodes are available. @M\, but produce worse assignments. However, the RN-Tree’s
the other hand, for the mixed workloads, since there are rffvantage in protocol cost turned out to be less than exgecte
too many identical nodes in the system, the CAN space Eé_/en relatively serious concerns, such as the cost of CAN'’s
partitioned along the real dimensions so that CAN clearl{ilure recovery process, can probably be addressed throug
outperforms RNT in terms of matchmaking cost. techniques such as virtualization of the entikelimensional
Figure 3 shows average wait times for three “light” mixejfolume. Further, in all cases, protocol cost turned out to be
workloads where between 10% and 30% of the nodes led6&S significant than wait times caused by load imbalance.
during the course of simulation. Node departures are evenlyBoth RN-Tree and the CAN approach can cause poor load
split between graceful departures, where a node informs Ralance in at least two ways. First, the random walks may
neighbors before leaving, and failures, where the neighbdtot be long enough to find existing lightly-loaded nodessThi
learn of the departure from the failure of heartbeat messag@ccurs because neither search is guided by dynamic load
Like the “light” mixed workloads discussed above, the CANnformation. However, it may be less serious for the CAN
approach has problems balancing load. Both approaches @Proach because each CAN node stores a limited amount of
form poorly relative to the centralized approach becaughef l0ad information for neighbor nodes.
need to recover and reconfigure the network. This disparityA second potential cause of load imbalance is poor matches
grows with increasing departure rates. CAN’s performan&etween jobs and nodes (i.e, pqwecision). RN-Tree might
appears to be more affected than RNT’s by the increasihg thought of as a “first-fit" algorithm; it selects as the run
departure rates. We speculate that the culprit is the mugie mpode the most lightly loaded of a set of randomly chosen
complex recovery process, which involves zone reclamatio@des, such that each node meets the minimum job con-
and re-aggregation. straints. However, the chosen run node might be greatly-over
provisioned for the job, and this over-provisioning miglut n
VI. CONCLUSIONS be useful. For example, over-provisioning in terms of CPU
In this paper we have described two approaches to using P22 may be useful because it can speed the execution of
protocols in providing job scheduling and resource maighi@ given job, but an extra GByte of memory might not help
facilities to desktop grids. Overall, the CAN algorithm apexecution time, and therefore not be useful. Meanwhilegioth
pears to produce significantly lower wait times than the RNebs needing the extra memory might be needlessly queued. By
Tree approach over a broader spectrum of input. Howevegntrast, CAN is more of a “best-fit” algorithm (more pregise
the RN-Tree and CAN approaches have different underlyimgcause the search starts at the node most closely matching
rationales. The idea motivating the RN-Tree approach is tee job’s constraints.
balance load by randomizing job assignment, mitigating the The result is that the CAN approach is both more flexible
cost of matching demanding jobs by passing static capatity and more efficient for the general case where the workload has
formation around the tree. Job assignment essentiallyistsnsa great deal of diversity. However, CAN’s poor performance
of a randomized mapping, followed by a short random walk teith the “light” mixed workload is an indicative of a broader
find a lightly-loaded node. The idea behind the CAN approaghoblem in the robustness of the load balancing. While the
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virtual dimension helps to smooth clumpy job and node
distributions, thereby enabling better matchmaking, ingg [1]
sufficient in cases such as those described above.

One approach to improving load balance in these Casjzﬁ
might be to add random increments to all dimensions, effec-
tively “virtualizing” each of the real dimensions to a lirad
extent. Random increments would help spread out both jolﬁ
and nodes when the workload contains significant structure,
clustering. The difficulty lies in determining the proper@mt
of randomness to add to the system. Too little and load balané!
is fragile; too much and matchmaking becomes less precise,
also adding load imbalance. The best approach is probalely on
that adapts dynamically both to the workload, and to curreri®!
gueue length distributions. However, both of these progert
are global, and our approach is to make all decisions lgcallye]
in as decentralized a fashion as possible. The reconoitiati
these competing concerns into a single protocol is the main
focus of our ongoing research. [7]

Finally, we plan to build and deploy a prototype system
to look at real-world issues arising from heterogeneous efg)
vironments running real applications. With help from our
application-area collaborators in physics and astronomgy,
will measure and report on the behavior of our system forg]
real workloads on real systems.

[10]
[11]
[12]
[13]

[14]
[15]
[16]
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