
Software Versus Hardware Shared-Memory

Implementation: A Case Study

Alan L. Cox, Sandhya Dwarkadas, Pete Keleher,

Honghui Lu, Ramakrishnan Rajamony, and Willy Zwaenepoel

Department of Computer Science

Rice University

Abstract

We compare the performance of software-supported
shared memory on a general-purpose network to
hardware-supported shared memory on a dedicated
interconnect.

Up to eight processors, our results are based on
the execution of a set of application programs on a
SGI 4D/480 multiprocessor and on TreadMarks, a dis-
tributed shared memory system that runs on a Fore
ATM LAN of DECstation-5000/240s. Since the DEC-
station and the 4D/480 use the same processor, pri-
mary cache, and compiler, the shared-memory imple-
mentation is the principal di�erence between the sys-
tems. Our results show that TreadMarks performs
comparably to the 4D/480 for applications with mod-
erate amounts of synchronization, but the di�erence
in performance grows as the synchronization frequency
increases. For applications that require a large amount
of memory bandwidth, TreadMarks performs slightly
better than the SGI 4D/480.

Beyond eight processors, our results are based on
execution-driven simulation. Speci�cally, we compare
a software implementation on a general-purpose net-
work of uniprocessor nodes, a hardware implementa-
tion using a directory-based protocol on a dedicated
interconnect, and a combined implementation using
software to provide shared memory between multi-
processor nodes with hardware implementing shared
memory within a node. For the modest size of the
problems that we can simulate, the hardware imple-
mentation scales well and the software implementation
scales poorly, The combined approach delivers perfor-
mance close to that of the hardware implementation
for applications with small to moderate synchroniza-
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tion rates and good locality. Reductions in communi-
cation overhead improve the performance of the soft-
ware and the combined approach but synchronization
remains a bottleneck.

1 Introduction

Over the last decade, considerable e�ort has been
spent on software implementations of shared memory
on general-purpose networks, e.g., [2, 4, 18]. We are,
however, unaware of any study comparing the perfor-
mance of any of these systems to the performance of
a hardware implementation of shared memory on a
dedicated interconnect, e.g., [10, 17]. Several studies
have compared software to hardware cache coherence
mechanisms [20, 22], but these systems still rely on
hardware initiated data movement and a dedicated
interconnect. In this paper, we compare a shared-
memory implementation that runs entirely in software
on a general-purpose network of computers to a hard-
ware implementation on a dedicated interconnect.

Up to eight processors, our results are based on an
experimental comparison of a software and a hardware
implementation. Speci�cally, we compare the Tread-
Marks software distributed shared memory system [15]
running on a 100Mbit/second ATM network connect-
ing 8 DECstation-5000/240s to an 8-processor Silicon
Graphics 4D/480. These con�gurations have identical
processors, clock speeds, primary caches, compilers,
and parallel programming interfaces (the ANL PAR-
MACS macros [19]). The similarity between the two
platforms \from the neck up" avoids many distinc-
tions that often blur comparative studies, and allows
us to focus on the di�erences caused by the shared-
memory implementation. TreadMarks supports lazy

release consistency [14] and is implemented as a user-
level library on top of Ultrix [15]. The SGI 4D/480
provides processor consistency, using a bus snooping
protocol [21].



We use four applications in our comparison (ILINK,
SOR, TSP, and Water). TSP uses only locks for syn-
chronization, SOR and ILINK use only barriers, and
Water uses both. For ILINK, SOR, and TSP, we
present results for two di�erent sets of input data. For
Water, the results are largely independent of the in-
put. Instead, we present the results for a modi�ed ver-
sion (M-Water) that reduces the amount of synchro-
nization. With the exception of SOR, better speedups
are obtained on the 4D/480. There is a strong cor-
relation between the synchronization frequency of the
application and the di�erence in speedup between the
4D/480 and TreadMarks. With higher synchroniza-
tion frequencies, the large latencies of the software im-
plementation become more of a limiting factor. SOR,
however, gets better speedup on TreadMarks than on
the 4D/480, because this application requires large
memory bandwidths.

Beyond eight processors, our results are based on
execution-driven simulations of systems with up to 64
processors. We compare three alternative designs: (i)
an all-software (AS) approach connecting 64 unipro-
cessor machines with a general-purpose network, (ii)
an all-hardware (AH) approach connecting 64 unipro-
cessor nodes with a crossbar network and using a
directory-based hardware cache coherence protocol,
and (iii) a hardware-software (HS) approach connect-
ing 8 bus-based multiprocessor nodes with a general-
purpose network and using the TreadMarks software
DSM system. The HS approach is appealing from a
cost standpoint because small bus-based shared mem-
ory workstations are likely to become cheaper than a
set of uniprocessor workstations with an equal num-
ber of processors. The HS approach also avoids the
complexity of directory-based cache controllers.

We use SOR, TSP, and M-Water in our compari-
son. Simulation times for available ILINK inputs were
prohibitively high. For all three applications, the AS
approach scales poorly compared to the other two. For
SOR and TSP, performance of AH and HS is compa-
rable; for Water the AH approach performs better be-
cause each processor accesses a majority of the shared
data during each step of the computation and because
of the frequency of synchronization. We also analyze
the e�ect of anticipated improvements in network in-
terface technology and attendant decreases in commu-
nication software overhead.

The rest of this paper is organized as follows. Sec-
tion 2 details the comparison between the SGI 4D/480
and TreadMarks. Section 3 presents simulation re-
sults comparing the AS, AH, and HS architectures for
a larger number of processors. Section 4 examines re-

lated work. Section 5 presents our conclusions.

2 SGI 4D/480 versus TreadMarks

2.1 TreadMarks

In this section we briey describe the release consis-

tency (RC) model [11] and the lazy release consistency

(LRC) implementation [14] used by TreadMarks. Fur-
ther details on TreadMarks may be found in Keleher
et al. [15].

RC is a relaxed memory consistency model. In RC,
ordinary shared memory accesses are distinguished
from synchronization accesses, with the latter cate-
gory subdivided into acquire and release accesses. Ac-
quire and release accesses correspond roughly to the
conventional synchronization operations on a lock, but
other synchronization mechanisms can be built on this
model as well. Essentially, RC allows the e�ects of or-
dinary shared memory accesses to be delayed until a
subsequent release by the same processor is performed.

The LRC algorithm used by TreadMarks delays the
propagation of modi�cations to a processor until that
processor executes an acquire. To do so, LRC uses
the happened-before-1 partial order [1]. The happened-
before-1 partial order is the union of the total pro-
cessor order of the memory accesses on each individ-
ual processor and the partial order of release-acquire
pairs. Vector timestamps are used to represent the
partial order [14]. When a processor executes an ac-
quire, it sends its current vector timestamp in the ac-
quire message. The last releaser then piggybacks on
its response a set of write notices. These write notices
describe the shared data modi�cations that precede
the acquire according to the partial order. The ac-
quiring processor then determines the pages for which
the incoming write notices contain vector timestamps
larger than the timestamp of its copy of that page in
memory. For these pages, the shared data modi�ca-
tions described in the write notices must be reected
in the acquirer's copy. To accomplish this, the current
TreadMarks invalidates the copies.

On an access fault, a page is validated by bringing
in the necessary modi�cations to the local copy in the
form of di�s. A di� is a run-length encoding of the
changes made to a single virtual memory page. The
faulting processor uses the vector timestamps associ-
ated with its copy of the page and the write notices it
received for that page to identify the necessary di�s.



2.2 Experimental Platform

The system used to evaluate TreadMarks consists
of 8 DECstation-5000/240 workstations, each with a
40Mhz MIPS R3000 processor, a 64 Kbyte primary
instruction cache, a 64 Kbyte primary data cache,
and 16 Mbytes of memory. The data cache is write-
through with a write bu�er connecting it to main
memory. The workstations are connected to a high-
speed ATM network using a Fore Systems TCA-100
network adapter card supporting communication at
100 Mbits/second. In practice, however, user-to-user
bandwidth is limited to 25 Mbits/second. The ATM
interface connects point-to-point to a Fore Systems
ASX-100 ATM switch, providing a high aggregate
bandwidth because of the capability for simultaneous,
full-speed communication between disjoint worksta-
tion pairs. The workstations run the Ultrix version
4.3 operating system. TreadMarks is implemented as
a user-level library linked in with the application pro-
gram. No kernel modi�cations are necessary. Tread-
Marks uses conventional Unix socket, mprotect, and
signal handling interfaces to implement communica-
tion and memory management. The minimum time
for a remote lock acquisition is 0.78 milliseconds, the
time for an 8-processor barrier is 2.20 milliseconds.

The shared-memory multiprocessor used in the
comparison is a Silicon Graphics 4D/480 with 8
40Mhz MIPS R3000 processors. Each processor has
a 64 Kbyte primary instruction cache and a 64 Kbyte
primary data cache. The primary data cache imple-
ments a write-through policy to a write bu�er. In ad-
dition, each processor has a 1 Mbyte secondary cache
implementing a write back policy. The secondary
caches and the main memory (128 Mbytes) are con-
nected via a 16 Mhz 64-bit wide shared bus. Cache
coherence between the secondary caches is maintained
using the Illinois protocol. The presence of the write
bu�er between the primary and the secondary cache,
however, makes the memory processor consistent. The
SGI runs the IRIX Release 4.0.1 System V operating
system.

An important aspect of our evaluation is that the
DECstation-5000/240 and the SGI 4D/480 have the
same type of processor running at the same clock
speed, the same size primary instruction and data
caches, and a write bu�er from the primary cache to
the next level in the memory hierarchy (main memory
on the DECstation, the secondary cache on the SGI).
For both machines, we use the same compiler, gcc 2.3.3
with -O optimization, and the program sources are
identical (using the PARMACSmacros). The only sig-
ni�cant di�erence between the two parallel computers

is the method used to implement shared memory: ded-
icated hardware versus software on message-passing
hardware.

Single processor performance on the two machines
depends on the size of the program's working set.
Both machines are the same speed when execut-
ing entirely in the primary cache. If the working
set �ts in the secondary cache on the 4D/480, a
single 4D/480 processor is 2% to 3% slower than
a DECstation-5000/240 because the main memory
of the DECstation-5000/240 is slightly faster than
the secondary cache of the 4D/480 processor. (The
4D/480's secondary cache is clocked at the same speed
as the backplane bus, 16 MHz.) If the working set is
larger than the secondary cache size, the 4D/480 slows
down signi�cantly.

2.3 Application Suite

We used four programs for our comparison: ILINK,
SOR, TSP, and Water.

ILINK [9] is a widely used genetic linkage analysis
program that locates speci�c desease genes on chromo-
somes. We ran ILINK with two di�erent inputs, CLP
and BAD, both corresponding to real data sets used
in disease gene location. The CLP and BAD inputs
show the best and the worst speedups, respectively,
among the inputs that are available to us.

Red-Black Successive Over-Relaxation (SOR) is a
method for solving partial di�erential equations. The
SOR program divides the matrix into roughly equal
size bands of consecutive rows, assigning each band to
a di�erent processor. Communication occurs across
the boundary between bands. We ran SOR on a 2000�
1000 and a 1000� 1000 matrix. We chose the 2000�
1000 problem size because it does not cause paging on
a single DECstation, and it �ts within the secondary
cache of the 4D/480 when running on 8 processors.
The 1000� 1000 run is included to assess the e�ect of
changing the communication to computation ratio.

TSP solves the traveling salesman problem using
a branch-and-bound algorithm. The program has a
shared, global queue of partial tours. Each process
gets a partial tour from the queue, extends the tour,
and returns the results back to the queue. We use
18- and 19-city problems as input. Although the pro-
gram exhibits nondeterministic behavior, occasionally
resulting in super-linear speedup, executions with the
same input produce repeatable results.

Water, from the SPLASH suite [23], is a molecular
dynamics simulation. The original Water program ob-
tains a lock on the record representing a molecule each



Program DEC TreadMarks SGI

ILINK-CLP ????.? 6388.0 6208.0
ILINK-BAD 858.1 860.4 936.1

SOR 2000� 1000 416.9 419.6 581.6
SOR 1000� 1000 229.5 230.3 315.1

TSP-19 308.6 310.3 318.8
TSP-18 25.4 25.5 26.3

Water-288-5 43.1 44.4 44.4
M-Water-288-5 43.1 43.7 44.1

Table 1: Single processor execution times

time it updates the contents of the record. We modi-
�ed Water such that each processor instead uses a lo-
cal variable to accumulate its updates to a molecule's
record during an iteration. At the end of the itera-
tion, it then acquires a lock on each molecule that it
needs to update and applies the accumulated updates
at once. The number of lock acquires and releases
for each processor in M-Water is thus equal to the
number of molecules that processor updates. In the
original program, it is equal to the number of updates
that processor performs, a much larger quantity. We
present the results for Water and M-Water for a run
with 288 molecules for 5 time steps. The results for
Water were largely independent of the data set chosen.

2.4 Results

Figures 1 to 8 present the speedups achieved
for ILINK, SOR, TSP, Water and M-Water, both
on TreadMarks and the 4D/480. The TreadMarks
speedups are relative to the single processor DECsta-
tion run times without TreadMarks. Table 1 presents
the single processor execution times on both machines,
including the DECstation with and without Tread-
Marks. As can be seen from this table, the presence of
TreadMarks has almost no e�ect on single processor
execution times. Finally, Table 2 details the o�-node
synchronization rates, the number of messages and
the amount of data movement per second on Tread-
Marks for each of the applications on 8 processors.
Sections 2.4.1 to 2.4.4 discuss the results for each ap-
plication in detail.

2.4.1 ILINK

Figures 1 and 2 show ILINK's speedup for the CLP
and BAD inputs. The CLP and BAD inputs show
the best and the worst speedups, respectively, among
the inputs that are available to us. CLP exhibits the
smallest di�erence in speedup between the 4D/480 and

TreadMarks SGI 4D/480

1 2 3 4 5 6 7 8

S
pe

ed
up

 v
s.

 P
ro

ce
ss

or
s

1

2

3

4

5

6

7

8

Figure 1: ILINK: CLP
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Figure 2: ILINK: BAD
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Figure 3: SOR: 2000� 1000 matrix



ILINK SOR TSP Water M-Water
BAD CLP 2000� 1000 1000� 1000 19-city 18-city 288/5 288/5

Barriers/second 10.14 0.36 2.89 4.41 | | 0.45 3.51
Remote locks/second | | | | 14.6 32.3 1540.0 680.4

Messages/second 1800 449 100 154 407 536 6161 2739
Kbytes/second 538 161 17.4 29.9 126 223 717 936

Table 2: 8-processor TreadMarks execution statistics

Treadmarks SGI 4D/480
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Figure 4: SOR: 1000� 1000 matrix
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Figure 5: TSP: 19 Cities
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Figure 6: TSP: 18 Cities
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Figure 7: Water: 288 Molecules and 5 Steps
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Figure 8: M-Water: 288 Molecules and 5 Steps

TreadMarks, 5.74 vs. 6.24, and BAD exhibits one of
the largest di�erences, 3.15 vs. 5.41.

ILINK achieves less than linear speedup on both the
4D/480 and TreadMarks because of a load balancing
problem inherent to the nature of the algorithm [9]. It
is not possible to predict in advance whether the set
of iterations distributed to the processors will result in
the same amount of work on each processor, without
signi�cant computation and communication.

The 4D/480 outperforms TreadMarks because of
the large amount of communication. The communica-
tion rate for the CLP input set is 157 Kbytes/second
and 449 messages/second on 8 processors, compared
to 526 Kbytes/second and 1,800 messages/second for
the BAD input set, hence the better speedups achieved
for CLP.

2.4.2 SOR

Figures 3 and 4 show SOR's speedup for 100 itera-
tions of 2000 � 1000 and 1000 � 1000 problems. We
excluded the �rst iteration of SOR from the data and
message rates in order to avoid having the initial data
distribution skew our results. Of the four applications
used, SOR is the only one for which there is a sizable
di�erence in single processor execution time between
TreadMarks and the 4D/480. TreadMarks is approxi-
mately 25% faster on a single processor, because both
problem sizes exceed the size of the secondary cache
on the SGI.

In addition to lower single processor execution
times, better speedups are achieved on TreadMarks.
The di�erence is partly due to the way in which
TreadMarks communicates updates to shared mem-
ory. Points at the edge of the matrix are initialized to

values that remain �xed throughout the computation.
Points in the interior of the matrix default to 0. Dur-
ing the early iterations, the points at the interior of
the array are recomputed (and stored to memory) but
their value remains the same. Only the points near
the edge change value. On the 4D/480 the hardware
cache coherence protocol updates the memory regard-
less of the fact that the values remain the same. Tread-
Marks, however, only communicates the points that
have changed value because di� s (see Section 2.1) are
computed from the contents of a page. Consequently,
the amount of data movement by TreadMarks is signif-
icantly less than the amount of data movement by the
4D/480. The estimated data movement by the 4D/480
after the initial data migration between processors is
5567 Kbytes, whereas the actual data movement by
TreadMarks is 1045 Kbytes.

To eliminate this e�ect, we initialized the matrix
such that every point changes value at every itera-
tion, equalizing the data movement by the 4D/480
and TreadMarks. Even in this modi�ed version, the
speedup is still better on TreadMarks than on the
4D/480. We attribute this result to the fact that
most communication in SOR occurs at the barriers
and between neighbors. On the ATM network, this
communication can occur in parallel. On the 4D/480,
it causes contention for the cache tags and the bus.

2.4.3 TSP

Figures 5 and 6 show TSP's speedup for solving a 19-
city and an 18-city problem. Branch-and-bound algo-
rithms can achieve super-linear speedup if the parallel
version �nds a good approximation early on, allowing
it to prune more of the search tree than the sequential
version. An example of such super-linear speedup can
be seen on the 4D/480 for the 19-city problem. More
important than the absolute values of the speedups
is the comparison between the speedups achieved on
the two systems. We see better performance on the
4D/480 than on TreadMarks (8.35 vs. 7.02 for the 19-
city problem and 6.67 vs. 4.71 for the 18-city prob-
lem). The di�erence is slightly larger for the 18-city
problem because of the increased synchronization and
communication rates (see Table 2).

The performance on TreadMarks su�ers from the
fact that TSP is not a properly labeled [11] program.
Although updates to the current minimumtour length
are synchronized, read accesses are not. Since Tread-
Marks updates cached values only on an acquire, a
processor may read an old value of the current min-
imum. The execution remains correct, but the work
performed by the processor may be redundant since



a better tour has already been found elsewhere. On
the 4D/480, this is unlikely to occur since the cache
consistency mechanism invalidates cached copies of
the minimum when it is updated. By propagating
the bound earlier, the 4D/480 reduces the amount
of work each processor performs, leading to a better
speedup. Adding synchronization around the read ac-
cesses would hurt performance, given the large number
of such accesses.

To eliminate this e�ect, we modi�ed TSP to per-
form an eager lock release instead of a lazy lock release
after updating the lower bound value. With an eager
release, the modi�ed values are updated at the release,
rather than at a subsequent acquire. The speedup
of TSP improved from 7.02 to 7.41 on 8 processors,
vs. 8.35 on the 4D/480. The remaining di�erences
between the DSM and the SGI performance can be
explained by faster lock acquisition on the SGI, com-
pounded with the non-deterministic e�ect of picking
up redundant work due to the slight delay in propa-
gating the bound.

2.4.4 Water

Figure 7 shows Water's speedup executing 5 steps on
288 molecules. TreadMarks gets no speedup, except
on 2 processors, because there are many messages
(6,161 messages/second), caused by the high rate of
synchronization (1,540 remote lock acquires/second).

Figure 8 shows M-Water's speedup executing 5
steps on 288 molecules. On the 4D/480, M-Water's
speedup is virtually identical to Water. On Tread-
Marks, however, there is a marked performance im-
provement. We obtain a speedup of 3.96 using 8
processors. Compared to Water, the number of mes-
sages/second drops to 2,739.

Part of the high cost of message transmission is due
to the user-level implementation of TreadMarks, in
particular, the need to trap into the kernel to send and
receive messages. We have implemented TreadMarks
inside the Ultrix kernel in order to assess the trade-
o�s between a user-level and a kernel-level implemen-
tation. In comparison, the minimum time to acquire
a lock drops from 0.78 to 0.43 milliseconds, and the
time for an 8-processor barrier drops from 2.20 to
0.74 milliseconds. For ILINK, SOR and TSP, the dif-
ferences between the kernel and user level implemen-
tations are minimal, reecting the low communication
rates in these applications. For M-Water, however, the
di�erences are substantial. Speedup on 8 processors
increases from 3.96 for the user-level implementation
to 5.60 for the kernel-level implementation, compared
to 7.17 for the 4D/480.

2.5 Summary

The relative magnitude of the di�erences in
speedup between TreadMarks and the 4D/480 for
ILINK, TSP, Water and M-Water roughly correlate to
the di�erences in the synchronization rates. For TSP,
Water and M-Water, which are primarily lock based,
the di�erence in speedup is closely related to the fre-
quency with which o�-node locks are acquired. On 8
processors, the di�erence in speedup is 6.7 for Water
(with 1540 remote lock accesses per second), 3.2 for M-
Water (680), 1.4 for the 18-city TSP (32), and 1.3 for
the 19-city TSP (14). In addition, for TSP, the 4D/480
performs better because the eager nature of the cache
consistency protocol reduces the amount of redundant
work performed by individual processors. For ILINK,
which uses barriers, the di�erence in speedup can be
explained by the barrier synchronization frequency, a
di�erence of 2.2 for the BAD data set with 10 barri-
ers per second, vs. a di�erence of 0.4 for CLP with
0.36 barriers per second. For SOR, the larger memory
bandwidth available in TreadMarks results in better
speedups. Dual cache tags and a faster bus, relative
to the speed of the processors, are necessary to over-
come the bandwidth limitation on the SGI.

The ATM LAN's longer latency makes synchro-
nization more expensive on TreadMarks than on the
4D/480. Moving the implementation inside the ker-
nel, as we did, is only one of several mechanisms that
can be used to reduce message latency.

3 Comparison of Larger Systems

In this section, we extend our results to larger num-
bers of processors. The software approach scales, at
least conceptually, to a larger number of processors
without modi�cation. The hardware approach, how-
ever, becomes more complex once the number of pro-
cessors exceeds what can reasonably be supported by
a single bus. The processor interconnect instead be-
comes a mesh or a crossbar with one or more proces-
sors at the nodes, and the cache controllers implement
a directory-based cache coherence protocol. In addi-
tion to shared memory implemented entirely in either
software or hardware, a third avenue suggests itself.
This architecture consists of a number of bus-based
multiprocessors, each with su�cient bus bandwidth
to support the processors without contention causing
a bottleneck. Conventional bus snooping hardware en-
forces coherence between the processors within a node.
These hardware shared-memory multiprocessors then



become nodes on a general-purpose network, with co-
herence between di�erent nodes implemented in soft-
ware. We will refer to these three architectures as the
All Software (AS), All Hardware (AH), and Hardware-
Software (HS) approaches.

The HS approach appears promising both in terms
of cost and complexity. Compared to the AS ap-
proach, bus-based multiprocessors with a small num-
ber of processors (N ) are cheaper than N comparable
uniprocessor workstations. Furthermore, the cost of
the interconnection hardware is reduced by roughly
a factor of N . Compared to the AH approach, com-
modity parts can be used, reducing the cost and com-
plexity of the design. In this section, we assess the
performance of the HS approach compared to AS and
AH.

3.1 Simulation Models

We modeled the architectures and simulated the
programs using an execution-driven simulator [7]. In-
stead of the DECstation-5000/240 and SGI 4D/480,
we base our models on leading-edge technology. All of
the architectural models use RISC processors with a
150 Mhz clock, 64 Kbyte direct-mapped caches with
a block size of 32 bytes, and main memory su�cient
to hold the simulated problem without paging. We
simulate up to 64 processors for each architecture.

In both the AH and the AS models, each node has
one processor and a local memory module. A cache
miss satis�ed by local memory takes 12 processor cy-
cles. In the HS model, each node has 8 processors
connected by a 256-bit wide split transaction bus oper-
ating at 50 MHz. A cache miss satis�ed by local mem-
ory takes 16 to 18 processor cycles, which is slightly
longer than the AH and the AS models because of bus
overhead.

In the AH model, the nodes are connected by a
crossbar network with point-to-point bandwidth of
200 Mbytes/second and a latency of 160 nanoseconds.
We used a crossbar in order to minimize the e�ect
of network contention on our results. The point-to-
point bandwidth is the same as the Intel Paragon's
network [?]. Cache coherence is maintained using a
directory-based protocol. A cache miss satis�ed by
remote memory takes 92 to 130 processor cycles, de-
pending on whether the block is modi�ed and its lo-
cation. These cycle counts are similar to the Stanford
DASH [17] and FLASH [16] multiprocessors.

In both the AS and the HS models, the general-
purpose network is an ATM switch with a point-to-
point bandwidth of 622 Mbit/second and a latency
of 1 microsecond. Memory consistency between the

nodes is maintained using the TreadMarks LRC in-
validate protocol (See Section 2). In addition, the
simulations account for the wire time, contention for
the network links, and the software overhead of enter-
ing the kernel to send or receive messages, including
data copying (5000+28�message size in words proces-
sor cycles), calling a user-level handler for page faults
and incoming messages (4000 processor cycles), and
creating a di� (8�words per page processor cycles).
The values are based on measurements of the Tread-
Marks implementation on the DECstation-5000/240
(See Section 2).

For the HS approach, all of the processors within a
node are treated as one by the DSM system. We as-
sume that cache and TLB coherency mechanisms will
ensure that processors within a node see up-to-date
values. Multiple faults to the same page are merged
by the DSM system. In other words, if one proces-
sor faults on a page and later another processor faults
on the same page, the second and subsequent proces-
sors simply wait until the �rst processor has retrieved
the page. Synchronization is implemented through a
combination of shared memory and message passing,
reecting the hierarchical structure of the machine.
For barriers, each processor updates a local counter
until the last processor on the node has reached the
barrier. The last processor sends the arrival message
to the manager. When the last arrival message arrives
at the manager, it issues a departure message to each
node. Similarly, locks are implemented using a token.
The token is held at one node at a time. In order to
acquire a lock, a processor must �rst bring the token
to its node. If the token already resides at the node,
no messages are required.

3.2 Results

We simulated SOR, TSP, and M-Water. Exces-
sively long simulation times prevented us from includ-
ing simulation results for ILINK. Figures 9 to 11 re-
port the speedups achieved on the three di�erent ar-
chitectures. Since the uniprocessor execution times
are roughly identical for all three architectures, the ex-
ecution times are omitted. Figures 12 and 13 present
the message and data movement totals for AS and
AH. The totals are presented relative to the AS num-
bers. Sections 3.2.1 to 3.2.3 discuss the observed per-
formance of the individual applications. Section 3.2.4
discusses the e�ect of reducing the software overhead
for the AS and HS architectures.
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Figure 9: Speedups for SOR: 2000� 1000
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Figure 10: Speedups for TSP: 19 Cities
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Figure 11: Speedups for M-Water: 288 Molecules and
2 Steps
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Figure 12: Total Messages
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Figure 14: AS Speedups for SOR: 2000� 1000
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Figure 15: AS Speedups for M-Water: 288 Molecules
and 2 Steps

3.2.1 SOR

Figure 9 presents speedups for the SOR program for
a 2000� 1000 matrix. Since we only simulate a small
number of iterations, we begin the simuation with the
second iteration in order to prevent cold start misses
from dominating our statistics. Linear speedup is
achieved on AH and HS, while the performance of
AS is sub-linear due to the high communication cost.
SOR performs mainly nearest neighbor communica-
tion. Hence this program can take advantage of the
hierarchical nature of the HS architecture. The only
processors to incur a high penalty for misses are the
edge processors that share data with processors that
are o�-node, and hence this program incurs little extra
overhead on HS in comparison to AH. This conclusion
is supported by the observation that the number of
messages for the 64-processor execution on HS is 1/9
of the number of messages for the 64-processor AS
execution (See Figure 12).

3.2.2 TSP

Figure 10 presents speedups for the TSP programwith
a 19 city input. This program has a very high compu-
tation to communication ratio. However, as the num-
ber of processors increases, this ratio decreases enough
for the high latency of communication in the AS archi-
tecture to become a bottleneck. Figure 12 shows that
the number of messages for the HS architecture is less
than 1/2 that for the AS architecture. The reduction
is not 8-fold because the next processor to access the
queue is more likely to be from another node. Fig-
ure 13 shows that the amount of data movement by
HS is about 1/8 that for AS. The 8-fold reduction in

data movement is a result of HS coalescing changes
from di�erent processors on a node into a single di�.

3.2.3 M-Water

Figure 11 presents speedups for M-Water running 2
time steps on 288 molecules. Beyond 32 processors,
AH is the only architecture whose speedup improves.
AS obtains a peak speedup of X at 16 processors,
and HS reaches its peak speedup of Y at 32 proces-
sors. The performance is poor for the AS architec-
ture because of the large number of synchronization
operations as well as the large amount of data com-
municated. Although HS gets a 5-fold decrease in the
number of overall messages and a 13-fold decrease in
the amount of data movement compared to the AS
architecture, its performance does not match AH be-
cause the number of synchronization messages (and
the wait time to acquire the locks) remains high (See
Figure 12).

3.2.4 Reduced Software Overhead

Message-passing systems with lower software overhead
than Unix sockets are possible, either through opti-
mizing the software structure, e.g., Peregrine [13], or
a user-level hardware interface, e.g., SHRIMP [3]. In
this section, we examine the e�ect of reducing both
the �xed and per word overheads. Speci�cally, we ex-
amine the e�ect of reducing the �xed cost from 5000
processor cycles to 500, roughly Peregrine, and 50,
roughly SHRIMP, and the per word cost from 28 pro-
cessor cycles to 8, one bcopy to the interface.

Figures 14 and 15 present the speedups for SOR
and M-Water on the AS architecture. These show the

smallest and the largest e�ects for reducing the soft-
ware overhead. For SOR, the �xed cost has the largest
e�ect on performance; while, for M-Water, both the
�xed and per word cost have equal e�ects on perfor-
mance.

Figures 16 presents the speedups for M-Water on
the HS architecture. Because HS reduces the amount
of data movement more than the number of messages
(compared to AS), the �xed cost has a more signi�cant
e�ect than it did for AS.

3.3 Summary

We conclude that the AS approach does not scale
well for the applications and problem sizes that we
simulated, unless the software overheads are signi�-
cantly reduced. The HS approach, which uses hard-
ware for coherence at the node level, and software
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Figure 16: HS Speedups for M-Water: 288 Molecules
and 2 Steps

for inter-node coherence scales very well for SOR and
TSP. For example, SOR performs nearest-neighbor
sharing which takes advantage of the HS architecture,
and TSP takes advantage of the coalescing of di�s. For
SOR and TSP, the HS performance is almost iden-
tical to the AH approach. For Water, the frequent
synchronization results in inferior performance for HS
compared to AH.

Our results are, of course, limited by the appli-
cations we simulated. Due to simulation time con-
straints, the problem sizes are small. The e�ect of
larger applications remains to be investigated.

4 Related Work

TreadMarks implements shared memory entirely in
software. Both data movement and memory coherence
are performed by software using the message passing
and virtual memory management hardware. Previ-
ous evaluations of such systems, for example Carter
et al. [4], have compared their performance to hand-
coded message passing.

Other related studies have examined software ver-
sus hardware cache coherence. In these studies, the
hardware is responsible for performing the data move-
ment. Upon access, the hardware automatically loads
invalid cache lines from memory. To maintain co-
herency, these schemes require the placement of cache
ush/invalidation instructions by the compiler or the
programmer at the end of critical sections. Cytron
et al. [8] and Cheong and Veidenbaum [6] describe al-
gorithms for compiler-based software cache coherence.
Owicki and Agarwal compare analytically the perfor-

mance of such a scheme to snoopy cache coherence
hardware [20]. Petersen, on the other hand, describes
a software cache coherence scheme using the virtual
memory management hardware [22]. This scheme is
transparent to the programmer. It does not require
the programmer or compiler to insert cache ush in-
structions. Using trace-driven simulation, she com-
pared the performance of her software scheme on a
shared-bus to snoopy cache hardware.

A few implementations using both hardware and
software have been proposed. Both Chaiken et al. [5]
and Hill et al. [12] describe shared memory implemen-
tations that handle the most common cache coherence
operations in hardware and the most unusual opera-
tions in software, thereby reducing the complexity of
the hardware without signi�cantly impacting the per-
formance.

5 Conclusions

In this paper we have assessed the performance
tradeo�s between hardware and software implemen-
tations of shared memory.

For small numbers of processors we have compared
a bus-based shared memory multiprocessor, the SGI
4D/480, to a network of workstations running a soft-
ware DSM system, speci�cally the TreadMarks DSM
system running on an ATM network of DECStation-
5000/240s. An important aspect of this comparison is
the similarity between the two platforms in all aspects
(processor, cache, compiler, parallel programming in-
terface) except for the shared memory implementa-
tion.

For the applications with moderate synchronization
and communication demands, the two con�gurations
perform comparably. When these demands increase,
the communication latency and the software overhead
of TreadMarks causes it to fall o� in performance. For
applications with high memory bandwidth require-
ments, the network of workstations performs better
because it provides the processor with a private path
to memory, whereas the bus becomes a bottleneck on
the SGI 4D/480.

For larger number of processors we had to resort
to simulation. For the sizes of the applications we
considered, a straight extension of the software DSM
system scaled poorly. We investigated an intermediate
approach, using a general purpose network and soft-
ware DSM to interconnect hardware bus-based mul-
tiprocessor nodes. Such a con�guration can be con-
structed with commodity parts, resulting in cost and



complexity gains over a hardware approach that uses
a dedicated interconnect and a directory-based cache
controller. Except for applications with poor locality,
the combined hardware-software approach resulted in
performance comparable to that obtained using a pure
hardware approach.
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