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This paper discusses the currency management mechanisms used in Deno, a replicated-object storage sys-
tem designed for use in mobile and weakly-connected environments. Deno primarily differs from previous 
work in implementing an asynchronous weighted-voting scheme via epidemic information flow, and in 
committing updates in an entirely decentralized fashion, without requiring any server to have complete 
knowledge of system membership. 

We first give an overview of Deno, briefly discussing its voting scheme, proxy mechanism, basic API, and 
commit performance. We then present currency management mechanisms, based on peer-to-peer currency 
exchanges, that enable light-weight replica creation, retirement, and currency redistribution while main-
taining protocol correctness. We also demonstrate that peer-to-peer exchanges can be used to exponen-
tially converge to arbitrary target currency distributions.  

 

1 Introduction 
Recent advances in hardware technologies have made mobile computing feasible and practical. Mobile 

device usage is increasing as the devices become smaller, cheaper, and more powerful. Mobile users often 

carry their laptops, PDAs, and other portable devices wherever they go. Mobile environments differ from 

typical desktop environments in many ways, including power availability, resources such as CPU, mem-

ory, secondary storage, and, above all, in their communication behavior. Mobile systems usually lack 

continuous connectivity, and typically possess limited communication bandwidth even when they are 

connected. As a result, mobile and weakly-connected operations rely heavily on replication mechanisms 

in order to deliver good performance. 

Deno is a highly-available replicated-object server intended for use in mobile and weakly-connected envi-

ronments [15]. Deno differs from previous approaches in that it completely decentralizes all control and 

information flow. Innovations of Deno include the extension of voting schemes through fixed per-object 

currencies (i.e., weights), and the use of pair-wise epidemic protocols with voting schemes. Deno’s repli-

cation protocol is highly-available, and is able to make progress and eventually commit updates even if 

there is never a majority of replicas connected to each other simultaneously.  

In order to address requirements of disconnected operation, Deno employs the ‘update anytime-

anywhere-anyhow’ replication model [11]. Our system treats all servers as peers in their ability to gener-

ate updates. Deno’s servers execute updates locally and commit them globally using a decentralized 

weighted-voting scheme [15]. Updates and voting information are propagated through the system asyn-
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chronously using an epidemic style of communication (e.g., [1, 8, 21, 23]) that requires only pair-wise 

communication. Updates gather votes as they pass through servers. An update is committed only when it 

corners the plurality of votes. In Deno, update commitment is decentralized in that each server independ-

ently commits or aborts updates on the basis of local information, eliminating the need for ‘synchronous’ 

multi-site commit protocols (e.g., two-phase commit [7]). However, the same updates eventually commit 

at all servers and in the same order. 

An important issue in any voting scheme is flexible, efficient management of currencies. Light-weight 

replica management and currency redistribution become especially desirable in highly-dynamic environ-

ments due to the need to quickly adapt to changing environmental and application-specific factors and 

efficiently modify system configuration. Existing currency management mechanisms are heavy weight in 

the sense that they typically require the participation of a majority of servers to create/retire replicas and 

install new currency values [6, 10, 13, 17, 24]. Deno uses light-weight, peer-to-peer mechanisms that fa-

cilitate such operations, requiring the participation of only two servers. 

The rest of the paper is organized as follows. Section 2 gives an overview of Deno by briefly discussing 

its voting scheme, proxy mechanism, basic API, and commit performance. Section 3 addresses currency 

management issues and describes how Deno performs light-weight replica creation, retirement, and cur-

rency redistribution. Section 4 discusses related work and Section 5 concludes the paper. 

2 Deno Overview 

2.1 Decentralized Weighted-Voting 
We now briefly describe Deno’s weighted-voting scheme. The details, along with a sketch of the correct-

ness proof, appear in [15].  We assume a model in which the shared state consists of a set of objects repli-

cated across multiple servers. Objects do not need to be replicated at all servers and multiple objects can 

be replicated at the same server. For simplicity of exposition, however, we limit our discussion to single 

objects that are cached at all servers.  

Objects are modified by updates, which are issued by servers. Updates do not commit globally in one 

atomic phase. Instead, each server independently commits updates on the basis of local information. 

However, we show below that if an update commits at one server, it eventually commits everywhere, and 

in the same order with respect to other committed updates. 

Elections: A clean way of thinking about update commitment is as a series of elections. In the election 

framework, a server is analogous to a voter, creating an update is analogous to a voter deciding to run for 

office, and a committed update is analogous to a candidate winning the election. A candidate wins an 

election if and when it corners a plurality of the votes. Votes are weighted and the sum of all votes in the 
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system is bounded to 1.0. Any election may have multiple candidates, which represent logically concur-

rent tentative updates. Candidates from different elections might be alive in the system at the same time. 

We present our distributed election algorithm next. Initially, we assume that the voter does not propose 

updates and participates in the protocol only to keep abreast with election winners and system state. Later 

on, we will explain how a voter can propose an update. Voting information flows from voter to voter 

through anti-entropy sessions. An anti-entropy session from server v' to server v is a uni-directional flow 

of information that specifies the elections that have been won and the votes in the current election. More 

specifically, an anti-entropy from v' to v causes the following sequence of events to occur as a single 

atomic unit: (1) if v' knows about more committed elections than v does, v copies all those results as a 

given, without waiting to find the specific votes that caused those outcomes to occur; and (2) if v' and v 

both know about the same committed elections, then (a) v copies all votes known to v' that it does not 

know itself, and (b) if v has not yet voted and v' has voted, then v votes for the same candidate as v'. A 

server v keeps track of the votes of all individual servers and summarizes them in two main statistics: (1) 

votes(c), which is the total weight of votes in favor of candidate c in v’s current election, and (2) uncom-

mitted, which is the total weight of voters whose vote for v’s current election is currently unknown to v. 

Voter v gathers election information until either it can award its current election to a candidate k or learns 

from another server that the election has already been committed. Voter v awards the election to k when v 

finds that k has won a plurality of votes, that is, if and only if, for all candidates j ≠ k, either (1) votes(k) > 

votes(j) + uncommitted or (2) votes(k) = votes(j) + uncommitted and k < j. The voter breaks ties in rule (2) 

with a simple comparison between the indexes of the servers that created the competing updates. Each 

individual voter counts votes locally and deduces election outcomes independently. As a result, server v 

can commit an update without knowing all the votes, without complete knowledge of which servers have 

seen the update, and even without knowing which servers cache the object. After voter v has awarded 

election i to k, it will move on to election i+1.  

Becoming a candidate: A voter, v, may propose an update and become a candidate at any time in the ith 

election as long as  (1) v has not awarded election i to any candidate, and (2) v has not yet voted in the ith 

election. A candidate v always votes for itself. 

Although the protocol is completely asynchronous and decentralized, it satisfies the global update consis-

tency property as stated by Theorem 1 (see [15] for a proof outline): 

Theorem 1  If a voter v1 awards the ith election to candidate k, then when any other voter v2 completes 

election i, it will award the ith election to the same candidate.  
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2.2 Currency Proxies and Fault-Tolerance 
Deno achieves fault-tolerance through a proxy mechanism. Proxies represent unavailable servers in the 

system and are assigned either by the unavailable server itself (in case of expected disconnections) or 

through proxy elections. 

Deno transparently handles voluntary disconnections by having a primary server engage a proxy to vote 

in its place while the primary is disconnected. A proxy vote is then indistinguishable to other servers from 

the situation where a server votes and disconnects. The use of proxies can prevent degradation in the 

overall commit rate when devices have expected, planned-for disconnections. In fact, proxies can even 

improve commit latency because currency is concentrated in fewer servers, and fewer rounds of commu-

nication are required to establish a quorum.  

In case of unexpected disconnections, failures, or network partitions, Deno servers collectively elect a 

server to act as a proxy to the unavailable, failed server(s). Proxy elections are performed similarly to co-

ordinator elections protocols widely used by many distributed protocols [7], using the decentralized vot-

ing scheme described earlier. 

2.3 Deno Design 
Deno is a runtime library that can be linked directly with application instances, such as bibliographic da-

tabases, or collaborative groupware applications. Any process that is linked to a copy of the Deno library 

is considered to be a Deno server. 

The overriding goal of the Deno project is to investigate replica consistency protocols. We are therefore 

not motivated to build large and complicated interfaces to the object system. By the same token, we feel 

that lightweight interfaces are the appropriate choice for many applications, and that more complex ser-

vices can be efficiently built on top of Deno services if needed. 

The basic Deno API consists of the calls listed in Table 1. These calls allow new servers, objects, and rep-

licas to be created, and replicas to be updated and destroyed. Servers use proxy calls to delegate voting 

rights before planned disconnections. Notification calls are used to learn about the termination status of 

the updates. The sparse interface avoids burdening applications with unwanted or unneeded abstractions 

and functionality.  

We currently expect applications to provide the name of a machine that is running a Deno server with an 

existing replica. With name in hand, the new server can talk to a well-known port and obtain object repli-

cas by calling deno_replica_create(). There are no distinguished servers, any server is capable of 

creating new objects and providing object replicas to other servers. Servers are all peers, differing only in 

the amount of per-object currency that they hold. 
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Calls to deno_replica_update() are made on either side of the actual updates in order to delimit 

the update interval to the underlying system. The actual updates consist of simple writes and/or calls to 

deno_object_resize(). 

A server that plans to disconnect can use the call deno_replica_proxy()to transfer its currency and 

voting rights to a proxy server. When the server reconnects, it calls deno_replica_unproxy()in 

order to regain its currency and voting rights from its proxy. 

The calls deno_update_status()and deno_wait_update()are used by applications to gain 

information regarding the termination status of updates. The first call returns the current status of a given 

update, indicating whether the update is committed, aborted, or still tentative. The latter call blocks the 

application till a given update is either committed or aborted. Using these calls and maintaining enough 

information to back out of tentative updates, Deno can provide any type of session guarantees [22].  

2.4 Basic Commit Rates 
The primary goal of our protocols is to improve the ability of the system to make progress during times of 

low connectivity. This includes improving read availability, and the ability to commit updates. However, 

poor performance and speed at committing could make a system unusable during periods of good connec-

tivity. We built a simple simulator to investigate Deno’s protocol performance. We simulate a system in 

which time is broken into uniform intervals. Each server initiates a randomly-directed anti-entropy ses-

Interface Call Semantics 

deno_server_create([server name]) Creates server with optional name. 

deno_object_create(<name> <initial Obj> [exp. #]) 
Creates new object. Optional third argument gives the expected num-

ber of eventual replicas. 

Obj deno_replica_create(<name> [<server hint>]) 
Creates local replica of named object. The optional server hint tells 

Deno where to look for an existing replica. 

deno_object_resize(Obj, int sz) New size for binary Deno object. 

int deno_replica_update(<name> <update>) Updates an object replica. 

deno_replica_proxy(<object name> [<server hint>]) Delegates authority while disconnected. 

deno_replica_unproxy(<object name>) Retrieves delegated authority. 

deno_replica_delete(<name> [<proxy hint>]) Deletes local replica and transfer currency. 

int deno_update_status(<update id>) 
Identifies current status of an update. An update can be committed, 

aborted, or tentative. 

int deno_wait_update(<update id>) 
Waits for an update to be terminated (i..e., either committed or 

aborted). 

Table 1: Basic Deno API  
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sion during each interval. We assume uniform distribution of currency and a completely available, fully-

connected system. 

Figure 1(a) shows a plot of the average number of intervals needed to commit an update versus the num-

ber of servers for Deno’s default voting scheme and a Bayou-like primary-copy scheme. The figure re-

veals that the primary-copy scheme commits updates significantly faster than the voting scheme. How-

ever, the time at which the first server commits an update is not necessarily the quantity that best predicts 

application performance. Since all servers have an equal chance of being read, a second interesting metric 

would be the time at which the last server commits an update. Figure 1(b) shows that the rate at which the 

Deno’s protocol commits updates everywhere in the system is virtually identical to that of the primary 

copy. The metric of most use to applications probably lies somewhere between the two. 

In Figure 2, we compare the commit performance of Deno to a ‘Certify-All’ type of epidemic protocol 

similar to the one proposed by Agrawal et al. [1]. This protocol commits an update only after the update 

is certified by all the servers that replicate the object. If and when a server detects a conflict, the server 

aborts all the updates involved in the conflict to ensure correctness. Figure 2 suggests that the voting 

mechanism used by Deno consistently commits updates about 30-40% faster than Certify-All. This im-

provement is basically due to the fact that while Certify-All requires an update to be certified by all serv-

ers before committing the update, it is sufficient for an update to be certified by a majority of servers in 

Deno (assuming a uniform currency distribution). This feature not only yields performance improvements 

over the Certify-All scheme, but it also turns out to be crucial for making progress during times of low 

availability, accessibility and network partitions. 

3 Light-Weight Currency Management 
Timely update commitment depends on being able to assemble a majority to vote on updates. The cost of 

assembling a majority is highly dependent on the currency distribution of the object replicas. The best 
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Figure 1: Commit rates: (a) shows the average number of intervals needed for the first replica to commit 
an update versus the number of replicas for the basic voting scheme, and a primary-copy scheme. (b) shows 
the number of intervals for last replica to commit updates. 
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currency distribution depends on the non-trivial interplay among several factors such as expected avail-

ability of individual servers, interconnectivity, and application characteristics. In general, replicas that are 

more reliable or better interconnected should receive more currency [4]. In this section, we investigate 

mechanisms that enable the implementation of arbitrary currency distribution policies while still main-

taining the correctness of the voting protocol. Note that the issue of finding ‘optimal’ currency distribu-

tions and policies for currency redistribution are outside the scope of this paper and have been addressed 

by many previous work (e.g., [3, 4, 6, 13, 17]).  

We first describe how replicas are created and currency is initially allocated. We then discuss protocols 

for dynamically re-allocating currency while still maintaining the mutual exclusion properties of our vot-

ing protocol. We also investigate the cost of migrating currency distributions towards target distributions 

when initial allocations are not ideal. 

3.1 Replica Creation and Retirement 
Objects are initially created with a total currency of 1.0, which is held by the creating server. A new rep-

lica is created through a request to a server that already has a replica (Section 2.3). The response to such a 

request contains both an object copy and some currency that is subtracted from the currency held by the 

responding server. A replica can be retired using a similar pair-wise mechanism in which the currency 

held by the retired replica is transferred to another replica.  

Initial currency allocation is non-trivial because not only do no servers have complete knowledge of the 

size of the anticipated set of servers, but also there is generally not even a central location that can be ex-

pected to receive all currency requests. Instead, each server receives an initial block of currency from the 

server who responds to its initial request to create a replica. This respondent can be any server, so we can 

clearly not guarantee to achieve a given distribution merely by allocation. 
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Figure 2: (a) shows the average number of intervals needed to for the first replica to commit an update 
versus the number of replicas for the Certify-All and Deno protocols. (b) shows the percentage improve-
ment of Deno over Certify-All in commit speed versus the number of replicas. 
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However, Deno applications can direct currency allocation by providing a hint at object creation as to 

how many replicas are expected to be created (see Section 2.3). This hint allows Deno to allocate cur-

rency to replica requests in a way that provides a uniform level of currency for the expected number of 

replicas. For this to work, new replicas must be created from the original replica. This choice can also be 

controlled through runtime hints. 

3.2 Currency Redistribution Mechanism 
Without any restricting assumptions, it is not likely that initial currency allocations will approach the tar-

get distributions. Furthermore, the ‘optimal’ distribution in dynamic environments and systems may 

change continuously. It is crucial, therefore, to provide mechanisms for redistributing currency through-

out the lifetime of the object.  

Deno uses peer-to-peer currency exchanges to incrementally change existing distributions into arbitrary 

target distributions. A pair of servers communicates and redistributes their total currency according to 

some redistribution policy. We now describe how to implement peer-to-peer currency exchanges while 

maintaining the correctness of our voting protocol. Let si and sj be two servers that exchange currency, 

and without loss of generality let x be the currency that is to be transferred from si to sj. Further, let ei de-

note the most recent election in which si voted, and ej denote the current election of sj. For correctness, the 

protocol has to guarantee that: 

(1) x is not used more than once in any election, and 

(2) x is available to every election.  

Restriction (1) is needed in order to prevent servers from reaching different conclusions on the outcome 

of a single election. The need for (2) is less obvious.  Any amount of currency that effectively “disap-

pears” from an election can prevent an election from closing. In the case of server failures, the rest of the 

system cooperates to reallocate the lost server’s currency. However, in this case no server has failed, and 

without restriction (2) a loss of currency could deadlock the entire system. 

In order to satisfy the two correctness requirements presented above, we define e, the election in which si 

decreases the amount of currency it holds by x and sj increases its currency by x, as:  

(i) If ei  < ej , then e = ej , or  

(ii) If ei ≥ ej , then e = ei+1.  

Case (i) implies that it is possible for sj to increase its vote during the same election. A server that ob-

serves two different votes from the same server for the same election uses the vote with more currency, 

since cases (i) and (ii) together guarantee that it is not possible for a server to decrease its currency in an 
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election it has already voted. Notice that the protocol presented above also applies to the currency trans-

fers performed during replica creation and retirement.  

An important feature of peer-to-peer exchanges is that the final currency distribution does not have to be 

known by any participating server. Rather, each server indicates a target weight and receives currency 

proportional to this weight. More formally, let ci and ci' denote the currencies that si holds before and after 

a currency exchange, respectively. Assume also that si and sj, with currency targets of ti and tj, perform a 

currency exchange. In such a case, the new currency values will be ci' = [ti / (ti + tj)]*[ci + cj ], and cj' = [ ci 

+ cj ]- ci'.  

3.3 Currency Redistribution Policies 
Given any initial distribution, randomized peer-to-peer currency exchanges can be used to converge to 

any target distribution, even without complete knowledge of the servers in the system. For example, con-

sider the optimal currency distribution given by Amir and Wool [3], where currency is distributed propor-

tionally to the individual availability of servers. Without complete knowledge of all availabilities in the 

system, it is not possible for any individual server to determine its own target currency. However, two 

servers participating in a peer-to-peer currency exchange can converge to these unknown targets by redis-

tributing their own currencies proportionally to their own availabilities (i.e. ti is set to the availability of 

si). Therefore, it is sufficient for each server to have knowledge of its own availability. Servers can con-

verge to a uniform distribution without knowing the total number of servers, by simply sharing currency 

equally in pairwise exchanges (i.e., ti and tj are set equal). Fast commits might also be helped by distribut-

ing currencies according to update frequencies.  

It is important to emphasize that an existing distribution can be migrated to a target distribution without 

the need for any server to have global information (e.g., number of servers, current currency distribution, 

etc). The ability to achieve global goals with only local information is one of the reasons that this tech-

nique is especially suited for highly-dynamic environments and systems.  

3.4 Convergence Rates 
We also investigated the convergence speed of this mechanism. Randomly-selected, pair-wise currency 

exchanges allow the distribution to converge exponentially fast to any target distribution. We have proved 

this result analytically for three servers, and the experimental results in Figure 3 suggest that the proposi-

tion generalize when there are more than three servers. Figure 3 shows the mean difference between thou-

sand pairs of randomly chosen initial and target currency distributions versus the number of pair-wise cur-

rency exchanges performed in the system. The shapes of the plots in the figure clearly demonstrate that 

the difference between the target and the existing distributions diminishes exponentially fast. As ex-



 

10 

pected, the larger the number of replicas, the more the number of currency exchanges required to con-

verge to the target distribution. It is also worth noting that Barbara and Garcia-Molina demonstrated that 

autonomous, incremental methods for determining new currency distributions, while being more flexible, 

can yield as much availability as those methods that require having complete knowledge of system state 

[6].  

4 Related Work 
There has been significant work in the area of data and consistency management in mobile and weakly-

connected environments [2, 5, 9, 12, 16, 18-20, 23]. Of particular relevance to our work are those propos-

als that exploit epidemic algorithms to propagate updates [1, 8, 14, 18, 21, 23]. Many epidemic systems 

take an optimistic approach and use reconciliation-based protocols (e.g., [14, 18]) that are only viable in 

certain domains such as file systems. Bayou [23] takes a more pessimistic (i.e., conflict avoidance-based) 

approach, ensuring that all committed updates are serialized in the same order at all servers using a pri-

mary-copy scheme. More recently, Agrawal et al. [1] proposed a pessimistic approach where an update is 

committed only after it is certified by all servers. Deno differs from these approaches in its use of a novel 

voting scheme with epidemic information flow to achieve higher availability.  

Voting schemes [10, 24] improve availability by allowing a quorum of all replicas to commit an update. 

Work on currency (e.g., weight) management primarily focused on policies that are used to reassign votes 

after site or link failures in order to improve availability [3, 6, 13, 17]. The reassignments, as well as rep-

lica creation and retirement operations, are typically installed using heavy-weight mechanisms that require 

the participation of (at least) a majority of servers to maintain mutual exclusion properties. To the best of 

our knowledge, Deno is the only voting scheme that allows for light-weight replica creation and retire-

ment, requiring the participation of only two servers. Deno achieves this through its unique feature of fix-

ing the total per-object currency in the system. 
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Figure 3 : Converging to a target distribution with randomly 
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5 Conclusions 
This paper has presented an overview of the Deno replicated object-storage system, and described how it 

implements a novel decentralized weighted-voting scheme via epidemic information flow. We focused 

especially on the important issue of currency management, and described mechanisms that facilitate light-

weight replica creation, retirement, and dynamic currency redistribution. Unlike previous protocols that 

typically require a majority of servers to create new replicas or install new currency values, the mecha-

nisms we proposed are based on peer-to-peer currency exchanges, and require the participation of only 

two servers.  Furthermore, these mechanisms can be used to converge to arbitrary target currency 

distributions, without any server having complete knowledge of state of the system. Using simulation, we 

demonstrated that this convergence happens exponentially fast. 

In terms of future work, we plan to extend Deno to perform transactional multi-item updates. We also 

plan to investigate dynamic currency redistribution and anti-entropy policies. We are currently imple-

menting the Deno prototype on top Windows32/WinCE environments to investigate these and other is-

sues. 
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