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Abstract— Desktop grids use opportunistic sharing to exploit
large collections of personal computers and workstations across
the Internet, achieving tremendous computing power at low cost.
Traditional desktop grid systems are typically based on a client-
server architecture, which has inherent shortcomings with respect
to robustness, reliability and scalability. In this paper, we propose
a decentralized, robust, highly available, and scalable infrastruc-
ture to match incoming jobs to available resources. Through a
comparative analysis on the experimental results obtained via
simulation of three different types of matchmaking algorithms
under different workload scenarios, we show the trade-offs
between efficient matchmaking and good load balancing in a
fully decentralized, heterogeneous computational environment.

I. I NTRODUCTION

Desktop grid computing has achieved tremendous comput-
ing power with low cost through opportunistic sharing to
exploit large collections of personal computers and worksta-
tions across the Internet. Existing platforms for desktop grid
computing typically employ a client-server architecture,where
a trusted server supplies jobs to a set of potentially unreliable
client machines [1], [2]. This architecture has inherent short-
comings with respect to robustness, reliability and scalability.

Our goal is to design and build a massively scalable infras-
tructure for executing grid applications on a widely distributed
set of resources. Such infrastructure must bedecentralized,
robust, highly available and scalable, while effectively map-
ping application instances to available resources throughout
the system. By employing Peer-to-Peer (P2P) services, our
techniques allow users to submit jobs to the system, and the
jobs to be run on any available resources in the system that
meet the minimum job requirements (e.g., memory size, disk
space, etc.). The overall system, from the point of view of
a user, can be regarded as a combination of a centralized,
Condor-like Grid system for submitting and running arbitrary
jobs [3], and a system such as BOINC [1] for farming out jobs
from a server to be run on a potentially very large collection
of machines in a completely distributed environment. Such a
confluence of P2P and distributed computing is a natural step
in the progression of grid computing, and has indeed been
described as inevitable [4], [?], [5].

Our preliminary work [6] has shown that we can effectively
match jobs to processing nodes with varying capabilities by
leveraging routing information from an underlying P2P sys-
tem, and by efficiently aggregating and disseminating resource
utilization information. However, as such a system scales

to large configurations and heavy workloads it becomes a
challenging problem to efficiently match jobs with different re-
source requirements to available heterogeneous computational
resources, to provide good load balancing, and to obtain high
system throughput and low job turnaround times.

In this paper, we quantify the trade-offs between performing
efficient matchmaking and maintaining good load balance,
comparing three different matchmaking algorithms for several
different types of workloads via simulation. This study is
intended to give insight into the design and implementation
of resource discovery algorithms in a distributed and hetero-
geneous Grid environment.

The rest of the paper is structured as follows. Section II
presents related work. Section III discusses our assumed
context and overall goals, while Section IV describes the
algorithms and optimization criteria for matching jobs to
resources. Finally, Section V contains our evaluation, and
Section VI concludes.

II. RELATED WORK

Peer-to-Peer research has shown that a robust, reliable
system for storing and retrieving files can be built upon
unreliable machines and networks. The algorithms for object
location and routing in P2P networks [7], [8], [9], [10]
are capable of scaling to very large number of peers and
simultaneous requests for service (calledDistributed Hash
Tables or DHTs). Building upon these basic services to provide
a system for making computational resources available on
demand can allow users to both provide resources when they
are not being otherwise used, and to obtain resources when
they are needed.

Research such as [?], [11] proposed a P2P architecture to
locate and allocate resources in Grid environment employing a
Time-To-Live (TTL) mechanism. TTL-based mechanisms are
relatively simple but effective ways to find a resource (that
meets the job constraints) in a widely distributed environment
without incurring too much overhead in the search. However,
such mechanisms may fail to find an appropriate resource to
run a given job on (that meets the job constraints), even though
such a resource exists somewhere in the network, because of
the TTL mechanism. Therefore, toalways find an appropriate
resource in the system (if it exists) without much overhead,
we must employ more effective algorithms, as described in
Section IV.



Studies on encoding static or dynamic information about
computational resources using a DHT hash function for
resource discovery have also been conducted [4], [12]. In
particular, the SWORD system [12] explored a variety of
architectures, including a centralized data center, P2P based re-
source discovery and hybrid architectures. However, therecan
be a load balancing problem for these encoding techniques,
since a small fraction of the nodes can contain a majority of
the resource information whenever there are many nodes that
have very similar (or identical) resource capabilities in the
system.

The CCOF (Cluster Computing on the Fly) project [13]
conducted a comprehensive study of generic searching meth-
ods in a highly dynamic P2P environment to locate idle
computer cycles throughout the Internet. More recent work
from the CCOF researchers, on a peer-based desktop grid sys-
tem called WaveGrid, constructed atimezone-aware overlay
network based on Content-Addressable Network (CAN) [7]
to use idle night-time cycles geographically distributed across
the globe [14]. However, the host availability model in that
work is not based on the resource requirements of the jobs
and that work does not consider balancing load across the
available system resources.

Awan et al. [15] proposed a distributed cycle sharing system
that utilizes a large number of participating nodes to achieve
robustness through redundancy on top of an unstructured P2P
network. By employing efficient uniform random sampling us-
ing random walks, probabilistic guarantees on the performance
of the system could be achieved. Also, they claim to support
robustness and scalability with high probabilistic guarantees.
However, as for the CCOF project, the job allocation model
in this work does not consider the constraints of the jobs nor
the varying resource capabilities of nodes in the system.

III. W ORKLOAD ASSUMPTIONS ANDOVERALL GOALS

A general-purpose system must accommodate heteroge-
neous clusters of nodes running heterogeneous batches of jobs.
The obvious implication is that a matchmaking process must
incorporate both node and job information into the process
that eventually maps a job onto a specific node.

Our expected environment and usage simultaneously makes
this problem easier and more difficult. A large fraction of
nodes in our system might belong to one of a small number
of equivalence classes. For example, many organizations buy
clusters of identical machines all at once, whether to create
compute farms or just to replace an entire department’s ma-
chines at once. Node clusters make the problem more difficult
by removing the notion of a single best match for a given
job. The underlying routing algorithm must be able to cope
with many similar nodes and perform some intelligent load
balancing across them. However, node clustering can also
simplify the problem by reducing the set of possible choices
for the routing algorithm.

Likewise, job mixtures might show clustering. Sets of
similar jobs (in terms of resource constraints) can result
from running the same code with slightly different input

datasets. For example, users often performparameter sweeps
to optimize algorithmic settings or explore the behavior of
physical systems. Similarly, the same computation may be
performed on different input regions, such as n-body or
weather calculations that differ only in spatial coordinates.

To summarize, the goals of any matchmaking (or in our
case, routing) algorithm must include the following:

1) low overhead - The routing must not add significant
overhead to the cost of executing a job. This can be
challenging, given that the routing/matching is done in
a completely decentralized fashion.

2) completeness - A valid assignment of a job to a node
must be found if such an assignment exists.

3) precision - Resources should not be wasted. All other
issues being equivalent, a job should not be assigned to
a node that is over-provisioned with respect to that job,
such that the over-provisioning does not give the job an
advantage.

4) load balance - Load (jobs) must be distributed across
the nodes capable of performing them.

There are additional issues that we do not discuss here. For
example, in some situations (e.g., conditions of low load),the
system might prefer to optimize throughput by executing jobs
on themost capable available node. This raises the question of
what we wish to optimize for: throughput or response time. We
are explicitly avoiding this issue by designing an infrastructure
that can accommodate either objective.

IV. A LGORITHMS

We begin by defining terminology and the basic framework
of our approach to matchmaking, and then describes the two
approaches that we evaluate in this paper: therendezvous node
tree, andCAN-based resource matching.

A. Terminology and Basic Framework

All of the work described here assumes an underlying
distributed hash table (DHT) infrastructure [7], [8], [9],[10].
DHTs use computationally secure hashes to map arbitrary
identifiers to random nodes in a system. This randomized
mapping allows DHTs to present a simple insertion and lookup
API that is highly robust, scalable, and efficient. We insertboth
nodes and jobs into a single DHT, performing matchmaking
by mapping a job to a node via the insertion process, and
then relying on that node to find candidates that are able and
willing to execute the job. By leveraging such an architecture,
we are effectively reformulating the problem of matchmaking
to one of routing, similarly to anycasting [16], or content-based
routing [17]. Jobs are injected into the system byforwarding
them to a node that will become responsible for them.

A job in our system is the data and associated profile
that describes a computation to be performed. A job profile
contains several characteristics about the job, such as the
client that submitted it, its minimum resource requirements,
the location of input data, etc. All jobs in our system are
independent, which implies that no communication is needed
between them. This is a typical scenario in a desktop grid



environment, enabling many independent users to submit their
jobs to a collection of node resources in the system.

Clients insert jobs into the system by submitting them to
any system node. Nodes receiving submitted jobs assign them
globally unique identifiers (GUIDs), and initiate the process
of assigning them toowners.

An owner is responsible for monitoring the execution of
the job and ensuring that its results are returned to the client.
The owner attempts to find an appropriaterun node through
a matchmaking mechanism. Matchmaking is the process of
matching jobs with physical resources, and consists of finding
an appropriate node for running a job based on the constraints
in the job profile and the current (distributed) state of the nodes
in the system. Once an appropriate run node is identified, the
new job is inserted into its incoming job queue where jobs are
executed in FIFO order.

Run nodes periodically sendheartbeat messages to the own-
ers of all jobs either running or queued locally. Heartbeatsare
communicated directly between run nodes and owner nodes,
rather than through DHT routing. This soft-state message plays
an important role in failure recovery during the processingof
jobs in our system, as job profiles are replicated on both the
owner and run nodes. If either the owner node or the run node
fails, the other will detect the failure and initiate a recovery
protocol so that the job can continue to make progress. If both
fail before the recovery protocol completes, the client must
resubmit the job. After a job completes, the run node returns
the results to the owner, which forwards them to the client.

B. The Rendezvous Node Tree

DHTs provide robustness, availability, and above all, scal-
ability. They also introduce randomness into the system by
mapping names to nodes through hash functions. This random-
ness helps balance routing load in DHTs, but we can also use
it to help balance computational load in our desktop grid. For
example, a crude form of load balancing can be accomplished
merely by randomly choosing a node assignment from all
viable candidates. The main drawbacks of this approach are
that it does not account for dynamic aspects, such as the load
at individual nodes in the system at any given time, nor does it
describe a way to make a match when a randomized hashing
matches a job with a node that is not capable of performing
it (“completeness”).

We begin with a description of therendezvous node tree
(RN-Tree or RNT), an approach to addressing both problems
through use of a distributed data structure built on top of an
underlying DHT, which in our implementation is Chord [9].
Specifically, the RN-Tree copes with dynamic load balance
issues by performing a limited random walk after the initial
mapping, and addresses completeness by passing information
describing the most capable reachable system up and down the
tree. This latter aspect allows even the hardest corner cases to
be satisfied inO(log N) additional steps.

An RN-Tree contains all participating nodes in the desktop
grid. Each node determines its parent node based on only local
information, which enables building the tree in a completely

decentralized manner (to find the parent node in the RN-Tree,
divide the GUID of the predecessor node of the child node
in the Chord ring by two and find thesuccessor node of that
GUID in the Chord ring - see [6] for more details). Since
the GUIDs of nodes in the system are generated uniformly
at random, the overall height of the RN-Tree is likely to be
O(log N) where N is the total number of live nodes in the
system (we investigated the characteristics of the RN-Treein
terms of overall height and node degree in [6]). Due to the
dynamics of the system (new nodes joining, existing nodes
departing), the correct parent pointer of a node can change
over time. Therefore each node must refresh/update its RN-
Tree parent node pointer periodically to maintain the RN-Tree
structure.

Once the parent-child relationship in the RN-Tree is de-
termined, each node periodically sends local subtree resource
information (for the subtree rooted by that node) to its parent
node, and this information isaggregated at each level of the
RN-Tree (hierarchical aggregation as in [18]).

In the work described in this paper, the only information
distributed through the tree is a description of the maximal
amount of each resource available at some node in the subtree.
The resources modeled include continuous variables, such as
the speed of the CPU, the amount of memory available, and
the amount of disk space available, and discrete variables such
as operating system type and version. The resources modeled
match the constraints (requirements) that can be specified in
job profiles.

We inject jobs into the system by mapping each to a
randomly-chosen node, which becomes the job’s owner. The
owner initiates a search for a node on which to run the job. The
search first proceeds through the subtree rooted at the owner,
only searching up the tree into subtrees rooted at the ancestors
of the owner if the subtree does not contain any satisfactory
candidates. The search is pruned using the maximal resource
information carried by the RN-Tree.

Rather than stopping at the first candidate capable of
executing a given job, the search proceeds until at leastk

capable nodes are found. The search completes by choosing
the least loaded of the k nodes to run the job. To determine
the least loaded node among the candidate run nodes, we
poll each candidate for thesize of its job queue (the current
set of unfinished jobs assigned to a node) at the time the
matchmaking is performed. Queue size is modeled as either
the number of jobs in the queue (which was used in the
experiments) or an estimate of the run time for all current
jobs in the queue. Through experiments not discussed here,
we have determined that a value of five (5) fork produces
robust results with low overheads. Further details about this
search procedure can be found in [6].

C. Content-Addressable Network

A content-addressable network (CAN) is a DHT that maps
GUIDs to points in ad-dimensional space [7]. The conven-
tional use of CAN is to map a GUID into the space by applying
d different hashes, one for each dimension. However, positions



in the CAN space need not be created through randomized
hashes. For example, Tang et al. [19] map documents and
queries into a CAN space, executing queries via a blind local
search centered on a query’s mapping.

Similarly, we can formulate our matchmaking problem as
a routing problem in a CAN space. By treating each resource
type as a distinct dimension, nodes and jobs can be mapped
into the CAN space by using their capabilities or constraints on
each resource type to determine their coordinates. As a simple
example, if our resource types consist of CPU speed, memory
size, and disk space, we might map a 3.6GHz workstation,
with 2GB of memory and 500GB of disk space, to the point
{360, 2000, 500}. A job requiring at least a 1GHz machine,
100MB of memory, and 200 MB of disk space would map to
{100, 100, 0.2}, clearly some distance from the node discussed
above. With this approach, mapping a job to a node might
seem to consist merely of mapping the job into the CAN space
and finding the nearest node.

However, the semantics of matching jobs to nodes are
different than that of merely finding the closest match node.
Most importantly, job constraints representminimum accept-
able quantities. Any node meeting a job’s constraints can run
the job, but a node whose coordinate in any dimension is
less than that specified by the job’s constraints, even if very
close in the CAN space, is not a viable choice to run the job.
Hence, instead of searching for the node whose capabilities
are closest to the job’s constraints, our matchmaking/routing
procedure must search forthe closest node whose coordinates
in all dimensions meet or exceed the job’s constraints.

A second issue is that jobs might not have constraints
in all dimensions. Indeed, a job may be injected into the
system with no constraints at all, implying that it may be
executed by any node in the system. We map any undefined
constraint to the minimum in the corresponding dimension.
This approach is simple and correct, but might exacerbate load
balance problems. We discuss this issue more in Section VI.

1) Details: A CAN works by dividing thed-dimensional
volume into zones managed by individual nodes. Zone assign-
ment is accomplished by mapping new nodes to an existing
zone, and then giving the new node part of that zone. Zones
are re-assigned and aggregated when existing nodes leave or
fail. These techniques can be used to divide the CAN among
distinct run nodes. However, mapping of jobs to those nodes
is less straightforward.

A job is inserted into the system by using its constraints
as coordinates, and defining the owner of the resulting zone
as the owner of the job. The owner creates a list of candidate
run nodes, and chooses the least loaded among them at the
time matchmaking is performed (as reported by the candidate
nodes), as for the RN-Tree algorithm. The candidate nodes
are drawn from the owners of neighboring zones, such that
each candidate is at least as capable as the original owner in
all dimensions (capabilities), but more capable in at leastone.
As with the RN-Tree mechanism, we used sensitivity analysis
to identify five (5) as a reasonably robust constant size for
this set. Owner nodes store information about neighbors, so

an owner may be able to create a candidate list locally, without
any communication.

2) Virtual Dimensions: The above procedure works in all
cases, but may cause extreme load imbalance when many
nodes have similar, or even identical, resource capabilities.
Since the coordinates of a node are defined by its resource
capabilities, identical nodes are mapped to the same place in
the CAN volume. The best way distribute ownership of a zone
across multiple such nodes is not immediately obvious.

Conversely, many jobs might have extremely similar con-
straints. For example, many jobs will probably be inserted into
the system with no constraints at all. In this case, all of the
these jobs will be mapped to a single node that owns the zone
containing the minimum point in the CAN volume.

We address this issue by supplementing the “real” dimen-
sions (those corresponding to node capabilities) with avirtual
dimension. Coordinates in the virtual dimension are generated
uniformly at random. Whenever a new node joins the system,
a representative point for the new node is generated by
combining the resource capabilities of the node and randomly
generated virtual dimension values. Therefore, even when
multiple identical nodes join the system, they are mapped
to distinct locations, and zone splitting is straightforward.
Similarly, when a new job is inserted into the system, the
new job’s coordinates become a combination of the job’s
constraints and a randomly assigned virtual coordinate. In
combination, the randomly assigned node and job coordinates
act to break up clusters and spread load more evenly over
nodes.

3) Changes to Underlying CAN: Our use of CAN differs
from the canonical uses in that coordinates have semantic
meaning. This difference requires several changes in how the
underlying network management algorithms work. The most
important changes are in the way zones are split and merged.

Zones are split when a new node enters the system. The
CAN maps the node to an existing zone, and then the zone
is split between the owner and the new node. The default
CAN split algorithm can choose to split the zone on any
axis, because the mapping of a zone to an owner has no
semantics, and the coordinates of a pair of points usually differ
on most, if not all, axes. In our CAN, however, nodes and
jobs may be identical in capabilities and constraints, differing
only in their coordinates in the virtual dimension (e.g. for
a cluster of homogeneous nodes, since we use the resource
capabilities as the representative point for each node in the
system). This restricts the choice of the dimension on which
to split. Therefore, our split mechanism first tries to find a split
axis among the real dimensions that have different coordinates
across the existing node and the new node. If that is not
possible, the virtual dimension is used as the split axis. To
build a better (i.e. closer to cubic) grid space when splitting
real dimensions, we iterate across the dimensions for each split
operation.

The second major change to the algorithms is in how zones
are merged. A zone is merged with a neighbor when it is
orphaned because of an owner leaving, either gracefully or by



failing. The default CAN recovery algorithms allow such an
orphaned zone to be merged with any neighboring zone. No
restriction is made on which nodes can own a zone. In fact,
a node can own multiple zones, which can result in highly
fragmented coordinate space. Therefore, to achieve a one-to-
one node to zone assignment, CAN runs a periodicbackground
zone reassignment algorithm. That algorithm can assign one
of the neighbor nodes of the departed node to another region,
without any restrictions on merging and reassigning the or-
phaned zone (see the details in [7]). However, in our system
this can cause a violation in our required semantics about
the relationship between a zone and the owner of that zone,
whereby a zone should contain the coordinates (i.e., resource
capabilities) of its owner.

Specifically, zone owners play two roles. First, they ensure
that jobs mapped to the zone are run. This is accomplished
by creating a set of candidate run nodes and polling them to
find the least loaded candidate run node. For this purpose, the
owner of a zone would not actually have to be mapped into
that zone, because a job’s owner is never a candidate to run
the job. However, owners also serve as candidate run nodes
for jobs mapped to neighboring zones. For example, assume a
job is mapped into a zonezi, and that zonezj is zi’s neighbor.
zi’s owner may then includezj ’s owner in the list of candidate
run nodes for any job mapped tozi. However, if zj ’s owner
is not actually mapped somewhere inzj , it might not have
the capabilitieszi’s owner expects, and might therefore not be
able to run the job. The zone merging procedure must therefore
preserve the constraint that a zone’s owner must be mapped
into the zone. Satisfying this constraint requires that zones be
merged in a way that is consistent with the original split order.
The zone merge algorithm accomplishes this by preserving the
original split order at the owner, and reversing that order to
select which node to merge a zone into.

D. Centralized Matchmaker

To compare against the RN-Tree and CAN-based match-
making algorithms, we have designed anonline scheduling
mechanism, called theCentralized Matchmaker, that maintains
global information about the current capabilities and load
information for all the nodes in the system, so can assign
a job to the node that both satisfies the job constraints and
has the minimum job queue size across all nodes in the
entire system (breaking ties arbitrarily). In our simulation
environment, the Centralized Matchmaker does not incur any
cost for gathering the global information about the nodes
in the system and performing the matchmaking (since the
simulator can maintain global information about all the nodes
in the system). Even though the matchmaking performed by
the Centralized Matchmaker is not always optimal (since it is
an online algorithm), it should provide good load balancing
and can be a good comparison model for other matchmaking
algorithms, as in [12], [13].

We can view the Centralized Matchmaker algorithm as the
extreme case of the RN-Tree or CAN based search algorithm,
since it first findsall candidate run nodes that meet the job

constraints and picks the one with the shortest job queue. How-
ever, such a scheme would not be feasible in a complete system
implementation with respect to performance and robustness,
since the algorithm would incur a large overhead to findall
nodes in the P2P system that meet the job constraints, and the
node performing the centralized algorithm would be a single
point of failure in the system.

V. PERFORMANCE

We present a preliminary evaluation of our ideas on decen-
tralized job assignment.

A. Experimental Setup

We use synthetic job and node mixes to simulate the
behavior and measure the performance of both the RN-Tree
and CAN-based approaches. Our intent is to model a P2P
desktop grid environment with a heterogeneous set of nodes
and jobs. We therefore generated a variety of workloads, each
describing a set of nodes and events. Events include node
joins, departures (graceful or otherwise), and job submissions.
The events are generated using a Poisson distribution with an
arrival rate of 1 / [Average Event Inter-Arrival Time (AEIAT)].
Jobs can specify constraints for three different resource types:
CPU speed, memory, and disk space. We generated node
profiles using a clustering model to emulate resources available
in a heterogeneous environment, where a high percentage of
nodes have relatively small values for their available resources
and a small fraction of nodes have larger amounts of available
resources (as in [14]).

Though we investigated many workloads, we have space
in this paper only for the most interesting results. The first
four workloads are relatively static; no nodes join or leave
during the course of the experiments. They differ on two axes.
Workloads are categorized as eitherclustered or mixed. The
former divides all nodes and jobs into a small number of
equivalence classes, where all items in a given equivalence
class are identical. The latter assigns node capabilities and
job constraints randomly. Workloads are also distinguished
by whether the jobs have “light” or “heavy” constraints. For
a given job, each type of resource has a fixed independent
probability of being constrained: “light” jobs have an average
of 1.2 constraints (out of the 3) and “heavy” jobs have an
average of 2.4. More detail on the workload generation can
be found in Kim et al. [6].

Our metrics arematchmaking cost (the number of messages
required for finding candidate run nodes by the owner node
of a job), wait time (the amount of time between when a job
is injected and when it actually starts running), andaverage
queue length, which is the length of the non-preemptive run
queue seen by a job when it is finally assigned to a run
node. Matchmaking cost directly quantifies the messaging cost
needed to perform the matchmaking in a decentralized manner.
Wait time includes the time to perform the matchmaking
algorithmand the time spent waiting in the run queue before a
job is performed. Wait time reflects both protocol overhead and
the quality of the matchmaking results, i.e., load imbalance.
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Fig. 1. Clustered Workloads
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Fig. 2. Mixed Workloads

Finally, the distribution of queue lengths provides a direct
measurement of the load balance seen by injected jobs.

We test the RN-Tree approach (RNT), the CAN approach
(CAN), and the idealized centralized approach (Centralized)
that uses up-to-date global information to choose the node
with shortest queue length from all nodes in the system. We do
not include “matchmaking cost” numbers for the centralized
approach because it requires no messages.

Overall, we found that, as expected, the rendezvous ap-
proach is better suited for less demanding situations with more
structure. The CAN approach is generally better suited to
handle more complex situations. However, we did encounter
a few surprises.

B. Performance

Figure 1 shows “matchmaking cost” (in messages), “wait
time”, and “queue length” for the clustered workloads, while
Figure 2 shows the corresponding data for the mixed work-
loads. Taking the clustered workloads first, the RN-Tree has
lower matchmaking costs, but CAN has lower wait times
and smaller queue lengths. The difference in queue lengths
explains the difference in wait times, and comes about because
the virtual dimension allows nodes of a cluster to be spread
in the CAN space.

The mixed workloads give us a slightly different story. The
matchmaking costs (number of messages) and the wait time on
the “heavy” constraint workload still favor CAN, but CAN’s
performance on the “light” constraint mixed workload is much
worse than that of RNT. Figure 2(c) shows that queue lengths
are much larger and more varied in CAN than RNT, implying
load imbalance.

This latter finding was somewhat of a surprise: CAN per-
forms poorly with the “light” mixed workload. To understand
why the resulting load imbalance is worse than in the clustered
case, consider a hypothetical CAN with only a single real
dimension, CPU speed, and where each node has a CPU value
of “3600”, and each job has a constraint of “2000”. Nodes
and jobs end up distributed along two parallel lines in the 2-D
CAN because of their randomly assigned virtual coordinates.
As a result, the “closest” node can be different for each job.
This is an approximation of the clustered case, and explains
why CAN’s load balance is good.

However, the analogue for the “light” mixed workload in
this example would be slightly different. Since the workload
is “light”, most jobs would not have CPU constraints, causing
their CPU speed coordinates to be the minimum value in
that dimension, say, “1000”. Hence, the jobs are still mostly



distributed (via the virtual dimension) along a line at a single
CPU coordinate, much like the case above. However, the fact
that this is the mixed workload implies that most nodes have
distinct CPU speeds. The node with the lowest CPU speed
ends up being closest to the line representing the jobs, and
will become the owner of a disproportionate number of them,
resulting in load imbalance.

Due to these characteristics of space partitioning for the
CAN approach, the matchmaking performance of CAN shows
different behavior for the clustered and mixed workloads.
In particular, for clustered workloads the matchmaking cost
for CAN is higher than that for RN-Tree. In the clustered
workloads, many nodes have identical resource capabilities
so that overall the CAN space will be split along the virtual
dimensions. This results incoarse-grained ranges in the real
dimensions, where each node maintains much larger zones
compared to its own resource capabilities. Therefore, the
matchmaking process in CAN becomes expensive for jobs
that have a small number of very high resource requirements.
However, for jobs that have more constraints, the overall
matchmaking performance is better since jobs with many
constraints are more likely mapped to the right region in
the space where many candidate run nodes are available. On
the other hand, for the mixed workloads, since there are not
too many identical nodes in the system, the CAN space is
partitioned along the real dimensions so that CAN clearly
outperforms RNT in terms of matchmaking cost.

Figure 3 shows average wait times for three “light” mixed
workloads where between 10% and 30% of the nodes leave
during the course of simulation. Node departures are evenly
split between graceful departures, where a node informs its
neighbors before leaving, and failures, where the neighbors
learn of the departure from the failure of heartbeat messages.
Like the “light” mixed workloads discussed above, the CAN
approach has problems balancing load. Both approaches per-
form poorly relative to the centralized approach because ofthe
need to recover and reconfigure the network. This disparity
grows with increasing departure rates. CAN’s performance
appears to be more affected than RNT’s by the increasing
departure rates. We speculate that the culprit is the much more
complex recovery process, which involves zone reclamation
and re-aggregation.

VI. CONCLUSIONS

In this paper we have described two approaches to using P2P
protocols in providing job scheduling and resource matching
facilities to desktop grids. Overall, the CAN algorithm ap-
pears to produce significantly lower wait times than the RN-
Tree approach over a broader spectrum of input. However,
the RN-Tree and CAN approaches have different underlying
rationales. The idea motivating the RN-Tree approach is to
balance load by randomizing job assignment, mitigating the
cost of matching demanding jobs by passing static capacity in-
formation around the tree. Job assignment essentially consists
of a randomized mapping, followed by a short random walk to
find a lightly-loaded node. The idea behind the CAN approach
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is to first find a node whose capabilities approximately match
the job’s constraints, followed by a short random walk among
similar nodes to find one that is lightly loaded.

Our original expectation was that the overhead of the sim-
pler RN-Tree protocol would be significantly less than that of
CAN, but produce worse assignments. However, the RN-Tree’s
advantage in protocol cost turned out to be less than expected.
Even relatively serious concerns, such as the cost of CAN’s
failure recovery process, can probably be addressed through
techniques such as virtualization of the entired-dimensional
volume. Further, in all cases, protocol cost turned out to be
less significant than wait times caused by load imbalance.

Both RN-Tree and the CAN approach can cause poor load
balance in at least two ways. First, the random walks may
not be long enough to find existing lightly-loaded nodes. This
occurs because neither search is guided by dynamic load
information. However, it may be less serious for the CAN
approach because each CAN node stores a limited amount of
load information for neighbor nodes.

A second potential cause of load imbalance is poor matches
between jobs and nodes (i.e, poorprecision). RN-Tree might
be thought of as a “first-fit” algorithm; it selects as the run
node the most lightly loaded of a set of randomly chosen
nodes, such that each node meets the minimum job con-
straints. However, the chosen run node might be greatly over-
provisioned for the job, and this over-provisioning might not
be useful. For example, over-provisioning in terms of CPU
rate may be useful because it can speed the execution of
a given job, but an extra GByte of memory might not help
execution time, and therefore not be useful. Meanwhile, other
jobs needing the extra memory might be needlessly queued. By
contrast, CAN is more of a “best-fit” algorithm (more precise)
because the search starts at the node most closely matching
the job’s constraints.

The result is that the CAN approach is both more flexible
and more efficient for the general case where the workload has
a great deal of diversity. However, CAN’s poor performance
with the “light” mixed workload is an indicative of a broader
problem in the robustness of the load balancing. While the



virtual dimension helps to smooth clumpy job and node
distributions, thereby enabling better matchmaking, it isnot
sufficient in cases such as those described above.

One approach to improving load balance in these cases
might be to add random increments to all dimensions, effec-
tively “virtualizing” each of the real dimensions to a limited
extent. Random increments would help spread out both jobs
and nodes when the workload contains significant structure,or
clustering. The difficulty lies in determining the proper amount
of randomness to add to the system. Too little and load balance
is fragile; too much and matchmaking becomes less precise,
also adding load imbalance. The best approach is probably one
that adapts dynamically both to the workload, and to current
queue length distributions. However, both of these properties
are global, and our approach is to make all decisions locally,
in as decentralized a fashion as possible. The reconciliation of
these competing concerns into a single protocol is the main
focus of our ongoing research.

Finally, we plan to build and deploy a prototype system
to look at real-world issues arising from heterogeneous en-
vironments running real applications. With help from our
application-area collaborators in physics and astronomy,we
will measure and report on the behavior of our system for
real workloads on real systems.
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