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Abstract—This paper presents the design, implementation, and evaluation of the replication framework of Deno, a decentralized,

peer-to-peer object-replication system targeted for weakly connected environments. Deno uses weighted voting for availability and

pair-wise, epidemic information flow for flexibility. This combination allows the protocols to operate with less than full connectivity, to

easily adapt to changes in group membership, and to make few assumptions about the underlying network topology. We present two

versions of Deno’s protocol that differ in the consistency levels they support. We also propose security extensions to handle a class of

malicious actions that involve misrepresentation of protocol information. Deno has been implemented and runs on top of Linux and

Win32 platforms. We use the Deno prototype to characterize the performance of the Deno protocols and extensions. Our study reveals

several interesting results that provide fundamental insight into the benefits of decentralization and the mechanics of epidemic

protocols.
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1 INTRODUCTION

THIS paper describes the design, implementation, and
performance of Deno [10], [13], [14], [25], a system that

support object replication in a transactional framework for
weakly connected environments. Deno’s system model is
illustrated in Fig. 1. One or more clients connect to each peer
server, which communicates through pair-wise information
exchanges. The servers are not necessarily ever fully
connected. Deno’s application domain include asynchro-
nous groupware applications (e.g., Lotus Notes [24]),
traditional file and database systems, and distributed
middleware systems that require asynchronous consensus
support.

Deno’s underlying protocols are based on an asynchro-

nous protocol called bounded weighted voting [25]. Asyn-

chronous solutions for managing replicated data [7], [21],

[24], [26] have a number of advantages over traditional

synchronous replication protocols in large-scale and weakly

connected environments. They can operate with less than

full connectivity, easily adapt to frequent changes in group

membership, and make few demands on the underlying

network topology. However, this functionality comes at a

price: Asynchronous solutions are generally either slow or

require reconciliation or have low availability because they
rely on primary-copy schemes [33].

The protocols retain the advantages of current asynchro-
nous protocols, but generally perform better, have fewer
connectivity requirements, and achieve higher availability.
No server ever needs to have complete knowledge of group
membership and a given server only needs to be in
intermittent contact with at least one other server to take
full part in the voting and commitment process. As such,
the protocol is highly suited for environments with weak
connectivity.

The protocol’s strengths result from a combination of
weighted voting and epidemic information flow [17], a
process where information flows pair-wise through the
system (much like a disease passing from one host to the
next). The protocol is completely decentralized. There is no
primary server that owns an item or serializes the updates to
that item (as in Bayou [34]). Any server can create new
object replicas and servers need only be able to commu-
nicate with a minimum of one other server at a time in order
to make progress. Instead of synchronously assembling
quorums, which has been extensively addressed by pre-
vious work (e.g., [20], [23], [35]), votes are cast and
disseminated among servers asynchronously through pair-
wise propagation. Servers commit or abort transactions
locally and all servers eventually reach the same decisions.

The use of voting allows the system to have higher
availability than primary-copy protocols [1], [4], [20], [30],
[35]. The use of weighted voting allows implementations to
improve performance by adapting currency (a.k.a. weight)
distributions to site availabilities, update activity, or other
relevant characteristics [9]. Each server has a specific
amount of currency and the total currency in the system
is fixed at a known value. The advantage of a static total is
that servers can determine when a plurality or majority of
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the votes has been accumulated without complete knowledge of
group membership. This last attribute is key in dynamic,
wide-area environments because it allows the protocol to
operate in a completely decentralized fashion, eliminating
performance bottlenecks and single points of failure.

The use of epidemic protocols divorces protocol require-
ments from communication requirements. First, an epi-
demic algorithm only requires protocol information to
move throughout the system eventually. The lack of hard
deadlines and connectivity requirements is ideally suited to
weakly connected environments, where individual nodes
are routinely disconnected. Second, epidemic protocols
remove reliance on network topology. Synchronization
partners in epidemic protocols can be chosen randomly,
eliminating the single point of failures that occur with more
structured communication patterns such as spanning trees.

The key contributions of this paper can be summarized as
follows: First, we present decentralized, peer-to-peer replica-
tion protocols that combine weighted voting and asynchro-
nous, epidemic information flow. This combination enables
ourprotocols tooperatewith less than full connectivity, easily
adapt to changes in group membership, and make few
assumptions about the underlying network topology. We
describe in detail the consistency levels provided by the
protocols and outline formal correctness proofs.

Second, we discuss an extension of our replication
protocols to provide security against a specific class of
internal security threats that involve misrepresentation of

protocol-specific voting information. To handle such
threats, we propose a vote validation technique that
requires cryptographic primitives and modifications to the
update commit criteria. A unique aspect of our solution is
that it not only enables a trade off between performance and
the degree of tolerance to malicious servers, but also allows
for individual servers to support nonuniform degrees of
tolerance without adversely affecting the performance of
the rest of the system.

Third, we present the design of the Deno prototype
system that implements the proposed protocols. The basic
Deno architecture has been implemented and runs on top of
Linux and Win32 platforms. We conduct a detailed
performance study of our protocols and other comparable
epidemic protocols that appeared in the literature using the
Deno prototype. Our study provides fundamental insight
into the benefits of decentralization and mechanics of
epidemic protocols. One particularly interesting result of
our evaluation is that the presumed performance advantage
of the centralized approach over a decentralized voting
approach is not significant with asynchronous, epidemic
information flow.

The rest of this paper is structured as follows: Section 2
describes the basic Deno system model and the decentra-
lized replication protocols employed by Deno in detail.
Section 3 briefly addresses security issues and describes a
security extension based on vote validation. Section 4
summarizes other Deno features that promote weakly-
connected operation. Section 5 presents our prototype-
based performance study that characterizes the perfor-
mance of the replication protocols and their extensions as
well as other competitive epidemic protocols. Section 6
briefly describes related work and Section 7 summarizes
and concludes the paper. Finally, the Appendix provides
correctness proofs for the proposed Deno protocols as well
as pseudocode for basic Deno operations.

2 DECENTRALIZED REPLICATION PROTOCOLS

Before delving into the fine detail, we give a quick overview
of the life of a Deno transaction (Fig. 2 depicts the entire
process in more detail). A transaction is submitted by a
client to any server, which executes the transaction locally.
Upon completion of the execution, the transaction either
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blocks (if the local server has seen a conflicting transaction)
or becomes a candidate and participates in the election.
Candidates are voted on and are eventually either com-
mitted (when/if they corner a plurality of the total system
currency) or aborted.

2.1 Deno System Architecture

We now briefly describe the architecture of the Deno object
replication system. The basic Deno API supports operations
for creating objects, creating and deleting object replicas,
and performing reads and writes on the shared objects in a
transactional framework.

Fig. 3 illustrates the Deno server architecture. The Server
Manager is in charge of coordinating the activities of the
various components and handling client requests by
implementing the Deno API. The Consistency Controller
implements the decentralized voting protocols and main-
tains a vote pool that summarizes the votes known to the
server. The Synch Controller implements efficient synchro-
nization sessions with other Deno servers by maintaining
version vectors that compactly summarize the events of
interests. The Trans Manager handles the local execution of
transactions. It maintains a transaction pool that contains all
active transactions known to the server. The Storage
Manager provides access to the object store that stores the
current committed versions of all locally replicated objects.
The object store is currently implemented as a simple in-
memory database. The current prototype runs on top of
Linux and Win32 platforms. Communication is made over
IP using UDP or TCP.

2.2 Providing Weak Consistency: Base Protocol

We now describe the basic Deno protocol, describing in
detail the primary data structures, the transaction and the
synchronization models, and the processing rules. Appen-
dix B provides a detailed pseudocode that describes the
implementation of these models and rules in detail.

2.2.1 Transaction Model

A transaction consists of a sequence of read and write
operations on replicated data items. A transaction reads a set
of read items and updates a subset of the read items called
update items. Database states are tracked by associating a
version number with each database item. The items in the

local copy of the database are modified and their version
numbers incremented only when update transactions
commit.

We distinguish between queries (i.e., read-only transac-
tions) and update transactions. Both types of transactions
execute entirely locally. However, queries are light weight
in that a query can commit immediately after it successfully
finishes its execution. Update transactions, on the other
hand, must participate in a distributed commitment process
after finishing execution.

Each server maintains an active transaction list that
contains active transactions, i.e., transactions that are being
executed. While a transaction is executing, it constructs a
transaction record that summarizes the transaction’s execu-
tion state. When an active update transaction successfully
completes its execution, it takes one of the following two
paths: 1) The transaction can either become a candidate
transaction at its local server and participate in a distributed
voting process that determines whether it commits or aborts
or 2) the transaction blocks and waits for the termination of
other previous transactions before becoming a candidate.
The blocked transactions are later reconsidered for becom-
ing candidates.

2.2.2 Voting

We define Vi as the set of all votes seen by server si. A vote,
v 2 Vi, is a 4-tuple (voter, trans, curr, tstamp) where v.voter
denotes the server that casts the vote, v.trans denotes the
transaction the vote is cast for, v.curr denotes the amount of
currency v.voter voted for v.trans, and v.tstamp is the value
of v.voter’s local timestamp that is incremented each time
the server casts a vote.

Two transactions are said to conflict if 1) their common
read items have the same version numbers and 2) at least
one of the transaction’s read items overlaps with the other’s
update items.

A server, si, votes for a transaction by creating a vote, v,
assigning a currency value to v, and inserting it into Vi. The
currency value for a vote can be set in two distinct ways
based on the state of the vote set. Server si votes all of its
currency for transaction ti if si has not already voted for a
conflicting candidate transaction. Such a vote is called a yes
vote and is an indication of the support of the server for the
corresponding transaction. Otherwise, si votes with 0 cur-
rency, in which case the vote is called a no vote. In the rest of
the paper, when we speak about a vote without indicating
its type, we imply a yes vote by default.

We now describe the voting process from the perspective
of a single server. Each server si maintains the following
major data structures:

. a set of votes, Vi,

. a list of candidate transactions, Ci, consisting of those
update transactions that are known to si, have
finished execution either locally or remotely, but
have yet to be either committed or aborted at si,

. a list of blocked transactions, Bi, consisting of locally
completed transactionswaiting tobecomecandidates,

. a commit log containing an ordered list of com-
mitted transaction records.

A server may create a vote for a candidate or locally
completed transaction that does not conflict with any other
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candidate transaction for which the server has also voted. If
the server votes for a blocked transaction, the transaction
becomes a candidate transaction and is moved from the
blocked list to the candidate list. Once created, votes may
not be retracted. As explained below, a transaction t commits

at si when it is guaranteed that no conflicting transaction can

obtain more votes. Transactions can be committed even
without knowledge of complete group membership because
the total amount of currency in the system is always 1. The
protocol guarantees that all servers eventually reach the
same commit decisions.

Voting rule. Server si considers voting for a transaction in
the following three cases:

1. When si learns about a new candidate transaction t
after synchronizing with another server—si votes yes
for t if si has not already voted for a conflicting
transaction; otherwise, si votes no.

2. When si commits or aborts a candidate transaction—si
considers all transactions t in the blocked list (i.e.,
all transactions waiting to become candidates) in
insertion order. For any such transaction that
does not conflict with an existing candidate
transaction, si votes yes.

3. When si completes the execution of a local transaction t
—if there is no candidate transaction that
conflicts with t, si votes yes for t and inserts t
into Ci. Otherwise, si blocks t and inserts t into Bi.

There are two important implications of the cases stated
above. First, there cannot exist yes votes from the same
server for conflicting transactions. Second, locally com-
pleted transactions are blocked until the termination of
conflicting candidate transactions.

2.2.3 Update Commitment

Given a server si and its vote set Vi, we compute the sum of
votes cast for a transaction t as:

jvotesðtÞj ¼
X

v2Vi^v:trans¼t

v:curr:

We then compute the unknown votes of t as:

unknownðtÞ ¼ 1:0�
X

v2Vi^v:trans¼t^v:voter¼s

s:curr;

where s:curr is the currency held by s. In other words,
unknownðtÞ is the sum of the currencies of those servers
whose votes for transaction t are not yet available.

We now define the commit rule that si uses to decide
which candidate transactions to terminate (i.e., commit or
abort) on the basis of local information. The fundamental
idea is to commit a transaction when it is guaranteed that no
other conflicting transaction can gather more votes.

Commit rule. A transaction t 2 Ci commits when, 8t0 2 Ci

such that t0 and t conflict:

1. jvotesðtÞj > jvotesðt0Þj þ unknownðtÞ or
2. jvotesðtÞj ¼ ð jvotesðt0Þj þ unknownðtÞÞ and

t:server < t0:server,

where t.server is the identifier of the server that executed t.

The commit rule states that candidate transaction t can

commit if it gathers the plurality of votes. The two

conditions stated above enforce mutual exclusion by

ensuring that no other conflicting transaction, which may

or may not be known to si, can gather more votes than t.

Note that the latter condition breaks the ties between

transactions having the same amount of votes using a

simple deterministic comparison between the indices of the

servers that created the transactions.
When a candidate transaction t commits at si, si

incorporates the effects of t into its database by installing

the new values of the update items of t (available from t’s

transaction record) and incrementing the version numbers

of the local copies of those items. Finally, the transaction

record of t is appended to the commit log. Note that servers

must eventually garbage-collect their commit logs as,

otherwise, these logs will grow indefinitely.

Abort rule. All active and candidate transactions whose

read items are modified are said to become obsolete and

are aborted. Additionally, the commitment of a transac-

tion causes all votes cast for an obsolete transaction to be

discarded.

2.2.4 Synchronization

A pair-wise synchronization session involves the propa-

gation of 1) committed updates, 2) candidate transactions,

and 3) votes that are known to one server and unknown

to the other.
In Deno, synchronization is controlled via version

vectors [28]. Each server si maintains an n-element vector,

vvi, where n is the number of servers which describes the

number of events of each other server seen by si. Element

vvi½j� is a scalar count of the number of j’s events that have

been seen at si. There are three types of events of interest:

transaction commits, transaction promotions, and votes. A

commit event is created whenever the local server commits

a transaction. A promotion event is created whenever a

transaction becomes a candidate on the server where it

executed. A vote event is created whenever a vote is cast.
In more detail, server si maintains a serial order, called

local ordering, on all local commits, promotions, and votes

for all servers. We denote the pth such event (created by sj)

as epj . As information about events is always propagated in

local order, if si’s version vector is vvi, si has seen all events

e1j . . . e
vvi½j�
j , for all j ¼ 1 . . .n.

Synchronization is then straightforward. We here

assume unidirectional pull synchronization, although other

modes are possible [17], [25]. When si pulls information

from sj, the following actions take place:

1. Server si sends vvi to sj.
2. Server sj responds with all events elk s.t. l > vvi½k�

and l � vvj½k�, for all k ¼ 1 . . .n.
3. Server si incorporates the new events in the same

order in which they originally occurred by proces-
sing new commitments, candidates, and votes;
applying the voting rule, the commit rule, and the
abort rule for all relevant transactions; and updating
vvi to the pair-wise maximum of vvi and vvj.
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Deno’s protocol divorces correctness requirements from the

communication requirements: Any server can be chosen as

a synchronization partner without affecting the correctness

of the protocol. It is, however, clear that this choice can have

significant performance affects and it is worthwhile to

perform more intelligent, directed synchronization at the

expense of storing and propagating extra information about

the currencies held by the servers [9]. The investigation of

this issue is beyond the scope of this paper and we assume

that synchronization partners are chosen randomly in the

rest of the paper.

2.2.5 Consistency and Correctness Issues

We now discuss the consistency level provided by the base

voting protocol. See the Appendix for the correctness proofs

of the theorems (and relevant lemmas) presented in this

section.
We first formally define the consistency level supported

by the base Deno algorithm:

Definition 1 (Weak consistency). A query sees weak

consistency if it serializes with respect to all update

transactions, but possibly not with other queries [5], [6], [19].

In weak consistency, each query observes a serial order

of update transactions, which is not necessarily the same

order observed by other queries. However, weak consis-

tency does ensure that queries always observe transaction-

ally consistent database states. In other words, a query does

not see partial effects of any update transaction. Weak

consistency prohibits both update transaction cycles (i.e.,

cycles involving only update transactions) and single-query

cycles (i.e., cycles involving a single query and one or more

update transactions).
We can now state the theorem that defines the consis-

tency level provided by our protocol:

Theorem 1 (Weak consistency). The base Deno protocol

provides weak consistency (see the Appendix for a proof

sketch).

2.3 Illustration

We illustrate the basic Deno protocol in Fig. 4 with an

example scenario. The system has four servers, each

holding a currency of 0.25. Server sa creates a new update,

t1, votes (yes) for it, and sends a message describing t1 and

its vote to sb via a synchronization session. Server sb votes

for t1 and then later transfers notice of t1 and both votes to

sc. After adding its own vote, sc can commit t1 because it

has gathered a plurality. Later synchronization sessions

move the votes back to sb and sa, which also reach the same

commit decision.
Meanwhile, sd has created a conflicting update t4.

Eventually, sd learns of t1 (and the corresponding votes

for t1 from sa, sb, sc). It then commits t1 (since

jvotesðt1Þj ¼ 0:75) and aborts t4 (since t4 has become

obsolete by the commitment of t1).

2.4 Providing Strong Consistency: Extended
Protocol

2.4.1 Supporting Strong Consistency

The base protocol ensures that queries always access
transactionally consistent data and that update transactions
are globally serialized with respect to each other. However,
the base protocol does not serialize update transactions
with respect to all queries. We now describe an extension of
the base protocol that provides strong consistency [5], [6],
[19], which we define as follows:

Definition 2 (Strong consistency). A query sees strong
consistency if it is serialized with respect to both queries and
update transactions. Strong consistency is characterized by an
acyclic serialization graph, prohibiting both update transaction
cycles and multiquery cycles (i.e., cycles involving multiple
queries and one or more update transactions). This form of
consistency guarantees globally-serializable executions [5], [6],
[19].

The base protocol fails to provide strong consistency
because nonconflicting update transactions are not neces-
sarily globally serialized with respect to each other. We
address this problem by forcing all update transactions to
commit in the same order at all servers by providing mutual
exclusion among all transactions, rather than just among
conflicting transactions as the base protocol does. We
accomplish this by modifying the voting process such that
each server votes yes for all candidate transactions (whether
or not they conflict), but specifies a total order on all of its
votes (using timestamps). The commit process is then
restricted so that only the top transactions, which are the
candidate transactions that come first in any server’s
ordering, are considered for commitment.

More specifically, the protocol works as follows: Instead
of choosing among conflicting transactions, a server votes
yes for all candidate transactions as soon as they are
received. The result is that Vi contains a yes vote by si for
each candidate transaction, differing only in the votes’
timestamps. The timestamps impose a total ordering on all
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votes created by si. A transaction may be committed if it

gains a plurality of the top votes, where a top vote is the

earliest vote in the vote set from a specific server.
There are at least two other approaches to provide strong

consistency. One approach is to include queries in the

global voting process, which is clearly not desirable in our

target environments. A second approach is to commit an

update transaction after it is certified by all servers (similar

to Agrawal et al.’s protocol [3]). This latter approach

requires contacting all servers in the system, which may

be a serious restriction during times of low availability.

2.4.2 Update Commitment

Formally, we refer to a vote v 2 Vi as a top vote at si if

v:tstamp < v
0
:tstamp, 8v0 2 Vi ; v:voter ¼ v0:voter. We then

refer to a candidate transaction t 2 Ci as a top transaction at

si if 9v 2 Vi; v:trans ¼ t and v is a top vote at si. We then

compute the votes of a top transaction t as:

jvotesðtÞj ¼
X

v2Vi^v:trans¼t

v:curr:

In this case, there is a single unknown value that is the same

for all transactions (as opposed to different individual

unknown values as describes in Section 2.2.3):

unknown ¼ 1:0�
X

t2Ci^t is a top transaction

votesðtÞ:

The updated commit rule can then be stated as follows: A

top transaction t 2 Ci commits when, 8t0 2 Ci such that t0 is

also a top transaction:

1. jvotesðtÞj > jvotesðt0Þj þ unknownðtÞ or
2. jvotesðtÞj ¼ ð jvotesðt0Þj þ unknownðtÞÞ a n d

t:id < t0:id,

where t.id is the identifier of the server that created t.

2.4.3 Correctness

The following lemma establishes the unique global commit

order of all updates (refer to the Appendix for correctness

proof sketches of the following theorem).

Theorem 2 (Strong consistency). The extended Deno protocol

provides strong consistency and serializability.

3 SECURE UPDATE COMMITMENT

In this section, we discuss how we deal with a specific class

of internal threats that result from authenticated but

malicious servers (see [11] for a description of how to

provide security against external threats). Such malicious

insiders misrepresent protocol-specific information and can

cause potentially corrupt objects to propagate throughout

the system. Under certain circumstances, even a single

malicious insider with an arbitrarily small amount of

currency can cause different transactions to be committed

at different servers. We first discuss the set of malicious

actions a server can undertake and then discuss our

approach to handling them.

3.1 Malicious Actions

Before we classify the actions a malicious intruder can take,
we note that malicious servers can always commit arbitrary
transactions to their local databases. Malicious servers can
also remain within the protocol framework and issue
updates that, if committed, obscure or undo the effects of
other updates. This type of behavior can only be handled in
an application-specific manner and is beyond the scope of
this work. Under certain circumstances, even a single
malicious server can accomplish a denial-of-service attack
by refusing to vote its currency. This attack is handled by
the Deno’s standard currency revocation mechanism [9] that
is used to recover from benignly failed servers. This
mechanism requires at least a majority of the currency to
be held by nonmalicious nodes, thereby providing liveness
assuming at most n=2b c � 1 malicious nodes exist (under
uniform currency distribution).

Malicious insiders, therefore, can only corrupt the view of
other servers by propagating valid but incorrect protocol
information. This potentially causes different servers to
commit updates inconsistently across the system, which in
turn violates any global correctness guarantees and leads to a
divergence among the databases at different servers. In our
replication framework, a malicious server can incorrectly
report currency values or votes, which we discuss below.

Currency misrepresentation. The problem here is of a
server misrepresenting the amount of currency it has. Due to
the decentralized nature of the system and the fact that Deno
allows peer-to-peer currency exchanges [9], the currency a server
holds cannot be directly verified by other servers. We make
this operation secure by requiring each currency exchange to
be formalizedas anupdate.A currency transfer from si to sj is
only considered complete when the corresponding exchange
update is committed. Note that such exchange updates are
commutative with respect to all other updates.

Vote misrepresentation. There are two types of vote
misrepresentation:

. Misrepresenting nonlocal votes: A malicious server sm
misrepresents or forges some other server sa’s vote
to a third server sb. This can happen, for instance,
when sa and sb are connected through sm, sa reports
its vote to sm, and sm forges this vote and reports a
different vote for sa to sb. This type of malicious
behavior is prevented by requiring each server to
sign its votes using a suitable digital signature
technique. The worst a malicious server can do then
is to never report sa’s vote to sb. Since our peer
model does not impose any specific connectivity
requirements, this behavior can only delay the
commitment of transactions, but cannot affect
correctness.

. Misrepresenting local votes: The second vote misre-
presentation is more difficult to guard against and
can quite easily be used to violate all correctness
guarantees. In this case, a server possibly signs and
illegally votes its own currency more than once for
multiple transactions.Consider the example shown
in Fig. 5. Assume that server sm is malicious. If sm
tells sa that it votes for x and sb that it votes for y,
then both destinations reach the conclusion that their
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candidates have more than 50 percent of the vote
and can be committed. Furthermore, securely signed
votes do not help in this case since sm can properly
sign its own vote for any transaction.

3.2 Vote Validation

We now investigate approaches for detecting malicious
servers and develop an algorithm that guarantees correct-
ness at nonmalicious servers. We revise our decentralized
update commitment algorithm such that 1) it guarantees
correctness even when there are (multiple)malicious servers, 2) it
allows progress even when not all votes have been reported, and
3) it provides safety at a node if the node supports a sufficient
degree of tolerance (at the expense of potential performance
degradation). The central idea is to make commit decisions
based on votes that are guaranteed to belong to nonmali-
cious servers.

We first distinguish between validated and unvalidated
votes: The former are known to be correct (i.e., nonmali-
cious) and the latter may or may not be correct. Our
approach hinges on the observation that “up to � malicious
servers can be kept from corrupting the decentralized commitment
process if the � largest unvalidated votes are not used in any
commit decision,” where � is called the degree of tolerance to
malicious servers (� ¼ 0 . . .n� 1).

Consider the following example: If there is a single
malicious server, then any single vote may be a duplicate.
The server can commit the transaction if the transaction can
obtain plurality without counting the largest unvalidated vote
for that transaction. This observation follows because
1) validated votes cannot be duplicates by definition and
2) of all the unvalidated votes, at worst the largest
unvalidated vote may be a duplicate.

In general, votesðtiÞ consists of validated votes, validðtiÞ,
and unvalidated votes, unvalidðtiÞ. Note that we consider
votes cast by the local (nonmalicious) server to be validated
votes. We denote the currency of any vote v in votesðtiÞ by
jvj. Similarly, we denote the total currency for a set V of

votes by jV j. For example, jvotesðtiÞj denotes the sum of the
currencies of all votes cast for ti 2 C, where C is the set of
candidate transactions. Finally, let unvalidð�; CÞ be the set of
� elements with the largest currency in unvalidðCÞ. If we
consider all votes in the base Deno system to be validated,
then the base commit criterion for ti can be stated as in the
top row of Table 1, where unknown is defined as
1� jvotesðCÞj.

In order to provide resilience against malicious servers,
the nonsecure commit criterion is modified as in the second
row of Table 1. The lefthand side of the inequality provides
a lower bound on the amount of currency that ti is
guaranteed to have by not using the � largest unvalidated
votes cast for ti. The righthand side of the inequality
provides an upperbound on the amount of currency tj can
possibly get. Thus, the amount of currency required to
commit ti must be larger than the total currency for any
other transaction tj, even if the largest � unvalidated votes
for ti are in fact cast by malicious servers and are thus not
valid. If the server knows of no other transactions tj, but it
has not yet seen votes from all other servers, then it simply
assumes all unknown votes are cast for some other
transaction (analogous to the quantity unknown in the base
commit criterion). Note that this criterion is equivalent to
the base, nonsecure commit criterion if we set � equal to
zero (in which case, all unvalidated vote sets are null).

In order to validate a vote for transaction ti from a
server sb, a server sa must ensure that all other servers in the
system have seen the same vote. Thus, server sa must collect
receipts of the votes cast by sb to all other servers. A receipt
of server sb’s vote from server sc is a statement of the form
“server sb votes for transaction ti,” securely signed by server sc
using an appropriate digital signature. Server sa considers a
particular vote valid if and only if it has received receipts
for that vote from all other servers in the system or if the
vote is cast by server sa itself. In order to validate a vote, sa
does not need to establish a peer-to-peer connection with all
other servers in the system—instead, receipts for votes from
any server can be forwarded by any other server in the
system. Since strong cryptographic primitives protect the
receipts, even malicious servers will not be able to alter the
contents of the receipt. Malicious servers may corrupt or
discard receipts: Corrupt receipts will be detected by the
server validating the receipt, while discarded receipts will
be treated as any lost message. In the worst case, malicious
servers may affect the liveness properties of the algorithm,
but, once again, safety guarantees are intact.

When a server detects a malicious vote while performing
validation, it marks the corresponding server as malicious,
ignores all further votes from that server, and initiates the
currency revocation mechanism [9] to cancel the voting
rights of the malicious server. If the server already
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committed an update incorrectly using a malicious vote
(which can happen only if the degree of tolerance set by the
server is less than the actual number of malicious insiders),
the server has to rollback the effects of the update. The
Appendix contains a correctness proof sketch of the revised
commit criterion.

3.3 Illustration

In the following examples, assume the secure commit
criterion is used with the assumption that there is at most
one malicious server in the system (i.e., � ¼ 1). The first
example shows that, even under contention (i.e., when there
is more than a single transaction competing for commit-
ment), the commit criterion does not necessarily require any
votes to be validated to commit a transaction. In order to
keep the exposition clean, we omit the timestamp element
when representing a vote (as the value of this element is
irrelevant for the purposes of the following examples).

Example 1. Assume five servers, s1; s2; . . . ; s5, in the system,
each holding equal (i.e., 0.2) currency, and the following
votes at s1:

V1 ¼ fðs1; t1; 0:2Þ; ðs2; t1; 0:2Þ; ðs3; t1; 0:2Þ; ðs4; t1; 0:2Þ;
ðs5; t2; 0:2Þg:

In terms of the secure commit criterion: jvotesðt1Þj ¼ 0:8,
junvalidð1; t1Þj ¼ 0:2, jvotesðt2Þj ¼ 0:2, and unknown ¼ 0.
In this case, s1 can commit t1 without validating a single
vote!

The next example shows that, even when validation of at
least one vote is necessary, it is not necessarily the case that
all votes have to be validated.

Example 2. Assume servers s1; s2; . . . ; s4 have currencies 0.2,
0.4, 0.2, and 0.5, respectively. Votes at s1 are:

V1 ¼ fðs1; t1; 0:2Þ; ðs2; t1; 0:4Þ; ðs3; t1; 0:2Þ; ðs4; t2; 0:5Þg:

Using the secure commit criterion: jvotesðt1Þj ¼ 0:8,
junvalidð1; t1Þj ¼ 0:4, jvotesðt2Þj ¼ 0:5, and unknown ¼ 0.
Server s1 cannot commit t1 because

jvotesðt1Þj � junvalidð1; t1Þ ¼ 0:4;

whereas jvotesðt2Þj þ unknown is 0.5. Validating s3’s vote
would have no immediate utility. However, if s2’s vote
were validated instead, the commit could take place.

4 OTHER DENO FEATURES

For completeness, we briefly describe other key features of
Deno:

. Exploiting application-specific commutativity in-
formation. Applications running on top of weakly
connected environments and systems need be
designed to minimize conflicts among updates in
order to avoid high abort rates [21]. One approach is
to have applications export domain-specific seman-
tic information that can be used to modify the
application’s consistency requirements [34]. Deno’s
extended protocol supports commutativity procedures

to exploit application-specific commutativity infor-
mation. A commutativity procedure is a simple
query over the database specifying an acceptance
criterion [21]. If the query is satisfied, the transaction
is considered to be valid with respect to the current
state of the database. Deno executes a transaction’s
commutativity procedure (if it exists) if and when
the transaction becomes obsolete. If the acceptance
criterion is satisfied, the transaction is not aborted.
Note that the use of commutativity procedures does
not affect the consistency guarantees.

. Light-weight, dynamic currency management. In
general, the best (target) currency distribution
depends on application semantics, expected avail-
ability of individual servers, and network topology.
Initial currency allocation is nontrivial because no
server may have accurate knowledge or estimate
about the size of the anticipated set of servers. The
system initially gives all currency to the server that
created the objects and other servers obtain currency
along with their initial copies of the data. Subsequent
peer-to-peer currency exchanges allow the system to
incrementally converge to any global target distribu-
tion [9], exponentially fast and using only local
information (i.e., without global synchronization).

. Currency proxies. Deno uses a proxy mechanism to
transparently handle planned disconnections of
mobile servers [9], [25]. The key idea is to allow
servers to specify proxies to represent them during
planned disconnections (during an airplane trip, for
example) by voting in their place. A proxy vote is
then indistinguishable to the other servers from the
situation where a server votes and then disconnects.
The result is that there are no race conditions and the
entire proxy engagement is transparent to the rest of
the system. The use of proxies in this manner can
prevent degradation in overall commit rate when
devices have expected disconnections.

5 PERFORMANCE EVALUATION

This section describes the performance of the Deno
prototype. Note that the primary advantage gained in
combining voting with epidemic information flow is in
increased availability. On the other hand, our evaluation
focuses on the relative convergence speeds of different
protocols as a function of several metrics, including update
contention, commutativity ratio, and the degree of security
provided by the system. Results relating to the effects of
disconnections and intelligent synchronization partner
selection algorithms can be found elsewhere.

5.1 Experimental Environment

We performed the experiments on a cluster of 15 Linux
machines (each with two 400 MHz Pentium II’s, and
256 MBytes of memory), each running a single copy of the
Deno server. The machines were connected via a 100Mbps
Ethernetnetworkand theservers communicatedusingUDP/
IP packets. We used a small database consisting of 100 data
objects of size 20K each. Each server periodically initiated a
synchronization session (with a given synchronization
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period) by sending a pull request to another randomly
selected server. We note that neither the bandwidth nor the
CPU is saturated in any of the experiments.

Each server generated transactions according to a global
transaction rate (specified relative to a synchronization
period). Each transaction accessed and modified up to five
data items. Since our focus is on the performance of the
global update consistency protocols, we did not model any
read-only transactions. All objects are replicated at all
servers and currency is uniformly distributed across servers
in all the experiments. The results presented in the
following graphs are the average of five independent runs
of executing 1,000 transactions in the system. The main
parameters and settings used in the experiments are
summarized in Table 2. Our performance evaluation
concentrates on relative performance by comparing repre-
sentative protocols.

We evaluate two versions of Deno’s protocol, Deno-

weak (Section 2.2) and Deno-strong (Section 2.4).
Additionally, we investigate two representative epidemic
replication schemes. The first scheme, primary, is an
epidemic primary-copy scheme that uses a specialized
primary server to serialize the updates, while propagating
the updates using epidemic flow. This protocol is similar to
that used in Bayou [34]. Note that primary-copy protocols
trade availability for a presumed advantage in performance.
The second scheme, write-all, is an epidemic “Read-
One, Write-All” (ROWA) [5] protocol, where servers can
only commit transactions after ensuring that all other
servers are ready to commit. Therefore, a transaction has
to be propagated to all the servers before it can be
committed. Furthermore, when a server observes conflict-
ing transactions, it has to abort all of those transactions to
ensure global consistency. This protocol is similar to that
proposed by Agrawal et al. [3]. Note that primary and
write-all are the only other pessimistic replication
protocols that appeared in the literature. We have also not
included any optimistic protocols (see Section 6) in our
evaluation as they do not provide formal correctness
guarantees.

5.2 Commit Delays

Unlike traditional synchronous environments where trans-
actions are committed synchronously at all servers, commit
times typically exhibit wide variability in asynchronous

systems. The time at which the first server commits a
transaction is, thus, not necessarily the quantity that best
predicts application performance with epidemic informa-
tion propagation.

Fig. 6 presents commit delays by plotting the number of
servers that committed the transaction as time progresses
for primary, write-all, and Deno-weak, when there is
no update contention. Although the primary server commits
the transaction quickly, this information propagates to other
servers relatively slowly. This is because all other servers
must learn of the commitment, directly or indirectly, from
the primary server. With the Deno protocols, on the other
hand, distinct servers may either learn the commitment
from other servers (as in the case of primary, or commit the
transaction independently. In the presented example, for
instance, about seven servers (on average) committed the
transaction independently. The delay between the first and
subsequent commits is thus quite small.

One important implication of this result is that the
performance penalty of using voting rather than a primary-
copy approach is not as large as commonly assumed. The
results for Deno-strong (not shown) are virtually similar
to those for Deno-weak because there is no contention and
thus no conflicts.

5.3 Contention Effects

The previous subsection focused on the speed of transaction
commits when there is no update contention. Fig. 7 presents
the performance results of the protocols under update
contention. More specifically, the figure shows the commit
percentage (i.e., the percentage of initiated transactions that
are committed) results for different levels of transaction
generation rate (for 15 servers) for all protocols.

The figure shows that all approaches suffer from the
increased transaction rate due to the global update
consistency requirement that only one out of a set of
conflicting transactions can commit. Under very small
transaction rates (TR in [0, 1]), all protocols perform fairly
well, achieving commit percentages of around 100 percent.
With increasing transaction rates, however, commit per-
centages drop for all protocols significantly. Overall,
primary achieves the best commit percentage, followed
closely by the weak and strong versions of Deno. The
difference between the two versions of Deno as well as the
difference between Deno protocols and primary over the
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whole range shown is small (within absolute 5 percent). The
performance of write-all is significantly lower than the
rest of the protocols. In fact, at (and beyond) a transaction
rate of 25 (not shown), write-all does not commit any
transactions. The main reason for this difference is that
write-all has to abort all conflicting transactions as it is
not equipped with any mechanism to globally single out a
transaction to commit (out of a set of conflicting transac-
tions). The other protocols continue to commit transactions
regardless of the transaction rate (not shown).

The most interesting result from this series of experi-
ments is that the base Deno protocol did not appear to have
any significant performance advantage of the extended
version. The difference between the commit delays of the
two with little contention appears is up to an average of
10 percent with reasonable contention. The case with
contention was where we expected the most degradation
in performance as the requirement of a global ordering
effectively increases the number of conflicts. This increase
in conflicts, in turn, forces more currency to be inspected
before a winner of a given election can be determined. For
example, we only need more than 50 percent of the
currency in order to determine the winner of an election if
there are no conflicting transactions, but we may need all of
the currency in order to decide between two or more.
However, the increase in required currency is offset by an
increase in concurrency. Therefore, update contention does
not necessarily increase commit delays.

5.4 Speculative Voting and Update Propagation

Recall from Section 2 that a transaction that completes its
execution is blocked until the local server has decided
whether to commit or abort all conflicting candidate
transactions. Blocked transactions can proceed and partici-
pate in the global voting protocol only after the conflicting
transactions are terminated.

We now propose an optimistic alternative that skips the
blocking phase by having the servers immediately vote for
all transactions as soon as they finish their local execution.
These transactions immediately become candidates to be
added to subsequent synchronization sessions. The advan-
tage of such speculative voting is that transactions can make
progress, in terms of gathering votes, while the system is still
deciding the fate of prior transactions. Speculative votes are
most useful when previous conflicting transactions are
aborted. As shown below, the advantage conferred by this

technique is larger when there are commuting updates in
the system. The cost of speculation is that some transactions
that will eventually get aborted are propagated through the
system unnecessarily, resulting in a waste of communica-
tion bandwidth.

Fig. 8 examines the benefits of speculative update
propagation and voting for varying degrees of commu-
tativity by showing the performance of speculative (Deno-
spec) and nonspeculative (Deno-nonspec) versions of
Deno-strong (a description of the modifications required
to support speculation can be found in [12]). Somewhat
nonintuitively, larger commutativity ratios result in larger
commit delays for the nonspeculative Deno. The reason is
that increasing commutativity results in fewer aborted
transactions, which in turn increases contention for those
transactions that are yet to be terminated. By contrast,
Deno-spec’s commit delay is largely constant across all
commutativity ratios. Speculative voting confers a perfor-
mance advantage of about 15 percent even with a
commutativity ratio of 0, the default case where no
transactions commute. The gap increases with commuta-
tivity ratio until Deno-nonspec’s commit delay is more
than twice Deno-spec’s at a ratio of 1.0.

The benefits of speculation come at the expense of
propagating more transactions and votes. To this end, we
investigate the relative bandwidth utilizations of the proto-
cols in Fig. 9, which shows the amount of information sent
across all servers (in KBytes) per committed transaction for
Deno-spec and Deno-nonspec. For low commutativity
ratios (i.e., up to 0.1), Deno-spec propagates about
4-6 percent more information per committed transaction.
Beyondacommutativity ratio of 0.2, however, the speculative
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protocol sends less information than the nonspeculative

version, with the difference increasing as the commu-

tativity increases. At a commutativity ratio of 1, Deno-

spec propagates about 16 percent less information per

committed transaction. To summarize, the speculative

version not only decreases average commit delays, but it

also decreases bandwidth requirements per committed

transaction.

5.5 Commit Delays versus Degree of Tolerance

Fig. 10 shows the average commit delays for small

transaction generation rates (i.e., no update contention),

for Deno and write-all, for varying degrees of tolerance

to malicious servers. On the x-axis, we vary � from 0

(nonsecure system) to n� 1 (max-security system). The

Deno curve follows an S-shape: It initially increases

gradually with increasing �, makes a significant jump in

the vicinity of � ¼ n=2, and then essentially stays flat

afterward. As long as � is smaller than n=2, servers do not

need to use validated votes to commit an update; it simply

is enough to gather sufficient unvalidated votes. However,

when � is more than half the number of servers, it is not

possible to commit updates without the use of validated

votes. Vote validation is a relatively costly operation as it

involves obtaining receipts from the other servers in the

system. This explains the sudden increase in commit delays

as � exceeds n=2, after which point, commit delays continue

to increase as more validated votes are required for commit.

At the point where half of the all votes are validated,

updates can immediately commit.
The figure also depicts commit delays for nonsecure

write-all (� ¼ 0), and secure write-all (� > 0). Since

secure write-all requires all votes to be validated for

commit, it cannot support intermediate degrees of tolerance

as Deno. For all �, Deno commits updates significantly

faster than write-all, reducing the commit delays of

write-all by 40 percent and 30 percent for nonsecure

(� ¼ 0) and maximum security cases (� ¼ n� 1), respec-

tively. The most dramatic improvement, 60 percent, occurs

when 0 < � < n=2 since, in this region, Deno commits

updates without validating any votes, whereas write-all

has to validate all votes.

5.6 Supporting Nonuniform Degrees of Tolerance

We now investigate the performance impact of using
different degrees of tolerance at different servers. We expect
that the commit performance of each server will be
independent of the degrees of tolerance supported by others
since each Deno server makes all commit decisions entirely
independently and using only local information. To demon-
strate the validity of this premise, we conducted an
experiment where we let a single server, s, use a degree of
tolerance, �ðsÞ, different from that used by the rest of the
servers, �ðrestÞ.

Fig. 12 presents commit delay results for s and the rest of
servers (averaged) for the cases where �ðsÞ ¼ 0 and
�ðsÞ ¼ N � 1, as we vary �ðrestÞ—note that d refers to � in
the figures. When we consider the commit delay for s when
�ðsÞ ¼ 0, we observe that it remains essentially flat regard-
less of �ðrestÞ. The same observation holds for the case
where �ðsÞ ¼ N � 1. It is clear that the commit performance
of a server is not affected by the performance of the rest of
the system. The commit delay curves for the rest of the
system for �ðsÞ ¼ 0 and �ðsÞ ¼ N � 1 illustrate the comple-
mentary case. We observe that these two curves are
essentially identical, revealing that system performance as
a whole is not affected by �ðsÞ. It is therefore clear that the
degree of tolerance adopted by a server does not adversely
affect the performance of other servers and vice versa.

Fig. 11 provides further insight by plotting the percen-
tage of validated votes that are used and available at
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commit time at each server, averaged over all commits
across all servers. No validated votes are used at commit by
Deno when � < N=2. Validated votes available at commit
time at each server are nonzero because each server
considers its own vote as validated by default. Notice that
Deno requires at most 50 percent of the votes to be
validated for supporting any degree of tolerance. On the
other hand, write-all requires 100 percent of the votes to
be validated to tolerate any number of malicious servers,
thereby incurring relatively large commit delays.

5.7 Update Contention Effects and Scalability

Fig. 13 plots the commit percentage results for varying
transaction generation rates for Deno and write-all. The
figure shows that the approaches suffer from the increased
transaction rate due to the global update consistency
requirement that at most one out of a set of conflicting
transactions can commit. Under very small transaction rates
(TR in [0.0, 0.01]), all protocols perform fairly well,
committing all updates. With increasing transaction rates,
however, commit percentages begin to drop significantly.
We observe the most dramatic fall for secure write-all:
At a transaction rate of 0.4, the commit percentage of secure
write-all is ~25 percent, whereas the commit percentages of
the other protocols are all above 65 percent. Notice that,
beyond a transaction rate of 0.5, max-security Deno has a
higher commit percentage than even the nonsecure write-
all. The write-all protocol lacks any mechanism that
can pick one out of multiple conflicting updates and thus
has to abort all conflicting updates. Due to this behavior
(beyond six and 10 transactions/synch period, respec-
tively), the write-all approaches, both secure and
nonsecure, cannot commit any updates. On the other hand,
the Deno approaches continue to make progress and
commit updates regardless of the update generation rate
(not shown). Scalability results (see [11]) show that the
performance difference between Deno and write-all

increases with increasing system size.

6 RELATED WORK

The problem of consistent access to replicated data has long
been studied in many contexts and a wide variety of
solutions have been proposed (e.g., [2], [5], [16], [19], [33],
[35]). Because of the intrinsic shortcomings of traditional
synchronous replication solutions [20], [33], [35] in mobile

and weakly connected environments [21], asynchronous
replication protocols have recently gained a lot of attention
(e.g., [7], [24], [26]). Asynchronous approaches commonly
allow servers to execute updates locally without any
synchronization with other servers and propagating up-
dates afterward as separate activities. Due to space
limitations, we restrict our attention to asynchronous
update-anywhere approaches that utilize the epidemic
model [3], [17], [24], [29], [34].

Many epidemic systems take an optimistic approach and
use reconciliation-based protocols (e.g., Ficus [29], Lotus
Notes [24]) that are only viable in nontransactional single-
item domains such as file systems. These approaches only
ensure that all copies of a single item eventually converge to
the same value and therefore are not safe for environments
requiring transactional semantics.

Bayou [34] takes a more pessimistic approach and
ensures that all committed updates are serialized in the
same order at all servers using a primary-copy scheme. More
recently, Agrawal et al. [3] described a pessimistic ROWA
[5] approach that ensures strong consistency and serial-
izability. Our protocols differ from these protocols primar-
ily in using a novel combination of weighted-voting and
epidemic information flow to improve availability and
performance.

Holliday et al. [22] also proposed an epidemic quorum-
based approach that provides serializability as our extended
protocol. Holliday’s work assumes a more traditional
replicated database environment and static currencies,
whereas our emphasis is on making progress under
incomplete system information in dynamic environments.

Despite the growing need for secure protocols for
managing replicated data, this topic is yet to be addressed
for the decentralized, asynchronous environments that we
target. Security research in synchronous centralized systems
mostly targeted group communication protocols. Ensemble
[32] addresses only external security threats providing
secure authentication, integrity, and privacy, whereas
Rampant [31] is designed to handle Byzantine attacks.
These systems are commonly based on primary-copy
models to coordinate replica management and require
much stronger connectivity and reliable multicast primi-
tives. Secure election protocols (e.g., [15], [18]) provide voter
privacy and rely on a small number of central facilities for
counting votes, but are impractical under weak-connectiv-
ity as restrictions in connectivity and disconnections make
reliance on central authorities untenable.

Castro and Liskov [8] described a practical replication
algorithm for tolerating Byzantine attacks in asynchronous
environments where update commitment is centralized and
coordinated via a primary-copy server. To the best of our
knowledge, the only proposal that addresses system
security using asynchronous epidemic information flow is
that of Malkhi et al. [27]. Malkhi et al. provided an
analytical treatment of epidemic-style update diffusion
algorithms that are tolerant of Byzantine faults. This work
makes strong assumptions about the number of malicious
servers and where and how updates are created and
initially received. No previous work, including Malkhi
et al.’s [27], has addressed update commitment in decen-
tralized, epidemic systems and databases.
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7 CONCLUSIONS

We presented the design, implementation, and evaluation
of Deno, a highly available object-replication system
designed for weakly connected environments. Deno’s
consistency protocols are based on an asynchronous
weighted-voting approach implemented through epidemic
information flow. Our voting approach achieves higher
availability than primary-copy approaches [34], and higher
availability and performance than ROWA approaches [3].

Our base protocol ensures weakly consistent executions
where update transactions are serializable and queries
always access transactionally consistent database states.
Our extended protocol provides strong consistency and
globally serializable executions by providing a unique
global commit order on all update transactions. Both
protocols allow queries to be executed and committed
entirely locally and without blocking. Furthermore, neither
protocol suffers from local or global deadlocks.

We also classified and addressed a specific class of
internal security attacks that involve vote misrepresenta-
tion. We proposed a secure version of our protocols that
handles such malicious actions using a combination of
cryptographic primitives, modifications to the update
commit criteria, and explicit validation of votes. The
proposed protocol is parameterized and can be tuned to
trade off degrees of tolerance to malicious insiders and
commit performance, thereby allowing individual servers
to set arbitrary degrees of tolerance based on their
individual requirements and resources.

Our performance study based on the Deno prototype
revealed several interesting results. First, the presumed
performance advantage of the primary-copy approach over
a uniform voting approach is not as significant with
asynchronous epidemic protocols. The reason is that
epidemic voting protocols allow servers to independently
arrive at the same conclusions, whereas primary-copy
schemes require all commit information to emanate from
a single, distinguished server. Second, our extended
protocol performs nearly as well as the base protocol, while
providing significantly stronger semantics. The result is
increased functionality at essentially little cost in perfor-
mance. Third, protecting against internal threats comes at a
cost, but the marginal cost for protecting against larger
cliques of malicious insiders is generally low. Finally,
speculative update propagation and voting provides a
considerable performance advantage for protocols that use
pair-wise communication and this advantage is magnified
when application-specific commutativity information is
used to decrease the rate of transaction aborts.

APPENDIX A

CORRECTNESS OF THE BASE DENO PROTOCOL

We now provide proof sketches for the theorems presented
in the paper. We first restate the notion of a serialization
graph [5]. A serialization graph consists of vertices and
edges, where vertices represent transactions and edges
represent constraints on equivalent serial orderings. An
edge ti ! tj exists in the graph if tj reads or writes a data
item written by ti or writes a data item read by ti.

Lemma 1 (Update consistency). If an update transaction t
commits at one server, then t eventually commits at all servers.

Proof (sketch). Assume that transaction ti committed at
server si. Let yesðtiÞ denote the set of servers that voted
yes for ti. Now, consider another server sj and another
transaction tj that conflicts with ti. If all the votes cast by
the servers in yesðtiÞ are known at sj, then sj cannot
commit tj. Even if sj may not know the votes cast by
some of the servers in yesðtiÞ, that amount will be
reflected in unknownðtjÞ, preventing tj from committing
at sj. Therefore, sj will eventually deduce the same
outcome as si and commit ti itself or be told of the
commitment of ti by another server. tu

Lemma 2 (Update serializability). The base voting protocol
ensures global serializability of updates.

Proof (sketch). Assume that the protocol generates a
nonserializable global schedule involving update transac-
tions. Then, by Lemma 1, there exists a cycle in the global
serialization graph [5] of the form t1 ! t2 ! . . . ! tn ! t1,
where t1; t2; . . . ; tn are update transactions. Consider t1
and t2. Since t1 ! t2, t1 and t2 must conflict on some data
item, d. Suppose t1 commits before t2 at server s. Assume
now that t2 committed at s0 before t1. We consider the
three possible types of conflicts between t1 and t2 at s0:

1. Read-Write (t2 writes an item d which is then read by
t1): Since t2 updated dwhen it committed at s0, the
version number of d recorded by t1 will be strictly
smaller than the version number of the copy of d
at the database of s0. This establishes t1 as an
obsolete transaction at s0 and leads to t1 being
aborted.

2. Write-Read (t2 reads an item written by t1): This case
is the opposite of the previous case. This time, t2
cannot commit at s as it is based on a version of d
that has already been updated by t1.

3. Write-Write (t2 writes an item written by t1): This
conflict type implies both rw and wr conflicts
among t1 and t2. It is, therefore, subsumed by
the previous two cases (since we do not allow
blind-writes).

We therefore conclude that t1 must have committed
before t2 at all servers. A straightforward induction
based on the transitivity of the conflict relation asserts
that t1 commits before tn at all servers. This eliminates
the possibility of a cycle in the serialization graph,
thereby producing the contradiction that completes the
proof. tu

Lemma 3 (Query-transaction ordering). Let q be a query and t
be an update transaction that, respectively, reads and updates
item d. The dependency q ! t implies that q commits before t
commits and t ! q implies that t commits before q commits, at
the execution server of q.

Proof (sketch). First, consider q ! t. Query q reads d before
t updates d. Query q must have committed before t
committed. Otherwise, q must have been active when t
committed and the commitment of t would have aborted
q (as q would have become obsolete). Now, consider
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t ! q; q reads d after t updates d. In this case, q must have
read d and committed after t since any update transac-
tion (including t) installs its updates and commits
atomically. tu

Theorem 1 (Weak consistency). The base Deno protocol
described in Section 2.1 provides weak consistency.

Proof (sketch). Assume that there is a single-query cycle
involving query q and update transactions t1; t2; . . . ; tn, of
the form q ! t1 ! t2 ! . . . ! tn ! q. Consider q ! t1.
By Lemma 3, q must have committed before t1 at the
execution server of q, say s. By Lemma 1, t1 commits
before tn at all servers. Therefore, q must have committed
before tn at s, prohibiting the single-query cycle assumed
initially. Moreover, we know by Lemma 2 that there

cannot be any update transaction cycles. Therefore, we

conclude that the protocol provides weak consistency.tu
Lemma 4 (Eventual termination). A candidate transaction

eventually terminates (i.e., commits or aborts).

Proof (sketch). Suppose there exists a candidate transaction

t that never terminates. We can partition the set of

servers into three disjoint subsets as 1) the servers that

voted yes for t, yesðtÞ, 2) servers that voted no for t, noðtÞ,
and 3) servers that have not yet observed t, denoted

unknown serversðtÞ. Assuming that information even-

tually propagates to all servers, unknown serversðtÞ will

eventually become empty. Let the conflict set of t, CSðtÞ,
denote the set of candidate transactions that conflict with
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Fig. 14. Basic record types and persistent data structures used by server i.

Fig. 15. Procedure for making transaction t a candidate transaction at server i.



t. When unknown serversðtÞ becomes empty, CSðtÞ
cannot grow further due to the voting rule (see

Section 2.2.2) since all servers voted for either t or

another transaction that conflictswith t.Now, consider the

case where all candidate transactions t0 2 CSðtÞ are

observed at all servers. At this point, votesðtÞ and

votesðt0Þ for all t0 2 CSðtÞ are determined. As a result,

unknownðtÞ and unknownðt0Þ for all t0 2 CSðtÞ are all zero.
Therefore, the commit rule will commit the transaction

with themost votes (or, in the case of a tie, the one executed

at the server with the smallest id) and the rest will be

aborted, thereby contradicting our initial claim.Moreover,

a deadlock situation due to vote dependencies cannot

exist. Such a deadlock has to involve a cycle of the form

votesðt1Þ > votesðt2Þ > . . . votesðtnÞ > votesðt1Þ, w h e r e

t1; t2; . . . ; tn are candidate transactions. Since both

votesðt1Þ < votesðtnÞ and votesðtnÞ < votesðt1Þ cannot be

true at the same time, we conclude that such a deadlock

cannot exist.

Now, consider a blocked transaction t. Transaction t

will eventually become a candidate since 1) the set of

candidate transactions that t is blocked after will all

eventually terminate (see earlier discussion) and 2) the

blocked transactions are considered in the order they are

entered into the blocked list, so t is not going to wait

indefinitely before being considered for candidacy. tu
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Fig. 16. Procedure for committing transaction t at server i.

Fig. 17. Procedure for aborting transaction t at server i.

Fig. 19. Procedure for terminating a transaction t at server i.

Fig. 18. Procedure for executing a transaction t at server i.



APPENDIX B

CORRECTNESS OF THE EXTENDED DENO PROTOCOL

Lemma 5 (Global update consistency). The extended Deno
protocol ensures a unique global commit order on the set of
update transactions.

Proof (sketch). In particular, we show that each server
commits the same update transactions in the same order.
Assume that ti is the very first transaction that
committed at server s. Extending the discussion pre-
sented in the proof of Lemma 1 by treating the top
transactions to be the only conflicting transactions in the
system, we can conclude that ti is the first transaction to
commit at all servers. A straightforward induction on the
sequence of committed transactions concludes the
proof. tu

Theorem 2 (Strong consistency). The extended Deno protocol
provides strong consistency (as defined in Definition 2) and
serializability.

Proof (sketch). Lemma 5 ensures that there are no update
transaction cycles. Without loss of generality, assume
that there is a multiple-query cycle of the form

q1 ! t1 ! q2 ! t2 ! . . . ! qn ! tn ! q1:

Consider q1 ! t1,which implies that there is an item d read
by q1 and then updated by t1. By Lemma 3, q1 commits
before t1 at the execution site of q1, say s1. Now, consider
t1 ! q2 and q2 ! t2, which imply that t1 commits before q2
and, therefore, before t2 at the execution site of q2, say s2.
Therefore, by Lemma 1, t1 commits before t2 at all sites.
Using a straightforward induction, we can say that t1
commits before tn at all sites. However, tn ! q1 implies
that tn commits before q1 at s1, creating the contradiction
that concludes the proof. tu

APPENDIX C

CORRECTNESS OF THE EXTENDED SECURE COMMIT

CRITERION

Theorem 3 (Correctness of the secure commit criterion).

The secure commit criterion presented in Section 3.2 provides
safety at a node if the node supports a sufficient degree of
tolerance.

Proof (sketch). Consider n servers s1; s2; . . . ; sn, with
currencies c1; c2; . . . ; cn. Consider a single nonmalicious
server si and the case where there is a single malicious
server sm, i;m ¼ 1:::n and i 6¼ m. Assume that server si
commits transaction ti using the secure commit criterion
shown in Table 1. There are two cases: 1) si does not use
cm toward the votes cast for ti and 2) si uses cm toward
the votes cast for ti.

In the former case, ti gathered the plurality of votes by
using only the nonmalicious votes, so the decision is
correct. In this case, the commit criterion is more
conservative than required. In Case 2), jvotesðtiÞj � ci
provides a lower bound on the valid votes cast for ti. This
statement follows since jvotesðtiÞj � junvalidð1; tiÞj �
jvotesðtiÞj � ci as ci � junvalidð1; tiÞj. The commit criter-
ion in this case is conservative if ci � junvalidð1; tiÞj.
Therefore, in each case, si uses only the currencies that
are cast by nonmalicious servers toward committing ti. A
straightforward induction on the number of malicious
servers concludes the proof. tu

APPENDIX D

PSEUDOCODE FOR THE BASE DENO PROTOCOL

Pseudocode for the base Deno protocol is shown in Figs. 14,
15, 16, 17, 18, 19, and 20.
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