

1

Light-Weight Currency Management Mechanisms in Deno

Ugur Cetintemel Peter Keleher

Department of Computer Science

University of Maryland
College Park, Maryland 20742
{ugur, keleher}@cs.umd.edu

This paper discusses the currency management mechanisms used in Deno, a replicated-object storage sys-
tem designed for use in mobile and weakly-connected environments. Deno primarily differs from previous
work in implementing an asynchronous weighted-voting scheme via epidemic information flow, and in
committing updates in an entirely decentralized fashion, without requiring any server to have complete
knowledge of system membership.

We first give an overview of Deno, briefly discussing its voting scheme, proxy mechanism, basic API, and
commit performance. We then present currency management mechanisms, based on peer-to-peer currency
exchanges, that enable light-weight replica creation, retirement, and currency redistribution while main-
taining protocol correctness. We also demonstrate that peer-to-peer exchanges can be used to exponen-
tially converge to arbitrary target currency distributions.

1 Introduction
Recent advances in hardware technologies have made mobile computing feasible and practical. Mobile

device usage is increasing as the devices become smaller, cheaper, and more powerful. Mobile users often

carry their laptops, PDAs, and other portable devices wherever they go. Mobile environments differ from

typical desktop environments in many ways, including power availability, resources such as CPU, mem-

ory, secondary storage, and, above all, in their communication behavior. Mobile systems usually lack

continuous connectivity, and typically possess limited communication bandwidth even when they are

connected. As a result, mobile and weakly-connected operations rely heavily on replication mechanisms

in order to deliver good performance.

Deno is a highly-available replicated-object server intended for use in mobile and weakly-connected envi-

ronments [15]. Deno differs from previous approaches in that it completely decentralizes all control and

information flow. Innovations of Deno include the extension of voting schemes through fixed per-object

currencies (i.e., weights), and the use of pair-wise epidemic protocols with voting schemes. Deno’s repli-

cation protocol is highly-available, and is able to make progress and eventually commit updates even if

there is never a majority of replicas connected to each other simultaneously.

In order to address requirements of disconnected operation, Deno employs the ‘update anytime-

anywhere-anyhow’ replication model [11]. Our system treats all servers as peers in their ability to gener-

ate updates. Deno’s servers execute updates locally and commit them globally using a decentralized

weighted-voting scheme [15]. Updates and voting information are propagated through the system asyn-

2

chronously using an epidemic style of communication (e.g., [1, 8, 21, 23]) that requires only pair-wise

communication. Updates gather votes as they pass through servers. An update is committed only when it

corners the plurality of votes. In Deno, update commitment is decentralized in that each server independ-

ently commits or aborts updates on the basis of local information, eliminating the need for ‘synchronous’

multi-site commit protocols (e.g., two-phase commit [7]). However, the same updates eventually commit

at all servers and in the same order.

An important issue in any voting scheme is flexible, efficient management of currencies. Light-weight

replica management and currency redistribution become especially desirable in highly-dynamic environ-

ments due to the need to quickly adapt to changing environmental and application-specific factors and

efficiently modify system configuration. Existing currency management mechanisms are heavy weight in

the sense that they typically require the participation of a majority of servers to create/retire replicas and

install new currency values [6, 10, 13, 17, 24]. Deno uses light-weight, peer-to-peer mechanisms that fa-

cilitate such operations, requiring the participation of only two servers.

The rest of the paper is organized as follows. Section 2 gives an overview of Deno by briefly discussing

its voting scheme, proxy mechanism, basic API, and commit performance. Section 3 addresses currency

management issues and describes how Deno performs light-weight replica creation, retirement, and cur-

rency redistribution. Section 4 discusses related work and Section 5 concludes the paper.

2 Deno Overview

2.1 Decentralized Weighted-Voting
We now briefly describe Deno’s weighted-voting scheme. The details, along with a sketch of the correct-

ness proof, appear in [15]. We assume a model in which the shared state consists of a set of objects repli-

cated across multiple servers. Objects do not need to be replicated at all servers and multiple objects can

be replicated at the same server. For simplicity of exposition, however, we limit our discussion to single

objects that are cached at all servers.

Objects are modified by updates, which are issued by servers. Updates do not commit globally in one

atomic phase. Instead, each server independently commits updates on the basis of local information.

However, we show below that if an update commits at one server, it eventually commits everywhere, and

in the same order with respect to other committed updates.

Elections: A clean way of thinking about update commitment is as a series of elections. In the election

framework, a server is analogous to a voter, creating an update is analogous to a voter deciding to run for

office, and a committed update is analogous to a candidate winning the election. A candidate wins an

election if and when it corners a plurality of the votes. Votes are weighted and the sum of all votes in the

3

system is bounded to 1.0. Any election may have multiple candidates, which represent logically concur-

rent tentative updates. Candidates from different elections might be alive in the system at the same time.

We present our distributed election algorithm next. Initially, we assume that the voter does not propose

updates and participates in the protocol only to keep abreast with election winners and system state. Later

on, we will explain how a voter can propose an update. Voting information flows from voter to voter

through anti-entropy sessions. An anti-entropy session from server v' to server v is a uni-directional flow

of information that specifies the elections that have been won and the votes in the current election. More

specifically, an anti-entropy from v' to v causes the following sequence of events to occur as a single

atomic unit: (1) if v' knows about more committed elections than v does, v copies all those results as a

given, without waiting to find the specific votes that caused those outcomes to occur; and (2) if v' and v

both know about the same committed elections, then (a) v copies all votes known to v' that it does not

know itself, and (b) if v has not yet voted and v' has voted, then v votes for the same candidate as v'. A

server v keeps track of the votes of all individual servers and summarizes them in two main statistics: (1)

votes(c), which is the total weight of votes in favor of candidate c in v’s current election, and (2) uncom-

mitted, which is the total weight of voters whose vote for v’s current election is currently unknown to v.

Voter v gathers election information until either it can award its current election to a candidate k or learns

from another server that the election has already been committed. Voter v awards the election to k when v

finds that k has won a plurality of votes, that is, if and only if, for all candidates j ≠ k, either (1) votes(k) >

votes(j) + uncommitted or (2) votes(k) = votes(j) + uncommitted and k < j. The voter breaks ties in rule (2)

with a simple comparison between the indexes of the servers that created the competing updates. Each

individual voter counts votes locally and deduces election outcomes independently. As a result, server v

can commit an update without knowing all the votes, without complete knowledge of which servers have

seen the update, and even without knowing which servers cache the object. After voter v has awarded

election i to k, it will move on to election i+1.

Becoming a candidate: A voter, v, may propose an update and become a candidate at any time in the ith

election as long as (1) v has not awarded election i to any candidate, and (2) v has not yet voted in the ith

election. A candidate v always votes for itself.

Although the protocol is completely asynchronous and decentralized, it satisfies the global update consis-

tency property as stated by Theorem 1 (see [15] for a proof outline):

Theorem 1 If a voter v1 awards the ith election to candidate k, then when any other voter v2 completes

election i, it will award the ith election to the same candidate.

4

2.2 Currency Proxies and Fault-Tolerance
Deno achieves fault-tolerance through a proxy mechanism. Proxies represent unavailable servers in the

system and are assigned either by the unavailable server itself (in case of expected disconnections) or

through proxy elections.

Deno transparently handles voluntary disconnections by having a primary server engage a proxy to vote

in its place while the primary is disconnected. A proxy vote is then indistinguishable to other servers from

the situation where a server votes and disconnects. The use of proxies can prevent degradation in the

overall commit rate when devices have expected, planned-for disconnections. In fact, proxies can even

improve commit latency because currency is concentrated in fewer servers, and fewer rounds of commu-

nication are required to establish a quorum.

In case of unexpected disconnections, failures, or network partitions, Deno servers collectively elect a

server to act as a proxy to the unavailable, failed server(s). Proxy elections are performed similarly to co-

ordinator elections protocols widely used by many distributed protocols [7], using the decentralized vot-

ing scheme described earlier.

2.3 Deno Design
Deno is a runtime library that can be linked directly with application instances, such as bibliographic da-

tabases, or collaborative groupware applications. Any process that is linked to a copy of the Deno library

is considered to be a Deno server.

The overriding goal of the Deno project is to investigate replica consistency protocols. We are therefore

not motivated to build large and complicated interfaces to the object system. By the same token, we feel

that lightweight interfaces are the appropriate choice for many applications, and that more complex ser-

vices can be efficiently built on top of Deno services if needed.

The basic Deno API consists of the calls listed in Table 1. These calls allow new servers, objects, and rep-

licas to be created, and replicas to be updated and destroyed. Servers use proxy calls to delegate voting

rights before planned disconnections. Notification calls are used to learn about the termination status of

the updates. The sparse interface avoids burdening applications with unwanted or unneeded abstractions

and functionality.

We currently expect applications to provide the name of a machine that is running a Deno server with an

existing replica. With name in hand, the new server can talk to a well-known port and obtain object repli-

cas by calling deno_replica_create(). There are no distinguished servers, any server is capable of

creating new objects and providing object replicas to other servers. Servers are all peers, differing only in

the amount of per-object currency that they hold.

5

Calls to deno_replica_update() are made on either side of the actual updates in order to delimit

the update interval to the underlying system. The actual updates consist of simple writes and/or calls to

deno_object_resize().

A server that plans to disconnect can use the call deno_replica_proxy()to transfer its currency and

voting rights to a proxy server. When the server reconnects, it calls deno_replica_unproxy()in

order to regain its currency and voting rights from its proxy.

The calls deno_update_status()and deno_wait_update()are used by applications to gain

information regarding the termination status of updates. The first call returns the current status of a given

update, indicating whether the update is committed, aborted, or still tentative. The latter call blocks the

application till a given update is either committed or aborted. Using these calls and maintaining enough

information to back out of tentative updates, Deno can provide any type of session guarantees [22].

2.4 Basic Commit Rates
The primary goal of our protocols is to improve the ability of the system to make progress during times of

low connectivity. This includes improving read availability, and the ability to commit updates. However,

poor performance and speed at committing could make a system unusable during periods of good connec-

tivity. We built a simple simulator to investigate Deno’s protocol performance. We simulate a system in

which time is broken into uniform intervals. Each server initiates a randomly-directed anti-entropy ses-

Interface Call Semantics

deno_server_create([server name]) Creates server with optional name.

deno_object_create(<name> <initial Obj> [exp. #])
Creates new object. Optional third argument gives the expected num-

ber of eventual replicas.

Obj deno_replica_create(<name> [<server hint>])
Creates local replica of named object. The optional server hint tells

Deno where to look for an existing replica.

deno_object_resize(Obj, int sz) New size for binary Deno object.

int deno_replica_update(<name> <update>) Updates an object replica.

deno_replica_proxy(<object name> [<server hint>]) Delegates authority while disconnected.

deno_replica_unproxy(<object name>) Retrieves delegated authority.

deno_replica_delete(<name> [<proxy hint>]) Deletes local replica and transfer currency.

int deno_update_status(<update id>)
Identifies current status of an update. An update can be committed,

aborted, or tentative.

int deno_wait_update(<update id>)
Waits for an update to be terminated (i..e., either committed or

aborted).

Table 1: Basic Deno API

6

sion during each interval. We assume uniform distribution of currency and a completely available, fully-

connected system.

Figure 1(a) shows a plot of the average number of intervals needed to commit an update versus the num-

ber of servers for Deno’s default voting scheme and a Bayou-like primary-copy scheme. The figure re-

veals that the primary-copy scheme commits updates significantly faster than the voting scheme. How-

ever, the time at which the first server commits an update is not necessarily the quantity that best predicts

application performance. Since all servers have an equal chance of being read, a second interesting metric

would be the time at which the last server commits an update. Figure 1(b) shows that the rate at which the

Deno’s protocol commits updates everywhere in the system is virtually identical to that of the primary

copy. The metric of most use to applications probably lies somewhere between the two.

In Figure 2, we compare the commit performance of Deno to a ‘Certify-All’ type of epidemic protocol

similar to the one proposed by Agrawal et al. [1]. This protocol commits an update only after the update

is certified by all the servers that replicate the object. If and when a server detects a conflict, the server

aborts all the updates involved in the conflict to ensure correctness. Figure 2 suggests that the voting

mechanism used by Deno consistently commits updates about 30-40% faster than Certify-All. This im-

provement is basically due to the fact that while Certify-All requires an update to be certified by all serv-

ers before committing the update, it is sufficient for an update to be certified by a majority of servers in

Deno (assuming a uniform currency distribution). This feature not only yields performance improvements

over the Certify-All scheme, but it also turns out to be crucial for making progress during times of low

availability, accessibility and network partitions.

3 Light-Weight Currency Management
Timely update commitment depends on being able to assemble a majority to vote on updates. The cost of

assembling a majority is highly dependent on the currency distribution of the object replicas. The best

0

5

10

15

20

0 200 400 600 800 1000

Deno
Primary

0

5

10

15

20

25

30

0 200 400 600 800 1000

Deno
Primary

(a) (b)

Figure 1: Commit rates: (a) shows the average number of intervals needed for the first replica to commit
an update versus the number of replicas for the basic voting scheme, and a primary-copy scheme. (b) shows
the number of intervals for last replica to commit updates.

7

currency distribution depends on the non-trivial interplay among several factors such as expected avail-

ability of individual servers, interconnectivity, and application characteristics. In general, replicas that are

more reliable or better interconnected should receive more currency [4]. In this section, we investigate

mechanisms that enable the implementation of arbitrary currency distribution policies while still main-

taining the correctness of the voting protocol. Note that the issue of finding ‘optimal’ currency distribu-

tions and policies for currency redistribution are outside the scope of this paper and have been addressed

by many previous work (e.g., [3, 4, 6, 13, 17]).

We first describe how replicas are created and currency is initially allocated. We then discuss protocols

for dynamically re-allocating currency while still maintaining the mutual exclusion properties of our vot-

ing protocol. We also investigate the cost of migrating currency distributions towards target distributions

when initial allocations are not ideal.

3.1 Replica Creation and Retirement
Objects are initially created with a total currency of 1.0, which is held by the creating server. A new rep-

lica is created through a request to a server that already has a replica (Section 2.3). The response to such a

request contains both an object copy and some currency that is subtracted from the currency held by the

responding server. A replica can be retired using a similar pair-wise mechanism in which the currency

held by the retired replica is transferred to another replica.

Initial currency allocation is non-trivial because not only do no servers have complete knowledge of the

size of the anticipated set of servers, but also there is generally not even a central location that can be ex-

pected to receive all currency requests. Instead, each server receives an initial block of currency from the

server who responds to its initial request to create a replica. This respondent can be any server, so we can

clearly not guarantee to achieve a given distribution merely by allocation.

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

(a)

Certify-All

Deno

0%

5%

10%

15%

20%

25%

30%

35%

40%

10 100 200 300 400 500 600 700 800 900 1000

(b)

Figure 2: (a) shows the average number of intervals needed to for the first replica to commit an update
versus the number of replicas for the Certify-All and Deno protocols. (b) shows the percentage improve-
ment of Deno over Certify-All in commit speed versus the number of replicas.

8

However, Deno applications can direct currency allocation by providing a hint at object creation as to

how many replicas are expected to be created (see Section 2.3). This hint allows Deno to allocate cur-

rency to replica requests in a way that provides a uniform level of currency for the expected number of

replicas. For this to work, new replicas must be created from the original replica. This choice can also be

controlled through runtime hints.

3.2 Currency Redistribution Mechanism
Without any restricting assumptions, it is not likely that initial currency allocations will approach the tar-

get distributions. Furthermore, the ‘optimal’ distribution in dynamic environments and systems may

change continuously. It is crucial, therefore, to provide mechanisms for redistributing currency through-

out the lifetime of the object.

Deno uses peer-to-peer currency exchanges to incrementally change existing distributions into arbitrary

target distributions. A pair of servers communicates and redistributes their total currency according to

some redistribution policy. We now describe how to implement peer-to-peer currency exchanges while

maintaining the correctness of our voting protocol. Let si and sj be two servers that exchange currency,

and without loss of generality let x be the currency that is to be transferred from si to sj. Further, let ei de-

note the most recent election in which si voted, and ej denote the current election of sj. For correctness, the

protocol has to guarantee that:

(1) x is not used more than once in any election, and

(2) x is available to every election.

Restriction (1) is needed in order to prevent servers from reaching different conclusions on the outcome

of a single election. The need for (2) is less obvious. Any amount of currency that effectively “disap-

pears” from an election can prevent an election from closing. In the case of server failures, the rest of the

system cooperates to reallocate the lost server’s currency. However, in this case no server has failed, and

without restriction (2) a loss of currency could deadlock the entire system.

In order to satisfy the two correctness requirements presented above, we define e, the election in which si

decreases the amount of currency it holds by x and sj increases its currency by x, as:

(i) If ei < ej , then e = ej , or

(ii) If ei ≥ ej , then e = ei+1.

Case (i) implies that it is possible for sj to increase its vote during the same election. A server that ob-

serves two different votes from the same server for the same election uses the vote with more currency,

since cases (i) and (ii) together guarantee that it is not possible for a server to decrease its currency in an

9

election it has already voted. Notice that the protocol presented above also applies to the currency trans-

fers performed during replica creation and retirement.

An important feature of peer-to-peer exchanges is that the final currency distribution does not have to be

known by any participating server. Rather, each server indicates a target weight and receives currency

proportional to this weight. More formally, let ci and ci' denote the currencies that si holds before and after

a currency exchange, respectively. Assume also that si and sj, with currency targets of ti and tj, perform a

currency exchange. In such a case, the new currency values will be ci' = [ti / (ti + tj)]*[ci + cj], and cj' = [ci

+ cj]- ci'.

3.3 Currency Redistribution Policies
Given any initial distribution, randomized peer-to-peer currency exchanges can be used to converge to

any target distribution, even without complete knowledge of the servers in the system. For example, con-

sider the optimal currency distribution given by Amir and Wool [3], where currency is distributed propor-

tionally to the individual availability of servers. Without complete knowledge of all availabilities in the

system, it is not possible for any individual server to determine its own target currency. However, two

servers participating in a peer-to-peer currency exchange can converge to these unknown targets by redis-

tributing their own currencies proportionally to their own availabilities (i.e. ti is set to the availability of

si). Therefore, it is sufficient for each server to have knowledge of its own availability. Servers can con-

verge to a uniform distribution without knowing the total number of servers, by simply sharing currency

equally in pairwise exchanges (i.e., ti and tj are set equal). Fast commits might also be helped by distribut-

ing currencies according to update frequencies.

It is important to emphasize that an existing distribution can be migrated to a target distribution without

the need for any server to have global information (e.g., number of servers, current currency distribution,

etc). The ability to achieve global goals with only local information is one of the reasons that this tech-

nique is especially suited for highly-dynamic environments and systems.

3.4 Convergence Rates
We also investigated the convergence speed of this mechanism. Randomly-selected, pair-wise currency

exchanges allow the distribution to converge exponentially fast to any target distribution. We have proved

this result analytically for three servers, and the experimental results in Figure 3 suggest that the proposi-

tion generalize when there are more than three servers. Figure 3 shows the mean difference between thou-

sand pairs of randomly chosen initial and target currency distributions versus the number of pair-wise cur-

rency exchanges performed in the system. The shapes of the plots in the figure clearly demonstrate that

the difference between the target and the existing distributions diminishes exponentially fast. As ex-

10

pected, the larger the number of replicas, the more the number of currency exchanges required to con-

verge to the target distribution. It is also worth noting that Barbara and Garcia-Molina demonstrated that

autonomous, incremental methods for determining new currency distributions, while being more flexible,

can yield as much availability as those methods that require having complete knowledge of system state

[6].

4 Related Work
There has been significant work in the area of data and consistency management in mobile and weakly-

connected environments [2, 5, 9, 12, 16, 18-20, 23]. Of particular relevance to our work are those propos-

als that exploit epidemic algorithms to propagate updates [1, 8, 14, 18, 21, 23]. Many epidemic systems

take an optimistic approach and use reconciliation-based protocols (e.g., [14, 18]) that are only viable in

certain domains such as file systems. Bayou [23] takes a more pessimistic (i.e., conflict avoidance-based)

approach, ensuring that all committed updates are serialized in the same order at all servers using a pri-

mary-copy scheme. More recently, Agrawal et al. [1] proposed a pessimistic approach where an update is

committed only after it is certified by all servers. Deno differs from these approaches in its use of a novel

voting scheme with epidemic information flow to achieve higher availability.

Voting schemes [10, 24] improve availability by allowing a quorum of all replicas to commit an update.

Work on currency (e.g., weight) management primarily focused on policies that are used to reassign votes

after site or link failures in order to improve availability [3, 6, 13, 17]. The reassignments, as well as rep-

lica creation and retirement operations, are typically installed using heavy-weight mechanisms that require

the participation of (at least) a majority of servers to maintain mutual exclusion properties. To the best of

our knowledge, Deno is the only voting scheme that allows for light-weight replica creation and retire-

ment, requiring the participation of only two servers. Deno achieves this through its unique feature of fix-

ing the total per-object currency in the system.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 2000 4000 6000 8000 10000

number of pair-wise exchanges
su

m
 o

f e
rro

rs

10 Servers
100 Servers
1000 Servers

Figure 3 : Converging to a target distribution with randomly
selected peer-to-peer exchanges.

11

5 Conclusions
This paper has presented an overview of the Deno replicated object-storage system, and described how it

implements a novel decentralized weighted-voting scheme via epidemic information flow. We focused

especially on the important issue of currency management, and described mechanisms that facilitate light-

weight replica creation, retirement, and dynamic currency redistribution. Unlike previous protocols that

typically require a majority of servers to create new replicas or install new currency values, the mecha-

nisms we proposed are based on peer-to-peer currency exchanges, and require the participation of only

two servers. Furthermore, these mechanisms can be used to converge to arbitrary target currency

distributions, without any server having complete knowledge of state of the system. Using simulation, we

demonstrated that this convergence happens exponentially fast.

In terms of future work, we plan to extend Deno to perform transactional multi-item updates. We also

plan to investigate dynamic currency redistribution and anti-entropy policies. We are currently imple-

menting the Deno prototype on top Windows32/WinCE environments to investigate these and other is-

sues.

6 References
[1] D. Agrawal, A. E. Abbadi, and R. Steinke. Epidemic Algorithms in Replicated Databases. In Proc. of the

Symposium on Principles of Database Systems, Tucson, Arizona, May 1997.

[2] R. Alonso and H. F. Korth. Database System Issues in Nomadic Computing. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, Washington, DC, May 1993.

[3] Y. Amir and A. Wool. Optimal Availability Quorum Systems: Theory and Practice. Information Process-
ing Letters, vol. 65, pp. 223-228, April 1998.

[4] D. Barbara and H. Garcia-Molina. Optimizing the Reliability Provided by Voting Mechanisms. In Proc. of
the International Conf. on Distributed Computing Systems, San Francisco, October 1984.

[5] D. Barbara and H. Garcia-Molina. Replicated Data Management in Mobile Environments: Anything New
Under the Sun? In IFIP Working Conference on Applications in Parallel and Distributed Computing, April
1994.

[6] D. Barbara, H. Garcia-Molina, and A. Spauster. Increasing Availability Under Mutual Exclusion Con-
straints with Dynamic Voting Assignment. ACM Transactions on Computing Systems, vol. 7, pp. 394-426,
1989.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Sys-
tems: Addison-Wesley, 1987.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic Algorithms for Replicated Database Maintenance. In Proc. of the Symposium on Principles of
Distributed Computing, August 1987.

[9] M. Dunham and A. Helal. Mobile Computing and Databases: Anything New? SIGMOD Record, vol. 24,
pp. 5-9, 1995.

[10] D. K. Gifford. Weighted Voting for Replicated Data. In Proceedings of the ACM Symposium on Operating
Systems Principles, 1979.

[11] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The Dangers of Replications and a Solution. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data, Montreal, Canada, June 1996.

12

[12] T. Imielinski and B. R. Badrinath. Wireless Mobile Computing: Challenges in Data Management. Commu-
nications of the ACM, vol. 37, pp. 19-28, October 1994.

[13] S. Jajodia and D. Mutchler. Dynamic Voting Algorithms for Maintaining the Consistency of a Replicated
Database. ACM Transactions on Database Systems, vol. 15, pp. 230-280, 1990.

[14] L. Kawell, S. Beckhardt, T. Halvorsen, R. Ozie, and L. Greif. Replicated Document Management in a
Group Communication System. In Proceedings of the 2nd Conference on Computer Supported Cooperative
Work, 1988.

[15] P. J. Keleher. Decentralized Replicated-Object Protocols. In Proc. of the Symposium on Principles of Dis-
tributed Computing, May 1999.

[16] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. In Proc. of the ACM
Symposium on Operating Systems Principles, October 1991.

[17] A. Kumar and A. Segev. Cost and Availability Tradeoffs in Replicated data concurrency control. ACM
Transactions on Database Systems, vol. 18, pp. 102-131, March 1993.

[18] T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P. Reiher, A. Goel, G. H. Kuenning, and G. J. Popek.
Perspectives on Optimistically Replicated Peer-to-Peer Filing. Software--Practice and Experience, vol. 28,
pp. 155-180, February 1998.

[19] E. Pitoura and B. Bhargava. Maintaining Consistency of Data in Mobile Distributed Environments. In
Proc. of the International Conference on Distributed Computing Systems, May 1995.

[20] R. Prakash and M. Singhal. Dynamic Hashing + Quorum = Efficient Location Management for Mobile
Computing Systems. In Proc. of the Principles of Distributed Computing, Santa Barbara, CA, August 1997.

[21] M. Rabinovich, N. H. Gehani, and A. Kononov. Scalable Update Propagation in Epidemic Replicated Da-
tabases. In Proc. of the Int.Conf. on Extending Database Technology, Avignon, France, March 1996.

[22] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. W. Welch. Session Guarantees
for Weakly Consistent Replicated Data. In Int. Conf. on Parallel and Distributed Information Systems, Sep-
tember 1994.

[23] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. Managing Up-
date Conflicts in a Weakly Connected Replicated Storage System. In Proc. of the ACM Symposium on Op-
erating Systems Principles, December 1995.

[24] R. H. Thomas. A Majority Consensus Approach to Concurrency Control for Multiple Copy Databases.
ACM Transactions on Database Systems, vol. 4, pp. 180-209, 1979.

