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Abstract 
This paper discusses the currency management mechanisms used in Deno, a replicated object storage system 
designed for use in mobile and weakly-connected environments. Deno primarily differs from previous work 
in implementing an asynchronous weighted-voting scheme via epidemic information flow, and in committing 
updates in an entirely decentralized fashion, without requiring any server to have complete knowledge of 
system membership. 
We first give an overview of Deno, discussing its voting scheme, proxy mechanism, basic API, and commit 
performance. We then present currency management mechanisms, based on peer-to-peer currency 
exchanges, that enable light-weight replica creation, retirement, and currency redistribution while 
maintaining protocol correctness. We also demonstrate that peer-to-peer currency exchanges can be used to 
exponentially converge to arbitrary target currency distributions, without the need for any server to have 
global system information. 

 
 

1. Introduction 

Recent advances in hardware technologies have made mobile computing feasible and practical. Mobile 
device usage is increasing, as the devices become smaller, cheaper, and more powerful. Mobile users often 
carry their laptops, PDAs, and other portable devices wherever they go. 

Mobile environments differ from typical desktop environments in many ways, including power 
availability, resources such as CPU, memory, secondary storage, and, above all, in their communication 
behavior. Mobile systems usually lack continuous connectivity, and typically possess limited communication 
bandwidth even when they are connected. As a result, mobile and weakly-connected operations rely heavily 
on replication mechanisms to deliver good performance. 

Asynchronous solutions (e.g., [12, 26, 30, 40]) for managing replicated data have a number of advantages 
over traditional synchronous replication protocols in large-scale, mobile, and weakly-connected 
environments. They can operate with less than full connectivity, easily adapt to frequent changes in group 
membership, and make few demands on the underlying network topology. However, this functionality comes 
at a price. Asynchronous solutions are generally either slow and require reconciliations [28], or have lower 
availability because they rely on primary-copy schemes [38]. 
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Deno, a highly-available replicated object storage system intended for use in mobile and weakly-connected 
environments [27], addresses these concerns through its fully-decentralized, asynchronous replication 
protocol. Deno differs from previous approaches in that it completely decentralizes all control and 
information flow. Innovations of Deno include the extension of voting schemes [20, 41] through fixed per-
object currencies (i.e., weights), and the use of pair-wise epidemic protocols [16] with voting schemes. 
Deno�s replication protocol is highly available, and is able to make progress and eventually commit updates 
even if there is never a majority of replicas connected to each other simultaneously. No server ever needs to 
have complete knowledge of group membership, and a given server only needs to be in intermittent contact 
with at least one other server to take full part in the voting and commitment process. As such, the protocol is 
highly suited for environments with weak connectivity. Deno�s system model is illustrated in Figure 1. One 
or more client processes link to each Deno server, which communicate through pair-wise information 
propagation. The servers are not necessarily ever fully connected. 

Deno uses bounded voting [27], in which the total currency in the system is fixed at a system-wide value. 
Voting schemes [2, 4, 20, 25, 31, 33, 41] allow a quorum of all replicas to commit an update. Quorums are 
distinct sets that can each commit an update, provided that all replicas of the quorum agree. Serialization of 
updates is accomplished by requiring that any two potential quorums must share at least one replica. Hence, 
competing updates can not both commit without first being serialized by the replicas in the intersection of the 
quorums that commit them. Voting has been shown to provide optimal availability when all servers have the 
same independent failure probability of less than ½ [34]. 
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Figure 1: Deno system model 
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An important issue in any voting scheme is flexible, efficient management of currencies1. Light-weight 
replica management and currency redistribution become especially desirable in highly-dynamic 
environments due to the need to quickly adapt to changing environmental and application-specific factors 
and efficiently modify system configuration. Although there has been significant work on currency 
management for traditional replicated databases and systems, existing proposals are heavy weight in that they 
typically require the participation of a majority of servers to create/retire replicas and install new currency 
values [9, 20, 25, 29, 41]. These traditional mechanisms perform inherently poorly under weak connectivity 
and continuously-changing system configurations due to their synchronous nature and the need to have 
complete system membership information. 

In this paper, we present the light-weight, peer-to-peer currency management mechanisms used in Deno 
[14]. The mechanisms presented facilitate efficient replica creation/retirement and currency redistribution 
operations, while maintaining the correctness of the underlying replica consistency protocol. Unlike previous 
proposals, our mechanisms require the participation of only two servers to perform these operations, making 
them especially well-suited for currency management in asynchronous, large-scale, and dynamic 
environments. In addition, we demonstrate that our peer-to-peer currency exchange mechanism can be used 
to exponentially converge to arbitrary target currency distributions without the need for any server to have 
global information about the system (e.g., current currency distribution, number of servers, etc.). 

The rest of the paper is organized as follows. Section 2 gives an overview of Deno by briefly discussing 
its voting scheme, proxy mechanism, basic API, and basic commit performance. Section 3 addresses 
currency management issues and describes how Deno performs light-weight replica creation, retirement, and 
currency redistribution. Section 4 discusses related work and Section 5 concludes the paper. 

2. Deno overview  

In this section, we present a brief overview of Deno replicated object storage system. Deno employs the 
update anytime replication model [21] in order to address requirements of disconnected operation. In this 
model, all servers are treated as peers in their ability to generate updates. Deno�s servers execute updates 
locally and commit them globally using a decentralized weighted-voting scheme [27]. Updates and voting 
information are propagated through the system asynchronously using an epidemic style of communication 
(e.g., [1, 16, 37, 40]). Epidemic communication exploits pair-wise anti-entropy sessions [16], whereby a 
server is informed of the state of the other server. Anti-entropy sessions propagate updates through the 
system and ensure that all replicas of the same object eventually converge to the same final state. 

Updates gather votes as they pass through servers. An update is committed only when the update corners 
the plurality (rather than a majority) of votes. Gathering a plurality of votes is sufficient to guarantee that no 
other update on the same data item can gather more votes. In Deno, update commitment is decentralized in 
that each server independently commits or aborts updates on the basis of local information, eliminating the 
need for synchronous multi-site commit protocols (e.g., two-phase commit [10]). However, the same updates 
eventually commit at all servers in the same order. Note that, in this paper, we only consider single-item 

                                                      
1 We use the terms currency and weight interchangebly in the rest of the paper. 
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updates. The extension of our protocol to transactional environments and multi-item updates (see [13]) is 
orthogonal to the main thrust of this paper. We, therefore, restrict our discussion to atomic single-item 
updates for pedagogical reasons.  

2.1. Decentralized weighted-voting 

We first briefly describe Deno�s asynchronous weighted-voting protocol. A more detailed description of 
the base protocol, along with the correctness proof, appear in [27]. 

We assume a model in which the shared state consists of a set of objects replicated across multiple servers. 
Objects do not need to be replicated at all servers and multiple objects can be replicated at the same server. 
For simplicity of exposition, however, we limit our discussion to single objects that are replicated at all 
servers.  

Objects are modified by updates, which are issued by servers. Updates do not commit globally in one 
atomic phase. Instead, each server independently commits updates on the basis of local information. 
However, we show below that if an update commits at one server, it eventually commits at all servers, and in 
the same order with respect to other committed updates. 

Elections. A clean way of thinking about update commitment is as a series of elections. In the election 
framework, a server is analogous to a voter, creating an update is analogous to a voter deciding to run for 
office, and a committed update is analogous to a candidate winning the election. A candidate wins an 
election if and when it corners a plurality of the votes. Votes are weighted and the sum of all votes in the 
system is bounded to 1.0. Any election may have multiple candidates, which represent logically concurrent 
tentative updates. Candidates from different elections might be alive in the system at the same time. 

We now present our distributed election algorithm. Initially, we assume that the voter does not propose 
updates and participates in the protocol only to keep abreast with election winners and system state. Later on, 
we will explain how a voter can propose an update. 

Voting information flows from voter to voter through anti-entropy sessions. For our purposes, an anti-
entropy session from server v' to server v is a uni-directional flow of information that specifies the elections 
that have been won and the votes in the current election. More specifically, an anti-entropy from v' to v 
causes the following sequence of events to occur as a single (atomic) unit: 

(1) If v' knows about more committed elections than v does, v copies all those results as a given, without 
waiting to find the specific votes that caused those outcomes to occur; and  

(2) If v' and v both know about the same committed elections, then 
• v copies all votes known to v' that it does not know itself, and  
• if v has not yet voted and v' has voted, then v votes for the same candidate as v' (or for any other 

candidate).  
A voter v keeps track of the votes of all individual voters and summarizes this election information in two 

main statistics: 
• votes(k), which is the sum of votes that have been cast in favor of candidate k in v�s current election, and 
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• unknown, which is the sum of currencies of voters whose vote for v�s current election is currently 
unknown to v.  

Voter v gathers election information until either it can award its current election to a candidate k, or learns 
from another server that the election has already been committed. Voter v awards the election to k when v 
finds out that k has won a plurality of votes, that is, if and only if, for all candidates k ≠ j, either 

 (1)  votes(k) > votes(j) + unknown, or 
(2)  votes(k) = votes(j) + unknown and k < j. 
Commit rule (1) implies that candidate update k can commit only when it is guaranteed that no other 

candidate update j can gather more votes than k. The protocol, therefore, ensures mutual exclusion by 
guaranteeing that no two conflicting updates can both commit during the same election. Rule (2) breaks ties 
with a simple comparison between the indexes of the voters that created the competing updates. 

Each individual voter counts votes locally and deduces election outcomes independently. As a result, voter 
v can commit an update without knowing all the votes, without complete knowledge of which voters have 
seen the update, and even without knowing which voters replicate the object. After voter v has awarded 
election i to k, it will move on to election i+1.  

Becoming a candidate. A voter, v, may propose an update and become a candidate at any time in the ith 
election as long as: 

(1) v has not awarded election i to any candidate, and 
(2) v has not yet voted in the ith election (a candidate v always votes for itself). 

Although the protocol is completely asynchronous and decentralized, it satisfies the global update 
consistency property as stated by Theorem 1 (see [27] for a proof outline): 

Theorem 1  If a voter, v1, awards the ith election to candidate k, then when any other voter, v2, completes 
election i, v2 will award the election to candidate k. 

2.2. Currency proxies and fault-tolerance 

Deno achieves fault-tolerance through a proxy mechanism. Proxies represent unavailable servers in the 
system and are assigned either through (1) proxy assignments, or (2) proxy elections. In the former case, the 
unavailable server assigns the proxy itself (in case of planned-for disconnections), whereas in the latter case 
the servers collectively assign the proxy through a distributed proxy election protocol. 

Proxy assignments. Deno transparently handles voluntary, planned-for disconnections by having a 
primary server engage a proxy server to vote in its place while the primary is disconnected. A vote cast by a 
proxy server is then indistinguishable to other servers from the situation where a server votes and 
disconnects. The use of proxies can prevent degradation in the overall commit rate when devices have 
expected, planned-for disconnections. In fact, proxies can even improve commit latency because currency is 
concentrated in fewer servers, and fewer rounds of communication are required to establish a quorum. 

We now illustrate the proxy assignment process by a simple example. Consider a server, si, planning to 
disconnect from the network. Server si contacts another server, sj, assigns sj as its proxy, and disconnects 
from the network. Now suppose sj sees a new candidate update. When processing the candidate, sj not only 
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casts a vote for itself, but it also casts a vote in place of si using si�s currency.  This vote is then no different 
from the vote that would be cast and disseminated by si if si were connected. Other servers have no way of 
knowing about the proxy assignment, and therefore the whole proxy mechanism is transparent to the rest of 
the system. 

Proxy elections. In case of unexpected disconnections, failures, or network partitions, Deno servers 
collectively elect a server to act as a proxy to the unavailable, failed server(s). Proxy elections are performed 
similarly to coordinator elections protocols widely used by many distributed protocols [10], using the 
decentralized voting scheme described earlier. After detecting a failure, a server initiates a proxy election 
update that indicates the server�s intention to become the proxy for the failed server. As with other changes 
to objects, a proxy election update is a special type of operation on an object. The election update, therefore, 
must be committed before it can take effect.  

Deno treats all updates, including proxy election updates, uniformly and uses its voting scheme to commit 
them. One implication is that a proxy election can occur if a majority of the current currency is available. 
Such a restriction is necessary to prevent parallel proxy elections in multiple partitions after a network 
failure. When a failed server rejoins the computation and learns about the proxy election, the server resets its 
currency to zero. The server may then request its currency back from the elected proxy server or obtain 
currency from other servers through peer-to-peer currency exchanges.  

2.3. Deno design 

Deno is a runtime library that can be linked directly with application instances. Any process that is linked 
to a copy of the Deno library is considered to be a Deno server. Deno's target application domain includes all 
types of asynchronous collaborative applications, including collaborative groupware (e.g., Lotus Notes [26]), 
mail and bibliographic databases, document editing, CAD, and program development environments for 
disconnected workgroups. 

The overriding goal of the Deno project is to investigate replica consistency protocols. We are therefore 
not motivated to build large and complicated interfaces to the object system. By the same token, we feel that 
lightweight interfaces are the appropriate choice for many applications, and that more complex services can 
be efficiently built on top of Deno services if needed. 

Table 1 lists the basic Deno API calls. These calls allow new servers, objects, and object replicas to be 
created, and object replicas to be updated and destroyed. Servers use proxy calls to delegate voting rights 
before planned disconnections. Notification calls are used to learn about the termination status of the updates. 
The sparse interface avoids burdening applications with unwanted or unneeded abstractions and 
functionality.  

We currently expect applications to provide the name of a machine that is running a Deno server with an 
existing replica. With name in hand, the new server can talk to a well-known port and obtain object replicas 
by calling replica_create(). There are no distinguished servers; any server is capable of creating new 
objects and providing object replicas to other servers. Servers are all peers; they differ only in the amount of 
per-object currency that they hold. 
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Calls to replica_update() are made on either side of the actual updates in order to delimit the 
update interval to the underlying system. The actual updates consist of simple writes to objects and are 
accomplished by calling object_resize(). 

A server that plans to disconnect can use the call replica_proxy()to transfer its voting rights to a 
proxy server. When the server reconnects, it calls replica_unproxy()in order to regain its voting rights 
from its proxy. 

Two calls are used by applications to gain information regarding the termination status of updates: 
update_status()and wait_update(). The former call returns the current status of a given update, 
indicating whether the update is committed, aborted, or still tentative. The latter call blocks the application 
until a given update is either committed or aborted. Using these calls and maintaining enough information to 
back out of tentative updates, Deno can provide any type of session guarantees [39], which define the set of 
updates visible to client applications.  

2.4. Basic performance 

The primary goal of our protocol is to improve the ability of the system to make progress during times of 
low connectivity. This includes improving read availability, and the ability to commit updates. However, 
poor performance and speed at committing could make a system unusable during periods of good 
connectivity.  

This section investigates the basic update performance characteristics of our voting protocols using a 
simulation study. We simulate a system where time is broken into fixed-length intervals. Each server initiates 
a synchronization session and synchronizes with another (randomly-selected) server using a uniform 
distribution with a mean of one interval length (i.e., each server pulls information once every interval on the 

Interface Call Semantics 

server_create([server name]) Creates server with optional name. 

object_create(<name> <initial Obj> [exp. #]) 
Creates new object. Optional third argument gives the expected 

number of eventual replicas. 

Obj replica_create(<name> [<server hint>]) 
Creates local replica of named object. The optional server hint 

tells Deno where to look for an existing replica. 

object_resize(Obj, int sz) New size for binary Deno object. 

int replica_update(<name> <update>) Updates an object replica. 

replica_proxy(<object name> [<server hint>]) Delegates authority while disconnected. 

replica_unproxy(<object name>) Retrieves delegated authority. 

replica_delete(<name> [<proxy hint>]) Deletes local replica and transfer currency. 

int update_status(<update id>) 
Identifies current status of an update. An update can be 

committed, aborted, or tentative. 

int wait_update(<update id>) 
Waits for an update to be terminated (i.e., either committed or 

aborted). 

Table 1: Basic Deno API  
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average). A pull-pull type of synchronization model is employed; i.e., both synchronization partners pull 
information from each other in a single synchronization session. For purposes of the evaluation, we assume 
that the system is fully connected and there are no failures. We also assume, unless stated otherwise, that 
currency is distributed uniformly across all servers. All the numbers presented are the averaged results of at 
least 10 independent runs, where each run involves executing 1000 updates. 

In addition to our voting protocol, we also investigate the performance of two other epidemic protocols 
that appeared in the literature: epidemic primary-copy and write-all protocols. In all the schemes examined, 
updates are executed locally and committed globally, and are disseminated using pair-wise epidemic 
synchronization sessions. In the primary-copy scheme an update is committed when it is serialized at the 
primary-copy server. This is essentially the approach used by the Bayou weakly-connected storage system 
[40]. It is well known that such a primary-copy approach suffers from single-point failures [10]; if the 
primary-copy server is unavailable, then no updates can be committed. The other protocol, which we refer to 
as write-all, is a Read-One-Write-All (ROWA) type epidemic protocol. In write-all, an update is committed 
after it is certified at all servers. This scheme aborts all conflicting updates in order to provide consistency. 
Agrawal et al. proposed a similar ROWA type epidemic protocol that supports multi-item operations in a 
transactional framework [1]. 

Figure 2 shows a plot of the average number of intervals (i.e., synchronization periods) needed to commit 
an update versus the number of servers for Deno�s default (uniform) voting scheme, the primary-copy 
scheme (modeled by allocating all currency at a randomly-selected site), and the write-all scheme. The 
metric labeled with �first commit� is the traditional commit delay, which denotes time between the initiation 
of an update and the time it is first committed at a server. The figure reveals that the primary-copy scheme 
commits updates significantly faster than the voting scheme. In the primary-copy scheme, an update commits 
when the primary copy receives the update --- unless the update has already become obsolete by the 
commitment of a previously committed conflicting update. Therefore such a scheme clearly commits an 
update much faster than a uniform voting approach, which requires an update to visit at least a majority of 
servers (assuming a uniform currency distribution). Both the primary-copy and voting approaches are 
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Figure 3: Average commit delay 
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significantly better than the write-all approach, since the write-all approach requires all the servers to receive 
the update before the update can be committed. 

In Figure 3, we examine the performance of the protocols in terms of the average commit delay, which is 
the commit delay of an update averaged across all servers. The figure demonstrates that the gap between the 
primary-copy and voting protocols in terms of average commit delay is much less than that for the first 
commit delay. Figure 4 concentrates on the last commit delay, which is the commit delay for the server that 
is the last to commit the update. The figure reveals that the performance difference between the primary-copy 
and the voting approach is largely lost, and the two configurations perform quite similarly. The way the 
commit information is propagated in the system is the reason for this interesting result. Although primary-
copy commits an update pretty fast, this information propagates to other servers relatively slower. This is 
because all servers, except the one that owns the primary-copy, learn the commitment from other servers that 
have already learned the commitment. In the voting protocol, on the other hand, distinct servers may either 
learn the commitment from other servers (as in the case of primary-copy), or commit the update themselves 
independently. In the presented example, for instance, about 45% of the servers committed the update 
independently. The delay between the first and subsequent commits is thus quite small.  

In fact, Figure 5, which summarizes the relative performances of the protocols, clearly demonstrates this 
effect. The figure shows the performance delay of the voting and write-all approaches in terms of the 
percentage degradation over the primary-copy approach for first, average, and last commit delays. While the 
voting protocol was about 180% slower than primary-copy in terms of first committing an update, this 
slowdown drops drastically to about 10% in terms of average commit delay, and to essentially 0% in terms of 
last commit delay. The performance of the write-all protocol is always significantly worse than the other 
approaches. 

In an environment where updates are propagated asynchronously, average commit delay, and probably last 
commit delay, are also as important as the first commit delay since a committed update is not useful until its 
effects are reflected to a replica. One important implication is that the performance penalty of using voting 
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rather than a primary-copy approach is not as large as commonly assumed in the kinds of environments we 
address in this paper.  

3. Light-weight currency management 

Timely update commitment depends on being able to assemble a majority to vote on updates. The cost of 
assembling a majority is highly dependent on the currency distribution of the object replicas. The best 
currency distribution depends on the non-trivial interplay among several factors such as expected availability 
of individual servers, interconnectivity, and application characteristics. In general, replicas that are more 
reliable or better interconnected should receive more currency [7].  

In this section, we discuss mechanisms that enable the implementation of arbitrary currency distribution 
policies while still maintaining the correctness of the voting protocol. Note that the issue of finding optimal 
currency distributions is outside the scope of this paper and has been addressed by several previous work 
(e.g., [5, 7, 9, 25, 29]).  

We first describe how replicas are created and currency is initially allocated. We then discuss protocols for 
dynamically reallocating currency while maintaining the mutual exclusion properties of our voting protocol. 
We also investigate the cost of migrating currency distributions towards target distributions when initial 
allocations are not ideal. 

3.1. Replica creation and retirement 

Objects are initially created with a total currency of 1.0 (or any other system-wide fixed amount), held by 
the creating server. A new replica is created through a request to a server that already has a replica (Section 
2.3). The response to such a request contains both an object replica and some amount of currency that is 
subtracted from the currency held by the responding server. A replica can be retired using a similar pair-wise 
mechanism in which the currency held by the retired replica is transferred to another replica.  

Initial currency allocation is non-trivial because not only servers do not have complete knowledge of the 
size of the anticipated set of servers, but also there is generally not even a central location that can be 
expected to receive all currency requests. Instead, each server receives an initial block of currency from the 
server who responds to its initial request to create a replica. This respondent can be any server, so we can 
clearly not guarantee to achieve a given distribution merely by allocation. 

However, Deno applications can direct initial currency allocation by providing a hint at object creation as 
to how many replicas are expected to be created (see Section 2.3). This hint allows Deno to allocate currency 
to replica requests in a way that provides a uniform level of currency for the expected number of replicas. 
For this to work, new replicas must be created from the original replica. This choice can also be controlled 
through runtime hints. 

3.2. Currency redistribution mechanisms 

Without any restricting assumptions, it is not likely that initial currency allocations will approach the 
target distributions. Furthermore, the optimal distribution in dynamic environments and systems may change 
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continuously. It is crucial, therefore, to provide mechanisms to redistribute currency dynamically throughout 
the lifetime of the object.  

Deno uses peer-to-peer currency exchanges to incrementally change existing currency distributions into 
arbitrary target distributions. A peer-to-peer currency exchange involves a pair of servers communicating and 
redistributing their total currency according to some redistribution policy.  

Requirements. We now describe in detail how to implement peer-to-peer currency exchanges while 
maintaining the correctness of the voting protocol. Let si and sj be two servers that exchange currency, and, 
without loss of generality, let x be the currency to be transferred from si to sj. Further, let ei denote the most 
recent election in which si voted, and ej denote the current election of sj. For correctness, the protocol has to 
guarantee that: 

(1) x is not used more than once in any election, and 
(2) x is available to every election.  

Requirement (1) is needed in order to prevent servers from reaching different conclusions on the outcome 
of a single election. The need for requirement (2) is less obvious.  Any amount of currency that effectively 
disappears from an election can prevent an election from closing. In the case of server failures, the rest of the 
system cooperates to reallocate the lost server�s currency. However, in this case no server has failed, and 
without restriction (2), a loss of currency could halt the entire system. 

In order to satisfy the two correctness requirements presented above, we define e, the election in which si 
decreases the amount of currency it uses by x and sj increases the amount of currency it uses by x, as:  
       (i)   if ei < ej, then e = ej 
       (ii)  if ei ≥ ej, then e = ei +1  

Case (i) indicates that si last used x in an election which has already been completed by sj. Server sj can 
immediately use x in its current election since the requirement (1) presented earlier is guaranteed. In fact, sj 
must use x in its current election in order to satisfy requirement (2). Case (ii) complements the former case by 
handling the situation in which si last used x in an election which has not yet been completed by sj. In this 
case, sj cannot use x before it completes all those elections in which si has used x in order not to invalidate 
requirement (1).  

Case (i) also implies that it is possible that sj increase its vote during an election for which sj has already 
cast a vote. Therefore, a server that observes two different votes from the same server for the same election 
uses the vote with more currency, since cases (i) and (ii) together guarantee that it is not possible for a server 
to decrease its currency in an election it has already voted. On the other hand, sj cannot change the candidate 
update for which it has already voted in a given election. 

Currency Representation. The above currency exchange protocol requires that servers maintain extra 
information regarding the amount of their currency they can use in a given election. Specifically, each server, 
si, maintains a set of <currency, election number> pairs as follows: 

1 1 2 2{ , , , , , , }i i i i im imc e c e c e< > < > < >K , 

where eij represents the election number in which si starts voting cij of its currency, 1j m∀ = K . The currency 

voted by si at election e is then: 
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 ijc∑ , s.t., ije e≤  

Currencies transferred during exchanges are also represented using the same set representation. It is, 
therefore, possible for a server to exchange the currency that the server has not even started using yet without 
sacrificing correctness. The protocol guarantees that for every election j: 

    
1

1.0
n

ij
i

c
=

=∑ ,  

where n is the number of servers in the system. Note that the protocol presented above also applies to the 
currency transfers performed during replica creation and retirement.  

An important feature of peer-to-peer exchanges is that the final currency distribution does not have to be 
known by any participating server. Rather, each server indicates a target weight and receives currency 
proportional to this weight. More formally, let ci and ci' denote the currencies that si holds before and after a 
currency exchange, respectively. Assume that two servers, si and sj, that desire to eventually hold target 
currency levels of ti and tj respectively, perform a currency exchange. In this case, the new currency values 
after the currency exchange will be: 

 ci' = ( ti / ( ti + tj ) ) ( ci + cj ) 

 cj' = ( ci + cj ) - ci'  

3.3. Currency redistribution policies 

Given any initial distribution, randomized peer-to-peer currency exchanges can be used to converge to any 
target distribution, even without complete knowledge of the servers in the system. For example, consider the 
optimal availability currency distribution given by Amir and Wool [5], where currency is distributed 
proportionally to the individual availability of servers. Without complete knowledge of all availabilities in 
the system, it is not possible for any individual server to determine its own target currency. However, two 
servers participating in a peer-to-peer currency exchange can converge to these unknown targets by 
redistributing their own currencies proportionally to their own availabilities (i.e. ti is set equal to the 
availability of si). Therefore, it is sufficient for each server to have knowledge of only its own availability. 
For instance, servers can converge to a uniform distribution without knowing the total number of servers; 
during a pair-wise currency exchange, two servers can simply share their total currency equally (i.e., ti and tj 
are set equal).  

In synchronous quorum systems, it is known that when all servers have the same independent failure 
probability f, then availability is maximized using a primary-copy system if f > ½, or using a majority system 
if f < ½ [5]. If the failure probabilities are different and all of them are smaller than ½, then optimal 
currencies are defined as: 

     2
1log i

i
i

fc
f

 −=  
 

,  

where ci is the currency at si, and fi is the failure probability of si. 
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On the other hand, measuring the availability of an epidemic protocol is not necessarily well defined. The 
availability of a typical quorum protocol is the percentage of time that a quorum is simultaneously connected 
and able to communicate. However, epidemic protocols do not require any server to be able to talk to more 
than one other server in order to make progress. While this implies that availability might be a poor metric, 
we can capture the affects of disconnections by looking at its effect on commit performance. 

We conducted a serious of experiments to quantify the potential performance improvements attainable 
through currency redistribution based on individual server availabilities. For purposes of these experiments, 
servers disconnect at any synchronization period with some probability. The disconnection probabilities are 
assigned to servers using a zipf distribution. During each synchronization session, two servers redistribute 
their total currency proportional to their availabilities; where availability of a server is defined to be 1.0 less 
the disconnection probability of the server. As in the earlier experiments, currency is initially uniformly 
distributed in the system, and servers perform synchronization once every synchronization period on average.  

Figure 6 shows the change in the commit performance of the system as the system performs currency 
exchanges. Commit delays decrease as the number of currency exchanges performed in the system increases. 
Initially, i.e., when the currency is distributed evenly across servers, the commit delay is about 27 intervals. 
The commit delay decreases down to about 24 intervals after 50 exchanges, 20 intervals after 500 exchanges, 
and 17 intervals after 1500 exchanges. These figures correspond to, respectively, 9%, 28%, and 38% 
improvements with respect to the initial commit speed of the system. After 1500 currency exchanges (not 
shown), we do not observe more improvement in commit performance; the performance essentially remains 
the same. Figure 7 investigates the reason for this behavior by plotting the sum of differences between the 
existing currency distribution and the distribution where currency is distributed proportional to relative 
availabilities at servers as the system performs pair-wise currency exchanges. The figure reveals that this 
difference diminishes very fast. In fact, the difference becomes after zero after approximately 1500 
exchanges, implying that the system converged to its target distribution. 
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Figure 6: Effects of availability-based currency 
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Note that an existing currency distribution can be migrated to a target distribution without the need for any 
server to have global information (e.g., number of servers, current currency distribution, etc). The ability to 
achieve global goals with only local information is one of the reasons that this mechanism is especially suited 
for highly-dynamic environments and systems.  

3.4. Convergence rates 

We further investigated the convergence speed of our pair-wise currency redistribution mechanism. We 
observed that randomly-selected, pair-wise currency exchanges allow an existing currency distribution to 
converge exponentially fast to any target distribution. We proved this result analytically for three servers, and 
the experimental results in Figure 8 and Figure 9 suggest that the proposition generalize when there are more 
than three servers. 

Figure 8 shows the mean difference between thousand pairs of randomly chosen initial and target currency 
distributions versus the number of (randomly-selected) pair-wise currency exchanges performed in the 
system for different system sizes. Each currency exchange involves the two servers redistributing their 
currencies proportional to their weights in the target distribution as described previously. As expected, the 
larger the number of replicas, the more the number of currency exchanges required to converge to the target 
distribution. However, the shapes of the plots in the figure demonstrate that the difference between the target 
and the existing distributions diminishes quickly. In fact, the convergence to target distribution happens 
exponentially fast. We illustrate this result in Figure 9, which plots the corresponding data points for 100 
servers along with an exponential curve fitted to our data. The exponential curve shown in the figure has the 

form bxy ae= where (a,b) = (0.6453, -0.0047). The corresponding exponentially fit curves for 10 and 1000 

servers (not shown) can be obtained, respectively, using settings of (0.6107, -0.0514) and (0.6431, -0.0004).  
It is also worth noting that Barbara and Garcia-Molina demonstrated that autonomous, incremental 

methods for determining new currency distributions, while being more flexible, can yield as much 
availability as those methods that require having complete knowledge of the state of the system [9].  
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Figure 8: Converging to a target distribution with 
randomly selected peer-to-peer currency exchanges 
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Figure 9: Exponentially diminishing error          
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4. Related work 

In this section, we review related research efforts by first discussing previous research relevant to Deno in 
general, and then focusing on currency management in voting systems. 

There has been significant work in the area of data and consistency management in mobile and weakly-
connected environments [3, 8, 15, 17, 18, 24, 28, 32, 35, 36, 40]. Of particular relevance to Deno�s 
replication protocol are those proposals that exploit epidemic algorithms to propagate updates [1, 16, 26, 32, 
37, 40]. In epidemic protocols, updates are executed at any single server. Asynchronously, servers 
communicate in a pair-wise fashion to exchange information regarding the updates, detecting and bringing 
the obsolete copies up to date. Epidemic algorithms are a natural fit for mobile and weakly-connected 
environments; they do not rely on static communication topologies or fail during temporary disconnections. 

Many epidemic systems take an optimistic approach and use reconciliation-based protocols (e.g., [26, 32]) 
that are only viable in certain domains such as file systems. This choice in domain allows the use of strong 
assumptions on the relative scarcity of update contention. Additionally, reconciliation can be automated for 
many types of files. 

Bayou [40] takes a more pessimistic (i.e., conflict avoidance-based) approach, ensuring that all committed 
updates are serialized in the same order at all servers using a primary-copy scheme; i.e., updates can only be 
committed at the primary-copy server. Agrawal et al. proposed a ROWA type pessimistic approach that 
ensures serializability in a transactional framework [1]. In their approach, an update transaction is committed 
only after it is validated at all servers. Both the primary-copy approach and the ROWA approach typically 
have low reliability as they suffer from the infamous single-point-of-failure problem. 

 Recently, we implemented a Deno prototype on top of Win32/WinCE and Linux platforms and extended 
the basic single-item Deno protocol to handle multi-item transactional updates [13]. The extended 
transactional protocols we proposed provide two levels of consistency; strong serializability [10] and update 
serializability [11, 19]. Independent from our research on transactional voting protocols, Holliday et al. also 
proposed a transactional quorum based approach that provides strong serializability [22]. This work assumes 
static, globally-known currencies and does not address currency management issues. 

The impact of mobility on data management and replication has been discussed in [3, 6, 8, 17, 24]. Pitoura 
and Bhargava proposed a two-level, cluster-based consistency model for intermittently-connected 
environments [35]. Huang et al. analyzed different data replication methods with the objective of minimizing 
the communication cost between the mobile and stationary hosts in a mobile environment [23]. 

Voting schemes [20, 41] improve availability by allowing a quorum of all replicas to commit an update. 
Work on currency management mainly focused on policies that are used to reassign votes after server or link 
failures to improve availability [5, 9, 25, 29]. The weight reassignments, as well as replica creation and 
retirement operations, are typically installed at servers using heavy-weight mechanisms that require the 
participation of (at least) a majority of servers to maintain mutual exclusion properties. To the best of our 
knowledge, Deno is the only voting scheme that allows for light-weight replica creation and retirement, 
requiring the participation of only two servers. 



 

16 

Finally, we note that recent work [42] investigated why voting systems (i.e., quorums) have yet to become 
widespread in real-world applications. One of the conclusions is that voting does not enhance availability 
because either failures are positively correlated (when servers are on a single LAN) or network partitions 
occur (when servers are distributed across multiple LANs). In the latter case, a quorum constructed on a 
single LAN has higher availability than quorums constructed across multiple LANs. However, the weakly-
connected environments addressed in this work fit neither category. Most failures (e.g., disconnections) are 
likely to be independent, and network partitions, while possible, are not the dominant cause of unavailability. 

5. Conclusions 

In this paper, we presented an overview of the Deno highly-available object replication system, and 
described how it implements a novel, decentralized voting scheme via epidemic information flow. We also 
briefly discussed the proxy mechanism used to transparently tolerate voluntary/involuntary disconnections. 
Using a simulation study, we characterized the commit performance of Deno, along with other comparable 
epidemic consistency protocols that appeared in the literature. One of our interesting findings is that the 
presumed performance advantage of the primary-copy approach over voting approaches is not as significant 
with asynchronous epidemic protocols as they are with synchronous protocols.  

We then focused on the important issue of currency management, and described mechanisms that facilitate 
light-weight replica creation, retirement, and dynamic currency redistribution in mobile and weakly-
connected environments. Unlike previous heavy-weight protocols that typically require complete system 
state and at least a majority of servers to create new replicas or install new currency values, the mechanisms 
we proposed are based on peer-to-peer currency exchanges, thereby requiring the participation of only two 
servers.  Furthermore, these mechanisms can be used to converge to arbitrary target currency distributions 
exponentially fast, without any server having complete knowledge of state of the system. These unique 
features make our mechanisms especially well-suited for use in weakly-connected and highly-dynamic 
environments. 

In terms of future work, we plan to investigate dynamic synchronization policies (i.e., when, what, and 
with whom to synchronize?). A synchronization policy needs to consider a variety of environmental factors 
such as the available bandwidth, cost of communication, server availability, and currency information as well 
as application-dependent factors such as update generation rate. Furthermore, since many of the mentioned 
factors typically demonstrate dynamic behavior, adaptive policies are required. 

To date, we have assumed a flat organization of Deno servers. As with any distributed system, flat 
organizations, especially peer-to-peer models, suffer from low scalability. Significant performance 
improvements can be attained when a hierarchical synchronization topology is used to organize servers. 
Adaptive synchronization policies and support for hierarchical organizations will form the basis of our future 
work.  
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