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Abstract 

This paper presents the replication framework of Deno, 
an object replication system specifically designed for 
mobile and weakly-connected environments. Deno uses 
weighted voting for availability and pair-wise, epidemic 
information flow for flexibility.  This combination allows 
the protocols to operate with less than full connectivity, 
to easily adapt to changes in group membership, and to 
make few assumptions about the underlying network 
topology. Deno has been implemented and runs on top of 
Linux and Win32 platforms. We use the Deno prototype 
to characterize the performance of two versions of 
Deno's protocol. The first version enables globally 
serializable execution of update transactions. The second 
supports a weaker consistency level that still guarantees 
transactionally-consistent access to replicated data. We 
demonstrate that the incremental cost of providing global 
serializability is low, and that speculative dissemination 
of updates can significantly improve commit 
performance. 
 

1 Introduction 
This paper describes the design, implementation, and 
performance of Deno, a system that supports object 
replication in a transactional framework for mobile and 
weakly-connected environments. Deno�s system model is 
illustrated in Figure 1. One or more clients connect to 
each peer server, which communicates through pair-wise 
information exchanges. The servers are not necessarily 
ever fully connected. 

Deno�s underlying protocols are based on an 
asynchronous protocol called bounded weighted voting 
[16]. Asynchronous solutions for managing replicated 
data [5, 12, 15, 17] have a number of advantages over 
traditional synchronous replication protocols in large-
scale, mobile, and weakly-connected environments. They 
can operate with less than full connectivity, easily adapt 
to frequent changes in group membership, and make few 
demands on the underlying network topology. However, 
this functionality comes at a price: asynchronous 
solutions are generally either slow or require 
reconciliation, or have low availability because they rely 
on primary-copy schemes [20]. 

The focus of this paper is a new decentralized, 
asynchronous replica management protocol that 
addresses these concerns. The protocol retains the 
advantages of current asynchronous protocols, but 
generally performs better, has fewer connectivity 
requirements, and higher availability. No server ever 
needs to have complete knowledge of group membership, 
and a given server only needs to be in intermittent contact 
with at least one other server to take full part in the 
voting and commitment process. As such, the protocol is 
highly suited for environments with weak connectivity.  

The protocol�s strengths result from a combination of 
weighted voting and epidemic information flow [9], a 
process where information flows pair-wise through the 
system like a disease passing from one host to the next. 
The protocol is completely decentralized. There is no 
primary server that owns an item or serializes the updates 
to that item (as in Bayou [21]). Any server can create 
new object replicas, and servers need only be able to 
communicate with a minimum of one other server at a 
time in order to make progress. Instead of synchronously 
assembling quorums, which has been extensively 
addressed by previous work (e.g., [11, 14, 22]), votes are 
cast and disseminated among system servers 
asynchronously through pair-wise propagation. Any 
server can commit or abort any transaction unilaterally, 
and all servers eventually reach the same decisions. 

The use of voting allows the system to have higher 
availability than primary-copy protocols. The use of 
weighted voting allows implementations to improve 
performance by adapting currency distributions to site 
availabilities, update activity, or other relevant 
characteristics [6]. Each server has a specific amount of 
currency, and the total currency in the system is fixed at a 
known value. The advantage of a static total is that 
servers can determine when a plurality or majority of the 
votes have been accumulated without complete 
knowledge of group membership. This last attribute is 
key in dynamic, wide-area environments because it 
allows the protocol to operate in a completely 
decentralized fashion, eliminating performance 
bottlenecks and single points of failure. 

The use of epidemic protocols divorces protocol 
requirements from communication requirements. First, an 



 

 

epidemic algorithm only requires protocol information to 
move throughout the system eventually. The lack of hard 
deadlines and connectivity requirements is ideally suited 
to mobile environments, where individual nodes are 
routinely disconnected. Second, epidemic protocols 
remove reliance on network topology. Synchronization 
partners in epidemic protocols can be chosen randomly, 
eliminating the single point of failures that occur with 
more structured communication patterns such as 
spanning trees. 

Our performance study is based on the Deno 
prototype. The basic Deno architecture has been 
implemented and runs on top of Linux and Win32 
platforms. The performance data yielded three main 
findings. The overriding motivation for Deno�s protocols 
was to be able to make progress in weakly-connected 
environments. Protocols designed for such environments 
must make a number of tradeoffs that achieve availability 
at the possible expense of performance. Our first finding 
was that this performance impact was less than expected. 
On average, Deno servers learn of transaction commits 
just as fast as a much less available/reliable primary-copy 
protocol.  
Our second finding was that support for global 
serializability is relatively inexpensive in this 
environment. One of our protocols implements a form of 
weak consistency [4, 10], where update transactions are 
serializable and queries always access transactionally-
consistent database state. While this is sufficient for 
many applications, we also have a second variant that 
supports globally serializable executions. Under both 
protocols, read-only transactions execute entirely at the 
local server, and do not require network communication. 

Finally, we show that disseminating updates and 
protocol-specific information speculatively can 
significantly improve the performance of protocols based 
on epidemic or similar communication mechanisms. 

This paper extends our prior work [6, 16], which 
defined consistency for only single replicated objects, 
with support for multi-item transactions, serializability, 

and speculative information propagation, and with 
experimental evaluation on a prototype system.  

The rest of this paper is structured as follows. Section 
2 describes the Deno architecture and Section 3 describes 
Deno�s decentralized replication protocols. Section 4 
describes Deno�s support for mobility, and Section 5 
presents the results of our performance study. Finally, 
Section 6 briefly describes related work, and Section 7 
concludes. 

2 Deno architecture 
We now briefly describe the architecture of the Deno 
object replication system. The basic Deno API supports 
operations for creating objects, creating and deleting 
object replicas, and performing reads and writes on the 
shared objects in a transactional framework.  

Figure 2 illustrates the basic Deno server architecture. 
The Server Manager is in charge of coordinating the 
activities of the various components, and handling client 
requests by implementing the Deno API. The 
Consistency Controller implements the decentralized 
voting protocols and maintains a vote pool that 
summarizes the votes known to the server. The Synch 
Controller implements efficient synchronization sessions 
with other Deno servers by maintaining version vectors 
that compactly summarize the events of interests. The 
Trans Manager handles the local execution of 
transactions. It maintains a transaction pool that contains 
all active transactions known to the server. The Storage 
Manager provides access to the object store that stores 
the current committed versions of all locally replicated 
objects. The object store is currently implemented as a 
simple in-memory database.  

The current prototype runs on top of Linux and Win32 
platforms. All communication is made on top of UDP/IP. 
Deno consists of ~15,000 lines of multi-threaded C++ 
code, and has a footprint of  ~200KB. 
3 Decentralized replication protocols 
Before delving into the fine detail, we give a quick 
overview of the life of a Deno transaction (Figure 3). A 
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transaction is submitted by a client to any server, which 
executes it locally. Upon completion, the transaction 
either blocks (if the local server has seen a conflicting 
transaction) or becomes a candidate � meaning that the 
update can become visible to other servers. Candidates 
are voted on, and are eventually either committed (if they 
corner a plurality of the total system currency), or 
aborted. 
3.1 Providing weak consistency: base protocol 
Transaction model. A transaction consists of a sequence 
of read and write operations on replicated data items. A 
transaction reads a set of read items, and updates a subset 
of the read items called update items. Current values are 
tracked by associating a version number with each 
database item. The items in the local copy of the database 
are modified, and their version numbers incremented, 
only when update transactions commit. 

We distinguish between queries (i.e., read-only 
transactions) and update transactions. Both types of 
transactions execute entirely locally. However, queries 
are light weight in that a query can commit immediately 
after it successfully finishes its execution. Update 
transactions, on the other hand, must participate in a 
distributed commitment process after finishing execution.  

Each server maintains an active transaction list that 
contains active transactions; i.e., transactions that are 
being executed. While a transaction is executing, it 
constructs a transaction record that summarizes the 
transaction�s execution state. When an active update 
transaction successfully completes its execution, it takes 
one of the following two paths: (1) the transaction can 
either become a candidate transaction at its local server 
and participate in a distributed voting process that 
determines whether it commits or aborts; or (2) the 
transaction blocks and waits for the termination of other 
previous transactions before becoming a candidate. The 
blocked transactions are later reconsidered for becoming 
candidates. 
Voting. We define Vi as the set of all votes seen by server 
si. A vote, v∈ Vi, is a 4-tuple (voter, trans, curr, tstamp) 
where: 
• v.voter denotes the server that casts the vote, 
• v.trans denotes the transaction the vote is cast for, 

• v.curr denotes the amount of currency v.voter voted 
for v.trans, 

• v.tstamp is the value of v.voter�s local timestamp, 
which is incremented each time the server casts a vote. 
Two transactions are said to conflict if (1) their 

common read items have the same version numbers, and 
(2) at least one of the transaction�s read items overlaps 
with the other�s update items. 

A server, si, votes for a transaction by creating a vote, 
v, assigning a currency value to v, and inserting it into Vi. 
The currency value for a vote can be set in two distinct 
ways based on the state of the vote set. Server si votes 
with its full currency for transaction ti if si has not already 
voted for a conflicting candidate transaction. Such a vote 
is called a yes vote and is an indication of the support of 
the server for the corresponding transaction. Otherwise, si 
votes with 0.0 currency, in which case the vote is called a 
no vote. 

We now describe the voting process from the 
perspective of a single server. Each server si maintains 
the following major data structures: (1) a set of votes, Vi; 
(2) a list of candidate transactions, Ci, consisting of those 
update transactions that are known to si, have finished 
execution either locally or remotely, but have yet to be 
either committed or aborted at si; (3) a list of blocked 
transactions, Bi, consisting of locally completed 
transactions waiting to become candidates; and (4) a 
commit log containing an ordered list of committed 
transaction records. 

A server may create a vote for a candidate or locally 
completed transaction that does not conflict with any 
other candidate transaction for which the server has also 
voted. If the server votes for a blocked transaction, the 
transaction becomes a candidate transaction and is moved 
from the blocked list to the candidate list. Once created, 
votes may not be retracted. As explained below, a 
transaction t commits at si when it is guaranteed that no 
conflicting transaction can obtain more votes. 
Transactions can be committed even without knowledge 
of complete group membership because the total amount 
of currency in the system is always 1.0. The protocol 
guarantees that all servers eventually reach the same 
commit decisions. 
Voting rule: Server si considers voting for a transaction in 
the following three cases: 
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Figure 3: A transaction's life 



 

 

1. When si learns about a new candidate transaction t 
after synchronizing with another server; si votes yes 
for t if si has not already voted for a conflicting 
transaction; otherwise, si votes no. 

2. When si commits or aborts a candidate transaction; 
si considers all transactions t in the blocked list (i.e., 
all transactions waiting to become candidates) in 
insertion order. For any such transaction that does 
not conflict with an existing candidate transaction; si 
votes yes.  

3. When si completes the execution of a local 
transaction t; if there is no candidate transaction that 
conflicts with t, si votes yes for t and inserts t into its 
candidate list, Ci. Otherwise, si blocks t and inserts t 
into its blocked list, Bi.  

There are two important implications of the cases 
stated above. First, there cannot exist yes votes from the 
same server for conflicting transactions. Second, locally 
completed transactions are blocked until the termination 
of conflicting candidate transactions. 
Update commitment: Given a server si, and its vote set Vi, 
we compute the sum of votes cast for a transaction t as 

( ) .votes t v curr=∑ , 
where v∈ Vi, and v.trans=t, and the unknown votes of a 
transaction t as  

( ) 1.0 .unknown t s curr= −∑ ,  
where s is a server that already voted yes or no for t, and 
s.curr is the currency held by s.  

In other words, unknown(t) is essentially the sum of 
the currencies of those servers whose votes for 
transaction t are not yet available. We now define the 
commit rule that si uses to decide which candidate 
transactions to terminate (i.e., commit or abort) on the 
basis of local information. The fundamental idea is to 
commit a transaction when it is guaranteed that no other 
conflicting transaction can gather more votes. 
Commit rule. A transaction t∈ Ci commits when, ∀ t′∈ Ci 
such that t′ and t conflict: 

( ) ( ) ( )votes t votes t unknown t′> +   
The commit rule states that candidate transaction t can 
commit if it gathers the plurality of votes. The rule 
enforces mutual exclusion by ensuring that no other 
conflicting transaction, which may or may not be known 
to server si, can gather more votes. Note that ties between 
transactions having the same amount of votes can be 
broken using a simple deterministic comparison between 
the indices of the servers that created the transactions.  

When a candidate transaction t commits at server si, si 
incorporates the effects of t into its database by installing 
the new values of the update items of t (available from t�s 
transaction record), and incrementing the version 
numbers of the local copies of those items. Finally, the 
transaction record of t is appended to the commit log. 
Note that servers must eventually garbage-collect their 
commit logs, as otherwise these logs will grow 
indefinitely. 

Abort rule. All active and candidate transactions whose 
read items are modified are said to become obsolete and 
are aborted. Additionally, commitment of a transaction 
causes all votes cast for an obsolete transaction to be 
discarded. 
Synchronization. A pair-wise synchronization session 
essentially involves the propagation of (1) committed 
updates, (2) candidate transactions, and (3) votes that are 
known to one server and unknown to the other. 

In Deno, synchronization is controlled via version 
vectors [18]. Each server si maintains an n-element 
vector, vvi, where n is the number of servers, which 
describes the number of events of each other server seen 
by si. Element vvi[j] is a scalar count of the number of j�s 
events that have been seen at si. There are three types of 
events of interest: transaction commits, transaction 
promotions, and votes. A commit event is created 
whenever the local server commits a transaction. A 
promotion event is created whenever a transaction 
becomes a candidate on the server where it executed. A 
vote event is created whenever a vote is cast. 

 In more detail, server si maintains a serial order, 
called local ordering, on all local commits, promotions 
and votes. We denote the jth such event as j

ie . As 
information about events is always propagated in local 
order, if si�s version vector is vvi, si has seen all events 
1
je � [ ]v v ji

je , for all j = 1�n.  
Synchronization is then straightforward. We here 

assume a unidirectional pull synchronization, although 
other modes are possible [9, 16]. When si pulls 
information from sj, the following actions take place: 
1. Server si sends vvi to sj.  
2. Server sj responds with all events l

ke  s.t. 
[ ] and [ ]i jl vv k l vv k> ≤ , for all k = 1�n. 

3. Server si incorporates the new events in the same 
order that they originally occurred by processing 
new commitments, candidates, and votes; applying 
the voting rule, the commit rule, and the abort rule 
for all relevant transactions; and updating vvi to the 
pair-wise maximum of vvi and vvj. 

Consistency issues. The base Deno protocol described 
above supports a form of weak consistency [3, 4, 10] 
where each query serializes with respect to all update 
transactions, but possibly not with other queries. More 
specifically, the protocol ensures globally serializable 
execution of update transactions alone, i.e., no update 
transaction cycles in the serialization graph. However, 
the protocol allows multiple-query cycles, i.e., cycles 
involving multiple queries and multiple update 
transactions. In other words, each query observes a serial 
order of update transactions, which is not necessarily the 
same order observed by other queries. This form of weak 
consistency does ensure that queries always observe 
transactionally-consistent database states. Furthermore, 
as proved in [7], no local or global deadlocks are 



 

 

possible. A more detailed discussion including 
correctness proofs, and illustrative examples can be 
found in [7]. 
3.2 Providing serializability: extended protocol 
The base protocol ensures that queries always access 
transactionally-consistent data, and that update 
transactions are globally serialized with respect to each 
other. However, the base protocol does not serialize 
update transactions with respect to all queries. We now 
describe an extension of the base protocol that provides 
strong consistency [3, 4, 10], where each query is 
serialized with respect to both other queries and update 
transactions, thereby guaranteeing globally-serializable 
executions.  This form of consistency is characterized by 
an acyclic serialization graph [3], prohibiting both update 
transaction cycles and multi-query cycles. 

The base protocol fails to provide strong consistency 
because non-conflicting update transactions are not 
necessarily globally serialized with respect to each other. 
We address this problem by forcing all update 
transactions to commit in the same order at all servers by 
providing mutual exclusion among all transactions, rather 
than just among conflicting transactions as the base 
protocol does. We accomplish this by modifying the 
voting process such that each server votes yes for all 
candidate transactions (whether or not they conflict), but 
specifies a total order on all of its votes (using 
timestamps). The commit process is then restricted so 
that only the top transactions, which are the candidate 
transactions that come first in any server�s ordering, are 
considered for commitment. The details of the strong-
consistency protocol and the corresponding correctness 
proofs can be found in [7]. 

4 Support for mobility 
For completeness, we briefly discuss some of Deno�s 
mobility-related features: 
Proxies. Deno allows servers to specify proxies to 
represent them during planned disconnections (during an 
airplane trip, for example) by voting in their place [6, 
16].  
Application-specific commutativity information. 
Applications running on top of dis- and weakly-
connected environments and systems need be designed to 
minimize conflicts among updates in order to avoid high 
abort rates [12]. One approach is to have applications 
export domain-specific semantic information that can be 

used to modify the application�s consistency 
requirements [21]. Deno�s extended protocol supports 
commutativity procedures to exploit application-specific 
commutativity information. A commutativity procedure 
is a simple query over the database specifying an 
acceptance criterion [12]. If the query is satisfied, the 
transaction is considered to be valid with respect to the 
current state of the database. Deno executes a 
transaction�s commutativity procedure (if it exists) if and 
when the transaction becomes obsolete. If the acceptance 
criterion is satisfied, the transaction is not aborted. Note 
that the use of commutativity procedures does not affect 
the consistency guarantees. 
Light-weight, dynamic currency management. The 
system initially gives all currency to the server that 
created the objects. Other servers obtain currency along 
with their initial copies of the data. Subsequent peer-to-
peer currency exchanges allow the system to approach to 
any global target distribution exponentially fast [6].  

5 Performance evaluation 
This section describes the performance of the Deno 
prototype. Note that the primary advantage gained in 
combining voting with epidemic information flow is in 
increased availability, which we do not discuss in this 
paper.  
5.1 Experimental environment 
We performed the experiments on a cluster of 15 Linux 
machines (each with two 400 MHz Pentium II�s, and 256 
MBytes of memory), each running a single copy of the 
Deno server. The machines were connected via a 
100Mbps Ethernet network and the servers 
communicated using UDP packets. We used a small 
database consisting of 100 data objects of size 20K each. 
Each server periodically initiated a synchronization 
session (with a given synchronization period) by sending 
a pull request to another randomly selected server. 

Each server generated transactions according to a 
global transaction rate (specified relative to a 
synchronization period). Each transaction accessed and 
modified up to five data items. Since our focus is on the 
performance of the global update consistency protocols, 
we did not model any read-only transactions. All objects 
are replicated at all servers and currency is uniformly 
distributed across servers in all the experiments. The 
results presented in the following graphs are the average 
of five independent runs of executing 1000 transactions 
in the system. The main parameters and settings used in 
the experiments are summarized in Table 1.  Our 
performance evaluation concentrates on relative 
performance by comparing representative protocols.  

We evaluate two versions of Deno�s protocol, Deno-
weak (Section 3.1), and Deno-strong (Section 3.2). 
Additionally, we investigate two representative epidemic 
replication schemes from the literature. The first scheme, 
primary, is an epidemic primary-copy scheme that uses 
a specialized primary server to serialize the updates, 

Parameter Description Setting 
Synch Period 
 (SP) 

Mean synchronization period 
(uniform) 

0 � 5   
(secs) 

Transaction Rate 
(TR) 

Mean transaction generation rate 
(uniform) 

0 � 25 
(trans/SP) 

Num Servers Number of Deno servers 3 � 15 
Trans Size Number of items updated by a trans. 

(uniform) 
0 � 5  

Commutativity 
Ratio 

The probability that a trans. is 
acceptable on a given db state 

0 � 1 

Table 1: Primary experimental parameters and 
settings 



 

 

while propagating the updates using epidemic flow. This 
protocol is similar to that used in Bayou [21]. Note that 
primary-copy protocols trade availability for a presumed 
advantage in performance. 

The second scheme, write-all, is an epidemic 
�Read-One, Write-All� (ROWA) [3] protocol, where 
servers can only commit transactions after ensuring that 
all other servers are ready to commit. Therefore, a 
transaction has to be propagated to all the servers before 
it can be committed. Furthermore, when a server 
observes conflicting transactions, it has to abort all of 
those transactions to ensure global consistency. This 
protocol is similar to that proposed by Agrawal et al. [2]. 
5.2 Commit delays 
Unlike traditional synchronous environments where 
transactions are committed synchronously at all servers, 
commit times typically exhibit wide variability in 
asynchronous systems. The time at which the first server 
commits a transaction is, thus, not necessarily the 
quantity that best predicts application performance with 
epidemic information propagation. 

Figure 4 presents commit delays by plotting the 
number of servers that committed the transaction as time 
progresses for primary, write-all, and Deno-
weak, when there is no update contention (for 15 
servers). Although the primary server commits the 
transaction quickly, this information propagates to other 
servers relatively slowly. This is because all other servers 
must learn of the commitment, directly or indirectly, 
from the primary server. With the Deno protocols, on the 
other hand, distinct servers may either learn the 
commitment from other servers (as in the case of 
primary), or commit the transaction independently. In 
the presented example, for instance, about seven servers 
(on the average) committed the transaction 
independently. The delay between the first and 
subsequent commits is thus quite small, as revealed by 
the high slope of the Deno-weak curve in Figure 4.  

One important implication of this result is that the 
performance penalty of using voting rather than a 
primary-copy approach is not as large as commonly 

assumed in the kinds of environments we address. The 
results for Deno-strong (not shown) are virtually 
similar to those for Deno-weak, because there is no 
contention, and thus no conflicts. 
5.3 Contention effects 
The previous subsection focused on the speed of 
transaction commits when there is no update contention. 
Figure 5 presents the performance results of the protocols 
under update contention. More specifically, the figure 
shows the commit percentage (i.e., the percentage of 
initiated transactions that are committed) results for 
different levels of transaction generation rate (for 15 
servers) for all protocols.  

The figure shows that all approaches suffer from the 
increased transaction rate due to the global update 
consistency requirement that only one out of a set of 
conflicting transactions can commit. Under very small 
transaction rates (TR in [0.0-1.0]), all protocols perform 
fairly well, achieving commit percentages of around 
100%. With increasing transaction rates, however, 
commit percentages drop for all protocols significantly. 
Overall, primary achieves the best commit percentage, 
followed closely by the weak and strong versions of 
Deno. The difference between the two versions of Deno 
as well as the difference between Deno protocols and 
primary over the whole range shown is small (within 
absolute 5%). The performance of write-all is 
significantly lower than the rest of the protocols. In fact, 
at (and beyond) a transaction rate of 25 (not shown), 
write-all does not commit any transactions. The 
main reason for this difference is that write-all has 
to abort all conflicting transactions, as it is not equipped 
with any mechanism to globally single out a transaction 
to commit (out of a set of conflicting transactions). The 
other protocols continue to commit transactions 
regardless of the transaction rate (not shown). 

The most interesting result from this series of 
experiments is that the base Deno protocol did not appear 
to have any significant performance advantage of the 
extended version. The difference between the commit 
delays of the two with little contention appears is up to an 
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average of 10% with reasonable contention. The case 
with contention was where we expected the most 
degradation in performance, as the requirement of a 
global ordering effectively increases the number of 
conflicts. This increase in conflicts, in turn, forces more 
currency to be inspected before a winner of a given 
election can be determined. For example, we only need 
>50% of the currency in order to determine the winner of 
an election if there are no conflicting transactions, but we 
may need all of the currency in order to decide between 
two or more. However, the increase in required currency 
is offset by an increase in concurrency. Therefore, update 
contention does not necessarily increase commit delays. 
5.4 Speculative voting and update propagation 
Recall from Section 3 that a transaction that completes its 
execution is blocked until the local server has decided 
whether to commit or abort all conflicting candidate 
transactions. Blocked transactions can proceed and 
participate in the global voting protocol only after the 
conflicting transactions are terminated. 

We now propose an optimistic alternative that skips 
the blocking phase by having the servers immediately 
vote for all transactions as soon as they finish their local 
execution. These transactions immediately become 
candidates to be added to subsequent synchronization 
sessions. The advantage of such speculative voting is that 
transactions can make progress, in terms of gathering 
votes, while the system is still deciding the fate of prior 
transactions. Speculative votes are most useful when 
previous conflicting transactions are aborted. As shown 
below, the advantage conferred by this technique is larger 
when there are commuting updates in the system. The 
cost of speculation is that some transactions that will 
eventually get aborted are propagated through the system 
unnecessarily, resulting in a waste of communication 
bandwidth. 

 Figure 6 examines the benefits of speculative update 
propagation and voting for varying degrees of 
commutativity by showing the performance of 
speculative (Deno-spec) and non-speculative (Deno-
nonspec) versions of Deno-strong (a description 
of the modifications required to support speculation can 
be found in [7]). Somewhat non-intuitively, larger 

commutativity ratios result in larger commit delays for 
the non-speculative Deno. The reason is that increasing 
commutativity results in fewer aborted transactions, 
which in turn increases contention for those transactions 
that are yet to be terminated. By contrast, Deno-spec�s 
commit delay is largely constant across all commutativity 
ratios. Speculative voting confers a performance 
advantage of about 15% even with a commutativity ratio 
of 0.0 −− the default case where no transactions 
commute. The gap increases with commutativity ratio 
until Deno-nonspec�s commit delay is more than 
twice Deno-spec�s at a ratio of 1.0. 

The benefits of speculation come at the expense of 
propagating more transactions and votes. To this end, we 
investigate the relative bandwidth utilizations of the 
protocols in Figure 7, which shows the amount of 
information sent across all servers (in KBytes) per 
committed transaction for Deno-spec and Deno-
nonspec. For low commutativity ratios (i.e., up to .1), 
Deno-spec propagates about 4-6% more information 
per committed transaction. Beyond a commutativity ratio 
of .2, however, the speculative protocol sends less 
information than the non-speculative version, with the 
difference increasing as the commutativity increases. At a 
commutativity ratio of 1.0, Deno-spec propagates 
about 16% less information per committed transaction. 
To summarize, the speculative version not only decreases 
average commit delays, but it also decreases bandwidth 
requirements per committed transaction. 

6 Related work 
The problem of consistent access to replicated data has 
long been studied in many contexts and a wide variety of 
solutions have been proposed, e.g., [1, 3, 8, 10, 20, 22]. 
Due to space limitations, we restrict our attention to 
asynchronous update-anywhere approaches that utilize 
the epidemic model [2, 9, 15, 19, 21]. Many epidemic 
systems take an optimistic approach and use 
reconciliation-based protocols that are only viable in non-
transactional single-item domains such as file systems. 
These approaches only ensure that all copies of a single 
item eventually converge to the same value, and therefore 
are not safe for environments requiring transactional 
semantics. 
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Figure 6: Speculation effects on commit delay         

(15 servers, SP=5.0 secs) 
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Figure 7: Speculation effects on bandwidth usage      
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Bayou [21] takes a more pessimistic approach and 
ensures that all committed updates are serialized in the 
same order at all servers using a primary-copy scheme. 
More recently, Agrawal et al. [2] described a pessimistic 
ROWA [3] approach that ensures strong consistency and 
serializability. Our protocols differ from these protocols 
primarily in using a novel combination of weighted-
voting and epidemic information flow to improve 
availability and performance. 

Independent of our research, Holliday et al.[13] 
proposed an epidemic quorum-based approach that 
provides serializability as our extended protocol. 
Holliday�s work assumes a more traditional replicated 
database environment and static currencies, whereas our 
emphasis is on making progress under incomplete system 
information in dynamic environments. In addition, we 
also describe a weak-consistency version of the protocol, 
and discuss how to propagate updates speculatively. 

7 Conclusions 
We have presented the design, implementation, and 
evaluation of Deno, a highly-available object-replication 
system that supports transactional semantics in mobile 
and weakly-connected environments. Deno�s consistency 
protocols are based on an asynchronous weighted-voting 
approach implemented through epidemic information 
flow. Our voting approach achieves higher availability 
than primary-copy approaches [21], and higher 
availability and performance than ROWA approaches 
[2]. 

Our base protocol ensures weakly-consistent 
executions where update transactions are serializable and 
queries always access transactionally-consistent database 
states. Our extended protocol provides strong consistency 
and globally serializable executions by providing a 
unique global commit order on all update transactions. 
Both protocols allow queries to be executed and 
committed entirely locally, and without blocking. 
Furthermore, neither protocol suffers from local or global 
deadlocks. 

Our detailed performance study revealed several 
interesting results. First, the presumed performance 
advantage of the primary-copy approach over a uniform 
voting approach is not as significant with asynchronous 
epidemic protocols. The reason is that epidemic voting 
protocols allow servers to independently arrive at the 
same conclusions, whereas primary-copy schemes 
require all commit information to emanate from a single, 
distinguished server. Second, our extended protocol 
performs nearly as well as the base protocol, while 
providing significantly stronger semantics. The result is 
increased functionality at essentially little cost in 
performance. Finally, speculative update propagation and 
voting provides a considerable performance advantage 
for protocols that use pair-wise communication, and this 
advantage is magnified when application-specific 
commutativity information is used to decrease the rate of 
transaction aborts. 
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